FILED December 10, 2019 INDIANA UTILITY REGULATORY COMMISSION

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

REBUTTAL TESTIMONY OF KEITH B. PIKE STRATEGIC ANALYTICS DIRECTOR - FHO DUKE ENERGY CAROLINAS, LLC ON BEHALF OF DUKE ENERGY INDIANA, LLC CAUSE NO. 45253 BEFORE THE INDIANA UTILITY REGULATORY COMMISSION

1		I. <u>INTRODUCTION</u>
2	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
3	А.	My name is Keith B. Pike, and my business address is 1000 East Main Street,
4		Plainfield, Indiana.
5	Q.	BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?
6	А.	I am employed by Duke Energy Carolinas, LLC, a utility affiliate of Duke
7		Energy Indiana LLC ("Duke Energy Indiana" or "Company" or "DEI") as
8		Strategic Analytics Director – FHO, in the Analytical Engineering Group.
9	Q.	ARE YOU THE SAME KEITH PIKE THAT PRESENTED DIRECT
10		TESTIMONY IN THIS PROCEEDING?
11	А.	Yes, I am.
12	Q.	WHAT IS THE PURPOSE OF YOUR REBUTTAL TESTIMONY?
13	A.	I will respond to the testimony of Wabash Valley Power Alliance ("WVPA") and
14		Indiana Municipal Power Agency ("IMPA") witnesses Messrs. Wilmes and
15		Smardo regarding the retirement date of Gibson Unit 5. I will rebut an analysis
16		performed by OUCC witness Mr. Alvarez concerning operations and maintenance
17		("O&M") costs used in the 2018 Duke Energy Indiana Integrated Resource Plan
18		("IRP"). Lastly, I will also address at a high level various conceptual issues

1		raised by the Sierra Club and Joint Intervenors ¹ as it relates to the applicability of
2		the 2018 IRP in this proceeding. Duke Energy Indiana rebuttal witness Mr. Scott
3		Park will address challenges to the IRP process in greater detail.
4		II. <u>GIBSON UNIT 5 RETIREMENT DATE</u>
5	Q.	WVPA AND IMPA WITNESSES MESSRS. WILMES AND SMARDO
6		DISAGREE WITH YOUR STRATEGY REGARDING THE
7		RETIREMENT OF GIBSON UNITS 4 AND 5, AND PROPOSE THAT
8		DUKE ENERGY INDIANA RETIRE GIBSON UNIT 5 IN 2026. ² HOW DO
9		YOU RESPOND?
10	A.	As the Gibson Unit 5 Joint Ownership Agreement requires unanimous agreement
11		among the owners in order to retire the unit, achieving a consensus on the
12		retirement date is a capital opportunity for Duke Energy Indiana that should not
13		be dismissed. To the extent there is no material difference in the cost or
14		performance of Gibson Unit 4 and Gibson Unit 5 (other than the Unit 5 scrubber),
15		and the proposed scrubber flue gas crossover duct would be eliminated, I can fully
16		support WVPA's and IMPA's recommendation as I indicated in my direct
17		testimony on page 20 at lines 17-23.
18	Q.	IF GIBSON UNIT 5 WOULD RETIRE IN 2026, WHEN WOULD GIBSON
19		UNIT 4 RETIRE?

¹ Collectively the Citizens Action Coalition of Indiana Inc., Indiana Community Action Association, and Environmental Working Group.

² Wilmes direct testimony, pages 3-4, Q/A7 and Q/A8; Smardo direct testimony, pages 3-4, Q/A7 and Q/A8.

1	A.	I view this change as a simple swapping of the retirement dates of Gibson Units 4
2		and 5. So, Gibson Unit 5 would retire in 2026, and Gibson Unit 4 would retire in
3		2034 along with Gibson Unit 3 and Noblesville. Please see Table 1 below,
4		reflecting this change. Accelerating Gibson Unit 5's retirement date without also
5		deferring Gibson Unit 4's retirement date would result in a further increase in
6		depreciation expense in this proceeding, which would be undesirable for
7		customers, and is unnecessary at this time. Duke Energy Indiana witnesses Mr.
8		John Spanos and Ms. Diana Douglas present the impact of this change on
9		depreciation rates and expenses in their rebuttal testimonies.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

Table 1: Generating Unit Existing and Updated Depreciation Retirement Dates

1

			Curren	t Dates	Update	d Dates
		In Service		Age at		Age at
Unit	Туре	Date	Retire Date	Retirement	Retire Date	Retirement
Cayuga 1	Coal	10/4/1970	2035	65.2	5/31/2028	57.7
Cayuga 2	Coal	6/22/1972	2037	65.5	5/31/2028	55.9
Edwardsport IGCC	Syngas CC	6/7/2013	2045	32.6	5/31/2045	32.0
Gallagher 2	Coal	12/1/1958	2023	65.1	12/31/2022	64.1
Gallagher 4	Coal	3/1/1961	2026	65.8	12/31/2022	61.8
Gibson 1	Coal	5/3/1976	2041	65.7	5/31/2038	62.1
Gibson 2	Coal	4/16/1975	2040	65.7	5/31/2038	63.1
Gibson 3	Coal	3/28/1978	2043	65.8	5/31/2034	56.2
Gibson 4	Coal	3/27/1979	2044	65.8	5/31/2034	55.2
Gibson 5	Coal	10/1/1982	2047	65.2	5/31/2026	43.7
Noblesville ST 1-2	CC	1/1/1950	2038	89.0	5/31/2034	84.4
Noblesville CT3-5	СТ	4/1/2003	2038	35.8	5/31/2034	31.2
Cayuga CT4	СТ	6/29/1993	2033	40.5	5/31/2028	34.9
Cayuga Diesel 3a-d	IC	6/1/1972	2015	43.6	5/31/2028	56.0
Henry County CT1	СТ	7/31/2001	2041	40.4	5/31/2038	36.8
Henry County CT2	СТ	8/11/2001	2041	40.4	5/31/2038	36.8
Henry County CT3	СТ	8/25/2001	2041	40.4	5/31/2038	36.8
Madison CT1	СТ	5/29/2000	2040	40.6	5/31/2041	41.0
Madison CT2	СТ	5/29/2000	2040	40.6	5/31/2041	41.0
Madison CT3	СТ	5/29/2000	2040	40.6	5/31/2041	41.0
Madison CT4	СТ	5/29/2000	2040	40.6	5/31/2041	41.0
Madison CT5	СТ	6/15/2000	2040	40.5	5/31/2041	41.0
Madison CT6	СТ	6/29/2000	2040	40.5	5/31/2041	40.9
Madison CT7	СТ	6/15/2000	2040	40.5	5/31/2041	41.0
Madison CT8	СТ	6/29/2000	2040	40.5	5/31/2041	40.9
Vermillion CT1	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Vermillion CT2	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Vermillion CT3	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Vermillion CT4	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Vermillion CT5	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Vermillion CT6	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Vermillion CT7	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Vermillion CT8	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Wheatland CT1	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Wheatland CT2	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Wheatland CT3	СТ	6/1/2000	2040	40.6	5/31/2043	43.0
Wheatland CT4	СТ	6/1/2000	 2040	40.6	5/31/2043	43.0
Markland 1-3	Hydro	1/1/1967	2030	64.0	4/30/2061	94.3
Crane	Solar	1/31/2017			5/31/2047	30.3
Camp Atterbury	Solar+Stor	12/31/2019			5/31/2045	25.4

