OFFICIAL FXHIBIIIS

STATE OF INDIANA

FILED September 3, 2021 INDIANA UTILITY REGULATORY COMMISSION

INDIANA UTILITY REGULATORY COMMISSION

)

)

)

)

PETITION OF THE CITY OF EVANSVILLE, INDIANA, FOR AUTHORITY TO ISSUE BONDS, NOTES, OR OTHER OBLIGATIONS, FOR AUTHORITY TO INCREASE ITS RATES AND CHARGES FOR WATER SERVICE, AND FOR APPROVAL OF NEW SCHEDULES OF WATER RATES AND CHARGES.

CAUSE NO. 45545

PUBLIC'S EXHIBIT NO. 4

TESTIMONY OF JAMES T. PARKS

ON BEHALF OF

THE INDIANA OFFICE OF UTILITY CONSUMER COUNSELOR

SEPTEMBER 3, 2021

Respectfully submitted

INDIANA OFFICE OF UTILITY CONSUMER COUNSELOR

Scott Franson, Attorney No. 27839-49 Deputy Consumer Counselor Daniel M. Le Vay, Attorney No. 22184-49 Deputy Consumer Counselor 115 W. Washington St. Suite 1500 South Indianapolis, IN 46204 Email: <u>sfranson@oucc.in.gov</u> <u>dlevay@oucc.in.gov</u>

CERTIFICATE OF SERVICE

This is to certify that a copy of the *Public's Exhibit No. 4, Testimony of James T. Parks* has been served upon the following counsel of record in the captioned proceeding by electronic service on September 3, 2021.

Nicholas K. Kile Hillary J. Close Lauren M. Box BARNES & THORNBURG LLP 11 South Meridian Street Indianapolis, Indiana 46204 Email: <u>nicholas.kile@btlaw.com</u> <u>hillary.close@btlaw.com</u> <u>lbox@btlaw.com</u>

a ser en esta

Scott Franson Deputy Consumer Counselor

INDIANA OFFICE OF UTILITY CONSUMER COUNSELOR

115 West Washington Street Suite 1500 South Indianapolis, IN 46204 <u>infomgt@oucc.in.gov</u> 317/232-2494 -- Phone 317/232-5923 -- Facsimile

TESTIMONY OF OUCC WITNESS JAMES T. PARKS CAUSE NO. 45545 <u>CITY OF EVANSVILLE</u>

I. INTRODUCTION

1	Q:	Please state your name and business address.
2	A:	My name is James T. Parks, P.E., and my business address is 115 W. Washington
3		Street, Suite 1500 South, Indianapolis, IN 46204.
4	Q:	By whom are you employed and in what capacity?
5	A:	I am employed by the Office of Utility Consumer Counselor ("OUCC") as a
6		Utility Analyst II in the Water/Wastewater Division. My qualifications and
7		experience are described in Appendix A.
8	Q:	What is the purpose of your testimony?
9	A:	My testimony evaluates the City of Evansville's ("Petitioner" or "Evansville")
10		\$269.2 million dollar capital improvement plan. I describe Evansville's water
11		system and discuss how the proposed capital improvements will replace aging
12		infrastructure. I explain why the OUCC generally considers the projects
13		themselves appropriate as they replace the existing water treatment plant, aging
14		water mains, and water mains in conflict with road projects. I explain that
15		Petitioner is oversizing the new treatment plant by 25% because of unsupported
16		aggressive water demand growth forecasts that are contradicted by Petitioner's
17		overall declining use. I recommend Evansville size its new plant for 40 million
18		gallons per day ("MGD") instead of the proposed 50 MGD.
19		I explain that Petitioner's selection of a new offsite treatment plant was
20		made with a life cycle cost analysis that did not include all costs, especially the