Average Lives

Coal	65.5	57.7
СТ	40.4	40.8

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

Q. HOW WOULD THIS CHANGE AFFECT THE DIVERSIFICATION OF DUKE ENERGY INDIANA'S GENERATING FLEET?

3 A. As I discussed in my direct testimony on page 18 at lines 13-16, the strategic fleet 4 diversification benefit of retiring Gibson Unit 4 first was the opportunity to install 5 a larger amount of renewable energy resources early in the planning horizon and reduce Duke Energy Indiana carbon emissions. Because Duke Energy Indiana 6 7 only owns about half of Gibson Unit 5, swapping the retirement dates of Gibson 8 Units 4 and 5 will reduce this need by 2026 in half, slowing the pace of diversification, and decreasing Company carbon emission reductions.³ However, 9 10 the opportunity to capitalize on unanimous agreement with the Gibson Unit 5 11 Joint Owners has more immediate value to customers. Absent this agreement 12 now, there would be uncertainty even in the original proposed retirement date of 13 2034. Further, if Duke Energy Indiana objected now and held out its option to 14 continue to operate the unit, the long-standing productive relationship we have 15 had with the Joint Owners could become stressed, impacting other business 16 relationships, such as wholesale, that are beneficial for retail customers. 17 On the surface, when Gibson Unit 4 retires with Gibson Unit 3 and 18 Noblesville in 2034, that difference in capacity need would be carried forward 19 allowing the 2034 natural gas combined cycle unit as shown in the 2018 IRP 20 preferred portfolio to be supplemented with additional renewable resources.

³ While there would be little net difference to the environment in total, retiring a jointly owned unit first versus a wholly owned unit will decrease the amount of Company-owned carbon emission reductions.

1		Duke Energy Indiana rebuttal witness Mr. Scott Park further discusses the
2		potential portfolio impacts associated with this change.
3	Q.	WOULD THIS CHANGE IMPACT DUKE ENERGY'S ABILITY TO
4		ACHIEVE ITS 2030 CARBON EMISSION REDUCTION GOAL THAT
5		YOU DISCUSSED IN YOUR DIRECT TESTIMONY ⁴ IN THIS
6		PROCEEDING?
7	A.	No, not materially. However, it is important to note that on September 17, 2019,
8		Duke Energy announced ⁵ revisions to the corporate climate goal that was
9		originally established in 2017.
10	Q.	PLEASE DESCRIBE THE REVISIONS TO THE GOAL THAT HAVE
11		BEEN MADE.
12	A.	The development of this new goal was informed by recent resource planning
13		updates, ongoing changes in the industry, continued uncertainty and risk in
14		national climate regulatory policy, and the continued evolution of our
15		stakeholders' expectations. The changes are two-fold. First, the 2030 carbon
16		emission reduction goal has been increased from 40% to "at least 50%," still from
17		a 2005 emissions baseline. Second, consistent with more recent goals announced
18		by our peer utilities, we have established a second-phase goal. This second-phase
18 19		by our peer utilities, we have established a second-phase goal. This second-phase goal is for "net-zero" carbon emissions by 2050. Figure 1 below shows an

 ⁴ Duke Energy Indiana Direct Testimony, Exhibit 15, page 32 line 13 through page 35 line 2.
 ⁵ <u>https://news.duke-energy.com/releases/duke-energy-aims-to-achieve-net-zero-carbon-emissions-by-2050</u>

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

Energy regional peer utilities. Our new 2030 goal is now the same as Southern Company and DTE Energy, while the new 2050 goal places Duke Energy in step with the most aggressive carbon reduction plans in the industry.

4

Figure 1: Peer Utility Carbon Reduction Goals

5 Q. PLEASE DISCUSS THE IMPLICATIONS OF THE NEW 2030 GOAL ON

- 6 DUKE ENERGY INDIANA'S OPERATIONS, AND SPECIFICALLY THE
- 7 CHANGE IN RETIREMENT DATES FOR GIBSON UNITS 4 AND 5.
- A. As I indicated, the new Duke Energy 2030 corporate climate goal was informed
 by the results of the 2018 Duke Energy Indiana IRP. The Cayuga Station and
- 10 Gibson Unit 4 retirements as shown in the preferred portfolio in 2028 and 2026