_

<u>___</u>

1		costs for a new residuals	management system. I explain that Petitioner's				
2		consultant prepared detailed assembly level line-item cost estimates but assumed					
3		high levels of contingencies	high levels of contingencies resulting in Petitioner's project cost estimates being				
4		overstated. I also recommer	nd the Commission authorize approximately \$3.5				
5		million for relocation of the	City garage to a new offsite location instead of				
6		Petitioner's requested \$13.2 m	nillion.				
7 8	Q:	Please describe the review testimony.	and analysis you conducted to prepare your				
9	A:	I reviewed Evansville's Petitie	on and the testimonies of Lane T. Young, Executive				
10		Director, Evansville Water an	nd Sewer Utility ("EWSU"), Douglas L. Baldessari,				
11		CPA, Baker Tilly Municipal	Advisors, LLC ("BTMA"), Michael Labitzke, P.E,				
12		Director of the Program Man	agement Office, EWSU, and Simon M. Breese, P.				
13		Eng. Vice President and	National Technical Director, Water Treatment,				
14		Americas, AECOM. I reviewed Petitioner's Attachments, a late filed					
15		supplemental workpaper, and a revised Advanced Facility Plan for the new					
16		treatment plant including:					
17 18 19		and	ounting Report on Proposed Improvement Project Increase in Rates and Charges, Baker Tilly US, P, April 20, 2021.				
20		Attachment <u>ML-1</u> EW	SU Water Master Plan, HNTB Corp., Sept. 2016.				
21 22 23			ter Main Replacement Scoping Reports (33 water n projects), HNTB Corp., Dec. 2020, Revised Feb. 1.				
24		Attachment <u>ML-3</u> EW	SU 2022 Rate Case Complete Project Listing.				
25 26	Attachment ML-4Booster Station Improvements Scoping Reports, HNTB Corp., Dec. 2020, Revised Feb. 2021.						
27 28			<i>ility Relocation Feasibility Assessment</i> , for the nsville Street Maintenance Department &				

-

1 2	Vanderburgh Levee Authority, VS Engineering, Inc., Dec. 15, 2020.
3 4 5	Attachment <u>SMB-1</u> Water Treatment Plant Advanced Facility Plan ("WTPAFP"), Alternatives Report, AECOM, March 2021.
6 7	Supplemental Workpaper, <i>Preliminary Engineering Report – Water Treatment Plant</i> , VS Engineering, June 2021.
8 9	Water Treatment Plant Advanced Facility Plan, Alternatives Report, AECOM, April 23, 2021. (Obtained from Indiana Finance Authority ("IFA")).
10	I reviewed Petitioner's recent annual reports filed with the Indiana Utility
11	Regulatory Commission ("Commission" or "IURC") and Monthly Reports of
12	Operation ("MROs") filed with the Indiana Department of Environmental
13	Management ("IDEM") to analyze Evansville's historical water usage, customer
14	growth and water demand. I wrote discovery requests and reviewed Petitioner's
15	responses. On July 21, 2021, OUCC Utility Analyst, Carl Seals, and I met with
16	EWSU staff to discuss Petitioner's current operations and capital improvement
17	plans and tour Evansville's existing filtration plant, the site for the proposed water
18	treatment plant, and the Lincoln, Killian and Stallings Booster Stations.
19	I reviewed Petitioner's funding requests, project information and estimated
20	costs from Cause Nos. 44760 (2016), 45073 (2018) and 45545 (2021). I also
21	reviewed the October 2009 Water Master Plan and Drinking Water Preliminary
22	Engineering Reports Petitioner submitted to the Indiana Finance Authority's
23	Drinking Water State Revolving Fund ("DWSRF"). Finally, I compiled and
24	attached various documents, which I refer to in my testimony. These attachments
25	are listed in Appendix B.

II. DESCRIPTION OF THE EVANSVILLE WATER SYSTEM

1 **Q**: Please provide a brief description of the Evansville Water System and 2 potential future demands. 3 A: Petitioner provides water utility service to approximately 63,473 residential, 4 commercial, industrial, and public authority customers in and around the City of 5 Evansville in Vanderburgh County and to three wholesale customers. Petitioner's customer base grew 4.7% in the last decade (2011-2020).¹ According to data from 6 7 its Annual Reports to the IURC, reported water production (16.9 million gallon 8 per day ("MGD") in 2020) and water sold (14.28 MGD on average in 2020) have 9 been relatively flat for the past ten years (See Table 12, Appendix C).² 10 Evansville draws its water from the Ohio River and treats it at its surface 11 water treatment plant which has a 60 MGD total capacity (all units in service) and a 42 MGD firm capacity.³ Petitioner reports "Demand has been well below this 12 13 capacity in recent years, with average day demands in mid to low 20 MGD range, and peak summer demands rarely exceeding 30 MGD."⁴ Petitioner has three 14 15 existing interconnected clearwells at the treatment plant totaling 8.5 million 16 gallon ("MG") and 28.5 MG of water storage capacity in the distribution system, 17 for a total finished water storage capacity of 37 MG. Evansville's distribution 18 system consists of approximately 1,015 miles of water mains ranging from 1-inch

¹ Customer growth averaged 0.46% annually from 2011 to 2020.

 $^{^2}$ In response to DR 15-11, Evansville stated the 2020 water produced and water sold volumes reported on its 2020 Annual Report do not appear to have been entered correctly.

³ The firm rated capacity is based on the largest single unit being out of service under worst-case conditions (such as high raw turbidity and high system demand). For Evansville, the limiting treatment processes are mixing, flocculation, primary sedimentation, and secondary sedimentation. *See* Table 3.1 Water Treatment Plant Firm Capacities in Mr. Labitzke's case-in-chief testimony, Attachment <u>ML-1</u> *Water Master Plan*, HNTB Corporation, September 2016, page 51 of 460.

⁴ Mr. Breese case-in-chief testimony, page 6, lines 3-4.

up to 60-inch.⁵ For a more detailed description of the Evansville water system,
 please refer to Appendix C.

III. WATER DEMAND FORECASTS AND DESIGN CAPACITIES

3 Q: Is Petitioner oversizing the new water treatment plant's capacity?

4 A: Yes. Based on my analysis of water produced reported to IDEM on the Monthly 5 Reports of Operation ("MRO"), water sold data, and forecasted 2050 water 6 demand data in the AECOM Advanced Facility Plan, Evansville has overstated 7 2020 water demand and future 2050 water demand. This overstatement causes the 8 proposed treatment plant capacity to be oversized by 25%, which increases the 9 project's construction costs. The oversizing is caused by several incorrect 10 planning assumptions. Evansville's 2020 base year water demands by customer 11 class are not based on actual volumes, overstated, and not supported by data. 12 Evansville's high water demand growth projections for each customer class (i.e., 13 residential, commercial, etc.) are also unsupported and contradicted by historical 14 water usage trends. The high growth assumptions are also contradicted by 15 Petitioner's overall declining water consumption.

16 OUCC population estimates show Petitioner's 2050 residential water 17 demand projection does not align with Indiana Business Research Center 18 ("IBRC") population projections. IBRC has forecasted Vanderburgh County will

⁵ Attachment <u>ML-1</u> Water Master Plan, HNTB Corporation, September 2016, Tables 2-1 and 2-2 pages 14 and 16 of 460.

1		add fewer than 9,000 people in the next 30 years. ⁶ Petitioner's consultant,
2		AECOM, forecasts a 2050 residential usage of 12.91 MGD (for direct Evansville
3		customers), equivalent to a 222,586 person-connected population that is unlikely
4		to occur. ⁷ This connected population exceeds the IBRC's forecasted 2050
5		Vanderburgh County population by 29,198 people or 15%. Evansville does not
6		serve all customers in Vanderburgh County.
7	Q:	What are Petitioner's projected 2050 water demands?
8	A:	For the year 2050, Petitioner is projecting an Average Day Demand of 36.4 MGD,
9		and a Maximum Day Demand of 49.4 MGD. AECOM's 2050 projections start
10		with assumed higher 2020 water demands by customer class (not actual) which
11		are then multiplied by unsupported annual growth rates.
12	Q:	Did Petitioner indicate the 2020 Water Demands were assumed volumes?
13	A:	No. In my initial review of the Advanced Facility Plan, I understood the 2020
14		water demands listed in Table 3-7 were actual volumes. It was only from a review
15		of water sold data that I realized AECOM assumed the 2020 volumes and that
16		these assumed volumes were greater than the actual 2020 volumes. ⁸

۱.