1		respectively would support the Company in meeting the new 2030 goal. While
2		Company-owned carbon emissions in 2030 will increase versus the IRP preferred
3		portfolio, all else the same, a swapping of the Gibson Unit 4 and Gibson Unit 5
4		retirement dates should not materially impact our ability to achieve this goal.
5		Again, the goal is corporate-wide, so ebbs and flows in emissions will be
6		strategically managed across the enterprise.
7	Q.	WHAT ARE THE RESULTING USEFUL LIVES OF THE GIBSON UNITS
8		4 AND 5 FOR THE DEPRECIATION STUDY AS A RESULT OF THIS
9		CHANGE?
10	A.	The swapped retirement dates for Gibson Units 4 and 5 result in lives of 55 years
11		for Gibson Unit 4 and 44 years for Gibson Unit 5.
12	Q.	DO YOU CONSIDER THE RESULTING USEFUL LIVES OF THESE
13		GIBSON UNITS STILL TO BE REASONABLE?
14	A.	Yes, I do. In our original proposal with the scrubber flue gas crossover duct, the
15		units' scrubbers were already retiring on this schedule. Further, referring back to
16		Table 1 on page 10 of my direct testimony, numerous of our peer utilities in the
17		state have proposed coal unit retirements in the upper-30s to lower-40s years of
18		life, and a retirement age of 55 years is in the mid-to-high end of the range of our
19		peers. Both lives are reasonable, and are in line with the range seen in industry
20		based on unit-specific circumstances.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1		III. OUCC IRP-BASED O&M ANALYSIS
2	Q.	OUCC WITNESS MR. ALVAREZ CONDUCTS AN ANALYSIS USING
3		THE O&M COSTS INCLUDED IN THE 2018 IRP, EXCLUDING
4		EDWARDSPORT, AS A BASIS FOR RECOMMENDING A REDUCTION
5		TO DUKE ENERGY INDIANA'S O&M EXPENSE REQUEST AS
6		DISCUSSED IN THE DIRECT TESTIMONY OF COMPANY WITNESS
7		MR. MOSLEY. ⁶ DO YOU AGREE WITH MR. ALVAREZ'S ANALYSIS
8		AND CONCLUSIONS?
9	A.	No, I do not agree. While Mr. Alvarez's general theory that Duke Energy Indiana
10		could recover O&M costs as represented in the IRP is intriguing, there are several
11		problems with his analysis that render his conclusions faulty and moot.
12	Q.	WHAT ARE THE PROBLEMS WITH MR. ALVAREZ'S ANALYSIS?
13	А.	There are three critical problems with Mr. Alvarez's analysis. First, his
14		assessment of planned outage costs is completely arbitrary and meritless. As this
15		issue is beyond the scope of the IRP, Duke Energy Indiana witness Mr. Mosley
16		addresses it in his rebuttal testimony. Second, Mr. Alvarez only included the
17		fixed component of O&M cost as modeled in the IRP in his analysis. In the IRP,
18		there are two components of total O&M: fixed and variable. His omission of the
19		variable O&M component excludes significant real costs from his analysis,
20		including emission control reagents, coal and waste handling, and other outage

⁶ Alvarez direct testimony, page 6 line 10 through page 9 line 13. **KEITH B. PIKE**

1		and non-outage variable maintenance expenses as so-modeled. Third, Mr.
2		Alvarez failed to recognize that the source for the fixed O&M costs in the IRP he
3		used as a basis for his analysis were in constant year 2017 dollars; Mr. Alvarez
4		failed to inflate the costs into the appropriate year nominal dollars.
5	Q.	IF THESE PROBLEMS REGARDING USE OF THE AS-MODELED IRP
6		O&M COSTS WERE CORRECTED, WHAT WOULD BE THE RESULT
7		OF MR. ALVAREZ'S ANALYSIS?
8	A.	Table 2 below depicts the spirit of Mr. Alvarez's analysis, but with the correct
9		inclusion and treatment of all the as-modeled IRP O&M cost data ⁷ (still excluding
10		Edwardsport). This corrects his Confidential Table 1 from page 9 of his direct
11		testimony.

⁷ As provided to the Commission and the OUCC with the submission of the 2018 IRP, and also as provided in discovery in Confidential Attachment Sierra Club 1.16-D(3).

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1

Table 2: 2018 IRP As-Modeled O&M Costs, Excluding Edwardsport

2

<<CONFIDENTIAL BEGIN>>

3

<<CONFIDENTIAL END>>

4	The resulting 2020-2024 average of the total O&M cost as-modeled in the
5	IRP is \$258M, which in converse to Mr. Alvarez's conclusion, is actually much
6	higher than the \$229M of total 2020 O&M proposed by Duke Energy Indiana. ⁸
7	However, the IRP includes some O&M costs that are outside the purview of Mr.
8	Mosley's functional budget, namely property taxes and insurance costs.
9	Deducting the IRP as-modeled property taxes and insurance costs ⁹ results in an
10	apples-to-apples comparison of \$243M, which is nearer yet still higher than the

⁸ Mosley direct testimony at page 27, line 14 (Table 9).
⁹ A breakdown of fixed O&M costs, including property taxes and insurance, was provided in discovery response IG 20.2.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1		Company's request. However, this outcome is logical considering that we are
2		taking an average of escalating costs into the future; for example, the average of
3		twenty years of escalating costs is logically higher than the first-year cost. So as a
4		final comparison, I de-escalate the future costs into constant year 2020 dollars,
5		and the 2020-2024 average is \$232M.
6		Considering that the IRP O&M cost forecast is still just from a model,
7		compared to Mr. Mosley's detailed operations and maintenance budget, the
8		remaining difference is immaterial to the Company's \$229M request. As such,
9		Duke Energy Indiana would not propose to seek this additional amount, up to
10		\$243M in nominal terms, based on Mr. Alvarez's proposal of using IRP as-
11		modeled O&M costs to establish O&M expense for this proceeding. And as a
12		final point, the IRP O&M does not include a line-item cost for Crane Solar, so its
13		appropriate inclusion would only serve to even further increase the request.
14	Q.	MR. ALVAREZ PERFORMED HIS ANALYSIS USING A SEVEN-YEAR
15		AVERAGE PERIOD OF 2020-2026, WHEREAS YOU HAVE ASSESSED
16		THE PERIOD 2020-2024? WHY THE DIFFERENCE IN YOUR
17		ANALYSIS?
18	A.	Mr. Alvarez's use of a seven-year average period was based on a flawed and
19		meritless assessment of planned outage costs. Typically, Duke Energy Indiana
20		models O&M costs (fixed and/or variable) used for long-term IRP modeling
21		purposes as long-run costs. They are not generally intended to be comparable to
22		any specific year of near-term cost projection that may be budgeted and/or
		KEITH B. PIKE

-12-

1		otherwise forecasted with fine detail, including any expectations of timing for
2		planned outages. Therefore, the use of an averaging period is appropriate.
3		However, when properly including the variable O&M component in the
4		analysis as I have done, it is clear that starting in 2025 the variable O&M costs
5		decrease notably. That is because this set of data is from the Reference Carbon
6		scenario as modeled in the IRP, and includes the inception of a carbon price in
7		2025 that drives down the dispatch of the coal units in the IRP model. Some of
8		this reduction in variable O&M is from emission control reagents; as Duke
9		Energy Indiana is requesting to continue to track emission control reagent costs in
10		this proceeding, those reductions would naturally flow to customers if such a
11		future were to occur. Therefore, it is inappropriate to consider that cost reduction
12		in the average, as it would essentially be double-counted. I therefore stop my
13		averaging period in 2024. However, solely for demonstration purposes, in Table
14		2 I do also include results for the nominal averages through 2025 (\$238M) and
15		2026 (\$232M), both of which are still in excess of the Company's \$229M request.
16	Q.	HOW DO YOU SUGGEST THE COMMISSION CONSIDER MR.
17		ALVAREZ'S RECOMMENDATIONS DERIVED FROM HIS ANALYSIS?
18	A.	Mr. Alvarez's attempt to undermine Duke Energy Indiana's rigorous and
19		thoughtful O&M expense budget is turned upside down when the correct,
20		complete, and apples-to-apples comparable cost data from the IRP is used. I am
21		not at all surprised that the O&M cost as-modeled in the IRP is in fact very
22		representative of the Company's costs, and consistent with our O&M expense

1		request in this proceeding – Duke Energy Indiana takes seriously its IRP
2		modeling process. The Commission should therefore disregard Mr. Alvarez's
3		recommendations on this topic, and approve Duke Energy Indiana's O&M
4		expenses as indicated in Mr. Mosley's direct testimony.
5	Q.	OUCC WITNESS MR. ALVAREZ CONDUCTS A VERY SIMILAR
6		ANALYSIS USING THE O&M COSTS INCLUDED IN THE 2018 IRP
7		FOR EDWARDSPORT, TO REACH A SIMILAR RECOMMENDATION
8		TO REDUCE THE COMPANY'S O&M EXPENSE REQUEST FROM
9		THAT DISCUSSED IN THE DIRECT TESTIMONY OF COMPANY
10		WITNESS MR. GURGANUS. ¹⁰ WHAT IS YOUR OPINION OF MR.
11		ALVAREZ'S ANALYSIS AND CONCLUSIONS REGARDING
12		EDWARDSPORT'S O&M COST?
13	A.	My opinion of Mr. Alvarez's analysis and recommendations regarding
14		Edwardsport's costs is the same as for his analysis of the rest of the generation
15		fleet: it is fundamentally flawed. He mixes information from various discovery
16		responses that span different scenarios from the IRP, as well as different dollar
17		basis (constant 2017 dollars vs nominal dollars) for which he fails to correct. ¹¹

¹⁰ Alvarez direct testimony, page 17 line 8 through page 19 line 13.
¹¹ Confidential Attachment IG 8.3-A depicts fixed O&M costs for Edwardsport as modeled in the Reference No-Carbon scenario in the IRP in nominal dollars, which Mr. Alvarez intermixes with fixed O&M cost streams from the Reference Carbon scenario depicted in constant year 2017 dollars.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1		And just as above, he again also completely omits the variable O&M component
2		of the as-modeled IRP costs. ¹²
3	Q.	IF THESE PROBLEMS REGARDING USE OF THE AS-MODELED IRP
4		O&M COSTS FOR EDWARDSPORT WERE CORRECTED, WHAT
5		WOULD BE THE RESULT OF MR. ALVAREZ'S ANALYSIS?
6	A.	Table 3 below depicts the spirit of Mr. Alvarez's analysis for Edwardsport, but
7		again with the correct inclusion and treatment of all the as-modeled IRP O&M
8		cost data. To create an apples-to-apples comparison, I also include a reasonable
9		and appropriate correction for the inadvertently omitted portion of the
10		Edwardsport variable O&M rate, as well as a deduction for the 2020 planned
11		outage. The nominal average result, about \$83M, compares to the Company's
12		non-outage request of about \$99M from Mr. Gurganus' direct testimony. ¹³ The
13		IRP 2020 test year value is about \$86M, with costs declining in real dollars
14		thereafter due to embedded assumed cost savings and efficiencies as discussed by
15		Mr. Gurganus. Table 3 below corrects Confidential Table 5 from page 18 of Mr.
16		Alvarez's direct testimony.

¹³ Gurganus direct testimony at page 16, line 18. \$145.8M total - \$46.4M outage = \$99.4M non-outage.

¹² In response to discovery request OUCC 30.4, Duke Energy Indiana also recognized and disclosed an error in the 2018 IRP modeling wherein a portion of the Edwardsport variable O&M rate was inadvertently omitted from the IRP model. Therefore, it would be appropriate to correct (increase) the as-modeled variable O&M cost component for purposes of this analysis to reflect the total variable O&M rate for Edwardsport that would be consistent with the fixed O&M cost component as modeled. Mr. Alvarez failed to recognize or to address this in his analysis.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

Table 3: 2018 IRP As-Modeled O&M Costs - Edwardsport

<<CONFIDENTIAL BEGIN>>

1

2

1	any type of precedent for setting O&M expenses in a rate case, and approve the
2	Company's O&M expenses as requested by Messrs. Mosley and Gurganus. Any
3	future cost savings that may be achieved at Edwardsport will help offset any real
4	cost escalation at the other generating facilities in between rate cases, and will be
5	reflected in rates set in future rate cases.
6	However, should the Commission find compelling Mr. Alvarez's
7	argument to use the IRP as-modeled costs for Edwardsport, then I would argue for
8	an "all-or-nothing" approach. All combined, the as-modeled O&M costs in the
9	IRP are materially the same as the Company's total request for Generation (see
10	Table 4 below). While Mr. Alvarez broke out Edwardsport in his analysis, he did
11	not break out every Gibson unit, or the Cayuga units, to perform a similar
12	comparison of the IRP as-modeled costs to the Company's functional budgets;
13	some are likely higher, and some are likely lower. The Commission should not
14	pick and choose which aspects of the IRP analysis to consider based on an
15	individual unit breakout from the total. The Commission should therefore either
16	approve the Company's request in total, or approve the as-modeled IRP costs in
17	total.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