⁶ IBRC's current Vanderburgh County population growth projections to 2050 use the 2010 Census base year population to project the 2050 population at 193,388 people. Vanderburgh County's actual 2020 Census population at 180,136 was below the IBRC's 184,440 projected population. Updated population forecasts, using the lower 2020 Census count, are unavailable but are also expected to be adjusted lower. ⁷ Calculated by the OUCC as 12,910,000 gallons per day residential usage divided by AECOM's 58

gallons per capita per day ("gpcd") water usage (AECOM *Advanced Facility Plan*, page 17) equals 222,586 people. AECOM did not provide an estimated 2050 population or residential customer count.

⁸ Petitioner provided actual water demands for each customer class for 2014 to 2021 in response to OUCC Data Request 17-1.

Demand Source	Assumed 2020 Demand (MGD)	Projected 2050 Demand (MGD)	Assumed Annual Increase (%)	Total % Increase 2020-2050
Average Residential	8.26	12.91	1.5%	56.3%
Average Commercial	5.00	9.05	2.0%	81.0%
Average Industrial	3.00	6.29	2.5%	109.7%
Average Wholesale	2.88	3.60	0.75%	25.0%
Average Public Authority	1.00	1.08	0.25%	8.0%
Avg. Leaks and Losses	3.50	3.25	-0.2%	-7.1%
Avg. Day Demand	23.6	36.4	1.5%	54.2%
Max. Day Demand	31.7	49.4	1.5%	55.8%
Max Day / Avg. Day	1.4	1.4		

Table 1 – AECOM Projected Average and Maximum Day Demand through 2050⁹

1 Q: Are the 2020 water demands used by AECOM reasonable?

A: No. By using assumed demands AECOM overstates water demand for all
customer classes. In contrast, non-revenue water (which AECOM calls leaks and
losses) appears to be understated. In Table 2 I compare actual 2020 water demand
to AECOM's assumed demand and show the percentage AECOM overstated
demand.

To forecast future 2050 flows, AECOM started with assumed higher 2020
water demand volumes rather than actual volumes. In effect, AECOM created two
future flow projections, one for 2020 and the second for 2050. Actual 2020
demand for each customer class is comparable to the four-year average actual

⁹ The data source for the 2020 and 2050 water demands is Table 3-7 in the *Water Treatment Plant* Advanced Facility Plan, Alternatives Report, AECOM, April 23, 2021. This revised Advanced Facility Plan was submitted to the Indiana Finance Authority for SRF funding on April 30, 2021, but was not submitted with Petitioner's case-in-chief on May 10, 2021.

Public's Exhibit No. 4 Cause No. 45545 Page 8 of 50

1	demand (2017 to 2020). ¹⁰ Despite overstated customer class usage ranging from
2	14% (commercial) to 35% (public authority), AECOM overstates 2020 average
3	demand only by 5%. This is because AECOM uses a lower 3.50 MGD non-
4	revenue water volume than the actual 6.13 MGD I calculated. ¹¹ AECOM did not
5	provide data supporting its assumed 2020 water usage by customer class nor how
6	it determined the assumed 3.50 MGD leaks and losses volume.

	Actual 2020 Demand ¹²		Assumed 2020 Demand AECOM	
Demand Source	BG/Yr.	MGD	MGD	Percent Overstated
Average Residential	2.43	6.64	8.26	24%
Average Commercial	1.60	4.38	5.00	14%
Average Industrial	0.90	2.45	3.00	22%
Average Wholesale	0.80	2.19	2.88	31%
Average Public Authority	0.27	0.74	1.00	35%
Avg. Leaks and Losses		6.13	3.50	-43%
Avg. Day Demand ¹³		22.53	23.6	5%
Max. Day Demand		28.8	31.7	10%
Max Day / Avg. Day Ratio		1.28	1.4	

Table 2 – Comparison of Actual 2020 Average Demand (MGD)to the AECOM Assumed 2020 Demand

7 Q: Why is it important to use actual 2020 water demand data?

8 A: It is important because AECOM uses the 2020 demand data as the starting point

¹⁰ OUCC analysis of water sold for all five customer classes shows the 2020 average water sold at 16.4 MGD is slightly below the four-year average (2017-2020) water sold of 17.18 MGD.