Table 4: Summary Comparison of IRP and Company O&M Requests

1

millions of dollars	Duke Energy Indiana Generation O&M Request	2018 IRP Comparable As-Modeled Costs, 2020-2024 Average
Generation, excluding Edwardsport	\$228.7	\$243.6 ¹⁴
Edwardsport, non-outage	\$99.4	\$82.8
Total	\$328.1	\$326.4

2 IV. INTEGRATED RESOURCE PLANNING CONCEPTS

Q. SIERRA CLUB AND JOINT INTERVENORS CONTEND THAT DUKE
ENERGY INDIANA PERFORMED THE 2018 IRP WITH A BIAS
AGAINST COAL UNIT RETIREMENTS, AND THAT DUKE ENERGY
INDIANA SHOULD REASSESS ITS COAL UNITS FOR NEAR-TERM
RETIREMENT. HOW DO YOU RESPOND?

8	A.	The fundamental purpose of the IRP in this proceeding is to support reasonable
9		depreciation rates for the Company's generation assets. Duke Energy Indiana is
10		not requesting any type of formal approval of future generating unit retirements,
11		nor pre-approval of future new generation resources in this proceeding. There are
12		no notable resource actions planned between now and the time the Company will
13		file its next IRP in 2021, when the system will be re-evaluated again. Nothing is
14		locked-in at this point. Sierra Club and Joint Intervenors are attempting to use
15		their criticisms of the IRP as a platform to advance their own radical agenda of

¹⁴ As mentioned above, the \$243.3M value from the IRP analysis still excludes O&M costs for Crane Solar. That amount, roughly \$325k, is added on for purposes of the comparison table.

1		shutting down coal-fired generating units as fast as possible, whether or not that is
2		in the best interests of customers. It would clearly be a great disservice to
3		customers to assume such dramatic coal unit retirements as implied by Sierra
4		Club and Joint Intervenors in this proceeding – it would only go to dramatically
5		raising depreciation expense, and is unnecessary at this time. Sierra Club and
6		Joint Intervenors are the only parties that seem to protest our IRP preferred
7		portfolio as unreasonable. Other interests, such as the witness for the Indiana
8		Laborers District Council, Mr. Frye, espouse the negative impacts on the
9		workforce and the economies of local communities from accelerated plant
10		shutdowns. And, other intervenors, such as the OUCC and Industrial Group,
11		generally do not take issue with the planned retirement dates. The Company's
12		goal is to find a balance that takes measure of all of the implications of our
13		proposed resource plan, and we believe our preferred portfolio does that.
14	Q.	SIERRA CLUB WITNESS MR. COMINGS CONTENDS THAT DUKE
15		ENERGY INDIANA'S COAL FIRED GENERATING UNITS ARE MORE
16		EXPENSIVE TO OPERATE THAN OTHER ALTERNATIVE
17		RESOURCES TODAY. DO YOU AGREE?
18	A.	No. Mr. Comings focuses on a dollar per megawatt-hour (\$/MWHR) energy cost
19		metric. This is a flawed and meritless comparison in my opinion. A simple
20		"profit-and-loss" analysis is not resource planning. Further, Duke Energy Indiana
21		witness Mr. John Swez discusses the inaccuracies in his dispatch assessment.

1	Duke Energy Indiana is obligated to provide service to customers
2	24x7x365. Mr. Comings' premise would have us shut down our high capacity
3	factor dispatchable coal-fired units (and presumably everyone else's similarly
4	situated fossil-fuel units in the State and elsewhere), and replace them with
5	market purchases, ¹⁵ peaking units, ¹⁶ or other alternatives (presumably solar and/or
6	wind resources) as that would purportedly be a lower cost. However, it would
7	clearly not provide equivalent energy resources to the system. In addition,
8	ironically, Joint Intervenors witness Ms. Sommer's report on the 2018 IRP
9	conversely alleges that the market purchases in our modeling portfolios are
10	already too high. ¹⁷
11	A clear shortfall in Mr. Comings' analysis is his failure to address market
12	depth in any way; if Duke Energy Indiana were to remove his estimated
13	<< CONFIDENTIAL BEGIN>>
14	<< CONFIDENTIAL END>> of energy per year from the grid, ¹⁸ the market
15	price would most certainly have to increase to incent its production from other
16	resources. That is simple supply and demand. This would erode his purported
17	cost savings and risk the reliability of the grid.
18	The contradiction between Mr. Comings and Ms. Sommer highlights a
19	very important facet of resource planning. If we follow Mr. Comings' premise

¹⁵ Comings direct testimony, page 13 lines 8-9.
¹⁶ Comings direct testimony, page 20 lines 3-4.
¹⁷ Joint Intervenor Exhibit 4, Attachment AS-2, page 13 Section 3.2.
¹⁸ Comings direct testimony, page 39, Confidential Table 7.

1		further, and we installed all solar energy resources, for example, this would result
2		in everyone having lights on and access to power during the day (assuming that
3		day is sunny), and everyone having no power at night. And if all utilities and
4		power producers followed the same strategy, then there would be no market, as all
5		entities would be trying to sell excess solar to each other during the day, while
6		trying to buy from absent resources at night. While this simple example would
7		perhaps have achieved Sierra Club and Joint Intervenors' goal of purportedly
8		lowest cost of energy, such a scenario obviously fails miserably from a resource
9		planning perspective. To remedy this 24x7x365 service deficiency, the system
10		would have to be bolstered with additional resources, as well as extended-range
11		energy storage, rapidly eroding the Sierra Club and Joint Intervenors' contention
12		of lowest cost. Simple profit-and-loss analyses are not instructive for resource
13		planning, which is one reason why we utilize complex modeling and forecasting
14		tools that take consideration of all service obligations. The goal of resource
15		planning is not merely to find the lowest cost system, but rather to find the lowest
16		cost system that can actually succeed in serving customers reliably.
17	Q.	MR. COMINGS DERIVES THE VARIABLE O&M COST COMPONENT
18		OF HIS PROFIT AND LOSS ANALYSIS FROM THE PRODUCTION
19		DEMAND/ENERGY STUDY. ¹⁹ IS THIS AN APPROPRIATE SOURCE

¹⁹ Comings direct testimony, footnote 3, page 10, for example. **KEITH B. PIKE**

1		TO ESTIMATE THE VARIABLE O&M COMPONENT OF THE
2		COMPANY'S PRODUCTION COST OFFERS?
3	A.	No, it is not. Mr. Comings has used the annual absolute dollar-cost data within
4		the Production Demand/Energy Study (roughly three years of historical data,
5		2016-2018) to calculate annual variable O&M costs and rates (<i>i.e.</i> , \$/MWHR) for
6		each facility that he uses in his analysis. He then concludes that the Company's
7		generating units suffered economic losses, and that the units' production cost
8		offers to MISO were two low. While the execution of the Production
9		Demand/Energy Study is an important and necessary part of the Cost of Service
10		Study, it is inappropriate and inaccurate to consider it explicitly representative of
11		a fixed O&M (demand) and variable O&M (energy) split on an absolute-dollar
12		cost basis for consideration in a unit's annual economic position, or instant
13		production cost offer. The results of the Production Demand/Energy Study are
14		only intended to inform a high-level percentage apportionment of test year O&M
15		costs in the Cost of Service Study.
16	Q.	PLEASE DESCRIBE HOW MR. COMINGS HAS MISUSED THE
17		PRODUCTION DEMAND/ENERGY STUDY.
18	A.	Within the Production Demand/Energy Study, the historical O&M cost data is
19		parsed into demand and energy segments via a "definition" of variable O&M –
20		that is, specific cost types residing in specific FERC accounts. These variable
21		O&M costs can generally be thought of in two buckets. The first bucket of
22		variable O&M contains variable costs that are instantly incurred as a generating
		KEITH B. PIKE

1		unit operates. Those costs include emission control reagents (i.e., limestone,
2		ammonia, etc.) that are instantly consumed as fuel is burned, fuel handling and
3		waste handling costs, and emission allowance costs. These costs are
4		characterized and included in the Company's production cost offers. It is
5		reasonable and appropriate to include them in an annual assessment of profit and
6		loss as Mr. Comings has done, because they are instantly incurred. For example,
7		if a generating unit runs more, the costs instantly incurred increase, but the
8		variable O&M cost rate stays the same.
9		The second bucket of the variable O&M definition contains costs that are
10		not instantly incurred, but rather accumulate with time and are eventually
11		periodically expensed. Planned outage maintenance expenses are the largest
12		component of such costs. From a variable O&M cost rate perspective (again, <i>i.e.</i> ,
13		\$/MWHR), we estimate a long-run average variable O&M rate for planned outage
14		expenses across a full maintenance cycle of a unit and include that in the
15		Company's production cost offers. Large planned outage expenses are
16		concentrated in time but provide operating value to the units across time.
17		Therefore, for these types of variable costs, it is not reasonable or appropriate to
18		include them in an annual assessment of profit and loss as Mr. Comings has done.
19	Q.	PLEASE DESCRIBE HOW MR. COMINGS' MISUSE OF THE
20		PRODUCTION DEMAND/ENERGY STUDY HELPS LEAD HIM TO HIS
21		CONCLUSIONS.

1	A.	It clearly stands to reason that a variable O&M cost (or rate) calculated on an
2		individual historical year basis that includes a large planned outage maintenance
3		expense (which the Production Demand/Energy Study contains) would be much
4		higher than a long-run average variable O&M cost (or rate). Yet further, the fact
5		that net generation output is typically reduced in planned outage years makes such
6		an individual year calculated variable O&M rate even more biased. And that is
7		exactly the result we see from Mr. Comings' analysis. ²⁰
8		First take Cayuga Station for example. The Cayuga units only
9		experienced small short planned maintenance outages, one per unit per year
10		during the reference timeframe, and Mr. Comings' analysis notes relatively small
11		cost rate differences, even negative, for Cayuga in his cost analysis. Conversely
12		for Edwardsport, there is a very significant cost rate difference in his analysis in
13		2016, the year of a full site major outage, but then smaller differences in 2017 and
14		2018 which each had only minor outages. Similarly, the cost rate differences for
15		Gibson are largest in 2016 and 2017 where there were major outages on some
16		units, and smaller in 2018 where there were no large planned outages performed.
17		The trend fits exactly.
18	Q.	HOW SHOULD THE COMMISSION CONSIDER MR. COMINGS'
19		RECOMMENDATIONS REGARDING DISALLOWANCES FOR THE
20		LOSSES HE CALCULATES?

²⁰ Comings direct testimony page 35, Confidential Table 5. **KEITH B. PIKE**

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1	A.	While Company witness Mr. Swez demonstrates in his rebuttal testimony that Mr.
2		Comings is comparing apples and oranges anyway in mixing average and
3		incremental cost bases, his use of the Production Demand/Energy Study as a basis
4		for annual variable O&M cost and rate only further undermines the
5		reasonableness and validity of his analysis. Logically, concentrated expenses for
6		the execution of planned maintenance outage events should not be perceived as
7		contributing to "losses" on an annual basis as Mr. Comings attempts to do. The
8		Commission should therefore disregard his recommendations and find that the
9		Company's operating and maintenance practices are reasonable.
10	Q.	JOINT INTERVENOR WITNESS MS. SOMMER TAKES ISSUE WITH
11		DUKE ENERGY INDIANA'S LIMITATION ON COAL UNIT
12		RETIREMENTS IN THE 2018 IRP, SPECIFICALLY THAT
13		TRANSMISSION CONSTRAINT ASSUMPTIONS LIMITING
14		RETIREMENT ELIGIBILITY TO 2024 WERE IMPROPER, AND
15		NEWER ANALYSIS INDICATES MINIMAL CONSTRAINTS. ²¹ IS THIS
16		CORRECT?
17		
	A.	It is true that Duke Energy Indiana established assumptions regarding coal unit
18	A.	It is true that Duke Energy Indiana established assumptions regarding coal unit retirement transmission constraints for 2018 IRP modeling purposes based on a
18 19	A.	It is true that Duke Energy Indiana established assumptions regarding coal unit retirement transmission constraints for 2018 IRP modeling purposes based on a vintage 2016 internal retirement transmission impact analysis, which was the