¹¹ Non-revenue water is equal to the 22.53 MGD annual average flow based on 2020 MRO data reported to IDEM minus the 16.4 MGD 2020 water sold data (total from each customer class) reported to the OUCC in response to DR 17-1 equals 6.13 MGD of non-revenue water.

¹² *Id*.

¹³ Actual 2020 average day demand of 22.53 MGD and maximum day demand of 28.8 MGD were taken from Evansville's Monthly Reports of Operation ("MRO") submitted to IDEM.

1		for its 2050 flow projections. AECOM uses the 2050 flow projections as
2		justification for the proposed 36.4 MGD average day and 50 MGD maximum day
3		plant capacities. By using inflated 2020 water demands, all flow projections
4		emanating from those demands are also overstated. This means AECOM's 2050
5		water demand and design capacity are both overstated. Due to the high cost of
6		Evansville's proposed new plant and its ratepayer impact, it is critical the most
7		accurate base year data be used.
8 9	Q:	What annual percent increases in water demand for each customer class did AECOM project?
10	A:	AECOM's unsupported annual growth projections are:
11 12 13		a. Initial City population of 118,000 people and a per capita demand of 70 gal/day/person, or 8.26 MGD (higher than the per capita estimate of 58 gal/day/person). ^{14, 15}
14 15		b. City population growth rate of 1.5% per year, maintaining the same per capita demand through 2050.
16		c. Initial commercial demand of 5.0 MGD and a growth rate of 2.0% per year.
17		d. Initial industrial demand of 3.0 MGD with flow increase of 2.5% per year.
18		e. Initial wholesale demand of 2.88 MGD with flow increase of 0.75% per year.
19		f. Initial public authority demand of 1 MGD and growth rate of 0.25% per year.
20	Q:	Did AECOM or Petitioner provide support for its growth projections?
21	A:	No. Petitioner was unable to explain the basis used to set these specific annual
22		growth percentages and did not provide data or any study, report, or analyses to
23		support its assumptions. In discovery, Petitioner provided narrative discussions

¹⁴ AECOM calculated the per capita water usage as follows: 2017 residential water sold volume of 2.5 BG/year divided by 365 days/year divided by Evansville's 2017 population of 117,500 people equals 58 gallons per capita per day ("gpcd"). The OUCC believes AECOM's per capita usage calculation is incorrect. The actual usage may be 50 gpcd based on a 2020 residential water sold volume of 2.43 BG/year divided by 366 days/year divided by Evansville's 2020 residential customers of 59,605 divided by 2.23 people per housing unit equals 50 gpcd.

¹⁵ AECOM does not explain why it raised the 58 gpcd water usage by 21% to an assumed 70 gpcd.

1		that shed no light on how AECOM developed the assumed growth rates. ¹⁶
2		Because Petitioner and AECOM were unable to support the growth percentages, I
3		recommend the growth projections not be relied on to set future 2050 water
4		demands for the individual customer classes. If these growth percentages are
5		relied on to set 2050 water demands, it will produce a larger than needed
6		treatment plant.
7	Q:	Is Petitioner's assumed 1.5% annual population growth rate reasonable?
8	A:	No. It is overstated by nearly an order of magnitude. The source of the assumed
9		1.5% growth rate is in Section 3.1 Population Projections, of the WTPAFP, where
10		AECOM misread the Vanderburgh Co. Comprehensive Plan's 7% growth rate as
11		an <i>annual, not a total</i> rate. ¹⁷ AECOM described the annual rate as follows:
12 13 14 15		The Comprehensive Plan included a section about future capacity needs of the WTP and recommended an <u>annual population growth</u> rate of about 7% through 2035. However, this is a very aggressive growth model and can yield an unnecessarily large facility. Based
16		on the historical data summarized above, it is recommended to
17 18		utilize a lower and more representative rate of population growth to not drastically oversize the facility. This report considers an
19		annual population growth rate of 1.5% through 2050 for future
20		plant capacity. ¹⁸
21		(Emphasis added by the OUCC)
22		AECOM presented no information, data sources or support of any kind to justify