²¹ Sommer direct testimony, page 5 lines 28-32.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1		this study in 2019, but that it was too late to be taken into consideration in the
2		2018 IRP. It is further true that the 2019 study revealed fewer transmission
3		constraints to coal unit retirements than the 2016 study. However, such
4		transmission impacts are constantly changing as various generation and
5		transmission projects enter and leave the MISO planning queue. The internal
6		studies that Duke Energy Indiana performs are informal, directional, and at a
7		point in time. In the end, MISO performs the actual formal transmission impact
8		study once an entity actually files for a unit retirement, at which point such
9		retirement becomes a non-rescindable commitment. Since it would be imprudent
10		to commit to a unit retirement a long time in advance, we must rely on the internal
11		studies as directional only, at whatever point in time they are available.
12	Q.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY,
12 13	Q.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY, SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITY
12 13 14	Q.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY, SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITY TO RETIRE ITS COAL UNITS BEFORE 2024?
12 13 14 15	Q. A.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY,SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITYTO RETIRE ITS COAL UNITS BEFORE 2024?No. I believe that 2024 is still a reasonable date for early coal unit retirements for
12 13 14 15 16	Q. A.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY,SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITYTO RETIRE ITS COAL UNITS BEFORE 2024?No. I believe that 2024 is still a reasonable date for early coal unit retirements forIRP modeling purposes. There is much more to it than just remedying any
12 13 14 15 16 17	Q. A.	 SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY, SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITY TO RETIRE ITS COAL UNITS BEFORE 2024? No. I believe that 2024 is still a reasonable date for early coal unit retirements for IRP modeling purposes. There is much more to it than just remedying any transmission system impact. Other practical constraints and considerations
12 13 14 15 16 17 18	Q. A.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY, SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITY TO RETIRE ITS COAL UNITS BEFORE 2024? No. I believe that 2024 is still a reasonable date for early coal unit retirements for IRP modeling purposes. There is much more to it than just remedying any transmission system impact. Other practical constraints and considerations include a smooth and thoughtful transition of the labor force; managing local
12 13 14 15 16 17 18 19	Q. A.	 SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY, SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITY TO RETIRE ITS COAL UNITS BEFORE 2024? No. I believe that 2024 is still a reasonable date for early coal unit retirements for IRP modeling purposes. There is much more to it than just remedying any transmission system impact. Other practical constraints and considerations include a smooth and thoughtful transition of the labor force; managing local community impacts; allowing sufficient lead-time to manage the roll-off of long-
12 13 14 15 16 17 18 19 20	Q. A.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY, SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITY TO RETIRE ITS COAL UNITS BEFORE 2024? No. I believe that 2024 is still a reasonable date for early coal unit retirements for IRP modeling purposes. There is much more to it than just remedying any transmission system impact. Other practical constraints and considerations include a smooth and thoughtful transition of the labor force; managing local community impacts; allowing sufficient lead-time to manage the roll-off of long- term coal contracts; allowing sufficient minimum lead-time for the construction of
 12 13 14 15 16 17 18 19 20 21 	Q.	SO, BASED ON THE LATEST 2019 TRANSMISSION IMPACT STUDY, SHOULD DUKE ENERGY INDIANA REASSESS THE OPPORTUNITY TO RETIRE ITS COAL UNITS BEFORE 2024? No. I believe that 2024 is still a reasonable date for early coal unit retirements for IRP modeling purposes. There is much more to it than just remedying any transmission system impact. Other practical constraints and considerations include a smooth and thoughtful transition of the labor force; managing local community impacts; allowing sufficient lead-time to manage the roll-off of long- term coal contracts; allowing sufficient minimum lead-time for the construction of new dispatchable resources (if we were to promptly retire thousands of megawatts

KEITH B. PIKE

-26-

1		replacement units with similar dispatchable characteristics, which as I have
2		already established, intermittent renewable generating facilities alone could not
3		provide); managing the rate impacts to customers of dramatically accelerated
4		depreciation; and also giving due consideration to corporate cash flow and credit
5		constraints for funding what would be a large replacement build in a short
6		timeframe. Quite clearly, the Duke Energy Indiana 2018 IRP preferred portfolio,
7		as modified with the Gibson Unit 4-5 retirement date swap, spreads out the coal
8		unit retirements in a prudent and reasonable way so as to enable effective
9		management of these challenges.
10	Q.	MR. COMINGS POINTS TO THE NIPSCO ²² RESOURCE PLAN AND
11		IMPLIES THAT RAPID COAL UNIT RETIREMENTS AND
12		TRANSITION TO RENEWABLE RESOURCES COULD BE ECONOMIC
13		FOR DUKE ENERGY INDIANA. ²³ DO YOU AGREE?
14	A.	No. No two utilities, let alone any two coal units, are situated exactly alike.
15		There are very notable structural and cost differences between NIPSCO and Duke
16		Energy Indiana that help explain why the NIPSCO coal units may be more
17		economic to retire than the Duke Energy Indiana coal units in an IRP. Four
		6,
18		important differences are the existing fleet makeup, degree of environmental

²² Northern Indiana Public Service Company.
²³ Comings direct testimony, page 25, lines 6-8.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1	First, NIPSCO already has a newer-technology larger-scale natural gas
2	combined cycle installed on its system, the Sugar Creek combined cycle. This
3	existing lower carbon emitting dispatchable resource provides NIPSCO a head-
4	start towards managing a system with a higher portion of renewable energy.
5	Figure 2 below shows the percentage split by resource type for Duke Energy
6	Indiana and NIPSCO. As I have already discussed, Duke Energy Indiana would
7	need to install similar higher capacity factor dispatchable resources along with
8	renewables in order to manage any significant level of coal unit retirements.

Figure 2: Existing Capacity Resource Breakdown

-28-

1	IGCC also represents the most advanced emissions controls available for a coal-
2	fired unit. Conversely, three of the NIPSCO coal units lack selective catalytic
3	reduction systems for nitrogen oxide control, and NIPSCO has deferred some
4	Coal Combustion Residuals Rule ("CCR") and Steam Electric Effluent
5	Limitations Guidelines Revisions ("ELG") compliance investments. These
6	deferred investments act as avoidable capital and O&M cost benefits in an IRP
7	retirement analysis. ²⁴
8	Next, Duke Energy Indiana utilizes predominantly Illinois Basin coals,
9	most of which comes from within Indiana. NIPSCO burns a mix of sub-
10	bituminous coals from the Powder River Basin (Wyoming) along with some
11	Illinois and Appalachian coals (see Figure 3). As discussed by Duke Energy
12	Indiana witnesses Mr. Mosley and Mr. Phipps in their direct testimonies, with its
13	buying power Duke Energy Indiana has achieved notable reductions in its coal
14	contract costs in recent years. As a result, Duke Energy Indiana's production
15	costs are lower than NIPSCO's, and that is directly reflected in the higher realized
16	capacity factors of the Duke Energy Indiana coal units, by at least a full twenty to
17	twenty-five percentage points (see Figure 4).

²⁴ For example, NIPSCO assumed selective catalytic reduction system installations at Schahfer Units 17-18 were avoided with 2023 retirement, saving \$448M. They also assumed up to \$460M in avoided CCR/ELG investment at Schahfer Units 17-18, and up to \$170M in avoided ELG investment at Schahfer Units 14-15. See Appendix A, pages 244-247 of the NIPSCO 2018 IRP for details. Interestingly, the NIPSCO unit with no material avoided environmental compliance investment, Michigan City 12, lives the longest in their preferred portfolio, to 2028. This is a good indication of the impact of assuming such avoided costs in the retirement analysis for Schahfer.

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

Figure 3: 2013-2018 Coal Supply by State

(Michigan City and RM Schahfer - NIPSCO; Cayuga and Gibson - DEI)

Figure 4: Fuel Production Cost Rate and Capacity Factor Comparison:

NIPSCO Coal Units and Duke Energy Indiana Gibson and Cayuga Stations

2

⁽Source: EIA923 Data)

⁽Source: FERC Form 1 Data)

IURC CAUSE NO. 45253 REBUTTAL TESTIMONY OF KEITH B. PIKE FILED DECEMBER 4, 2019

1	Lastly, like the fuel cost rate, the non-fuel O&M cost rate for the NIPSCO
2	coal units is higher than that of Duke Energy Indiana's Gibson and Cayuga coal
3	units, roughly double or more (see Figure 5). Utilizing sub-bituminous coals
4	generally requires more housekeeping and maintenance than bituminous coals.
5	Additionally, as discussed by Duke Energy Indiana witness Mr. Mosley in his
6	direct testimony, Duke Energy Indiana has implemented numerous cost efficiency
7	improvements to keep O&M costs under control. In an IRP retirement analysis,
8	lower existing unit O&M costs translates into lower avoidable costs with
9	retirement, which makes continued operation of the existing units more attractive.
10	Figure 5. Non-Fuel O&M Cost Rate Comparison.

NIPSCO Coal Units and Duke Energy Indiana Gibson and Cayuga Stations

(Source: FERC Form 1 Data)

11

12

In conclusion, there are clearly material differences in the structural and cost circumstances between NIPSCO and Duke Energy Indiana that make any KEITH B. PIKE

1		assignment of NIPSCO's resource planning strategy to Duke Energy Indiana
2		inappropriate and uninformative.
3	Q.	HOW DO YOU SUGGEST THE COMMISSION WEIGH THE SIERRA
4		CLUB AND JOINT INTERVENORS' CONCLUSIONS REGARDING
5		DUKE ENERGY INDIANA'S RESOURCE PLAN?
6	A.	Sierra Club and Joint Intervenors make no compelling arguments that Duke
7		Energy Indiana's 2018 IRP preferred portfolio, as used for depreciation rate
8		purposes in this proceeding, should not be considered reasonable by the
9		Commission. Despite their complaints regarding Duke Energy Indiana's IRP
10		process and assumptions, we must always remember that models only inform us;
11		models do not make reasoned recommendations or decisions. We must be
12		pragmatic, and we must acknowledge the reality that most if not all of the
13		assumptions used within any IRP are probably wrong to some degree, as no one
14		can actually predict the future. The future is not likely to be any of the five
15		scenarios that we modeled. Therefore, the preferred portfolio is not necessarily
16		intended to be optimized to a specific future, but rather designed to perform
17		robustly across a potential range of futures, and take into consideration reasonable
18		and realistic constraints, and impacts beyond raw economics. The Commission
19		should therefore disregard Sierra Club and Joint Intervenors' unsupported
20		recommendations for unnecessarily accelerated coal unit retirements, and approve
21		Duke Energy Indiana's depreciation expenses as presented by Mr. Spanos and
22		Ms. Douglas.

1		V. <u>CONCLUSION</u>
2	Q.	DID YOU DIRECT MR. SPANOS TO SWAP THE GIBSON UNITS 4 AND
3		5 RETIREMENT DATES FOR THE DEPRECIATION STUDY FOR THIS
4		PROCEEDING?
5	A.	Yes, I did.
6	Q.	DOES THIS CONCLUDE YOUR REBUTTAL TESTIMONY?
7	A.	Yes, it does.

VERIFICATION

I hereby verify under the penalties of perjury that the foregoing representations are true to the best of my knowledge, information and belief.

140 Jole Signed: Keith B. Pike

Dated: 12-4-2019