23

۱.,

choosing a 1.5% annual population growth rate. AECOM recognized a 7% rate

¹⁶ See Attachment JTP-1 for Petitioner's responses to Data Requests 3-15 to 3-18 requesting support for the

annual growth assumptions used by AECOM to estimate 2050 water demands for each customer class. ¹⁷ See Attachment JTP-2 for excerpts on demographics and housing from the *Evansville-Vanderburgh County Comprehensive Plan, 2015-2035*, Evansville-Vanderburgh County Area Plan Commission, June 27, 2016. The 6.99% total population growth from 2010 to 2035 (AECOM refers to a 7% annual rate) (Attachment JTP-2, page 15 of 17) is based on the IBRC's population projection starting from 179,703 actual 2010 Vanderburgh County Census population to 192,271 people in 2035.

¹⁸ Water Treatment Plant Advanced Facility Plan, Alternatives Report, AECOM, April 23, 2021, page 14.

Public's Exhibit No. 4 Cause No. 45545 Page 11 of 50

1	was a problem but did not realize the real issue, namely that it was not an annual
2	rate. Checking the 7% as an annual growth rate would have shown Vanderburgh
3	County's 2010 Census population of 179,703 nearly doubling every ten years and
4	growing by over 15-fold to 2,680,913 people by 2050.19 Obviously, this is
5	unrealistic and should have caused the Comprehensive Plan's demographics
6	section to be reread followed by converting the 7% total growth rate to an annual
7	growth rate and applying the annual growth rate to determine future water
8	demands. Instead, AECOM cut back to "a lower and more representative rate of
9	population growth to not drastically oversize the facility." (Emphasis added by
10	the OUCC.)
11	However, AECOM's assumed 1.5% annual growth rate, albeit lower, is
12	still incorrect, unsupported, and too aggressive. I calculate the annualized growth
13	rate using the pre 2015 IBRC population forecast (based on 2010 Census data)
14	should be only 0.27%. ²⁰ AECOM's assumed 1.5% growth rate is over five times
15	greater than the correctly calculated annual rate using the Comprehensive Plan's
16	IBRC data (based on 2010 Census data). Recent 2020 Census data shows slower

17 Evansville and Vanderburgh County growth than previously forecasted.²¹

18 19

Q: Using recent 2020 Census data for Vanderburgh County, what would be the annual population growth rate?

20 A:

A: Recent 2020 Census data shows Vanderburgh Co. added just 433 people between

¹⁹ Calculated by multiplying Vanderburgh County's 2010 Census population of 179,703 people times 1.0699 raised to the power of 40 yields 2,680,913 people in year 2050.

²⁰ Calculated using pre 2015 IBRC population projections based on Vanderburgh County's 2010 Census population of 179,703 people and a 2035 forecasted population of 192,271 people. The total growth rate is 6.99% over 25 years and the annualized growth rate is 0.27%.

²¹ 2020 Census data shows Evansville lost 131 people (2010 population of 117,429 and a 2020 population of 117,298) and Vanderburgh County added 433 people (2010 population of 179,703 and a 2020 population of 180,136).

1	2010 (179,703 people) and 2020 (180,136 people). Keeping the IBRC's
2	forecasted 2020 to 2050 growth rates, the annualized population growth rate is
3	0.16% as shown in Table 3. ²²

Table 3 – OUCC Adjustments for Vanderburgh Co. Population based on2020 Census Data and OUCC Adjusted IBRC Forecasts to 2050

Year	Population Data Source	Census / IBRC Population	IBRC Percent Growth	OUCC Adjusted Population	IBRC Percent Growth	
2010	US Census	179,703		179,703		
2020	IBRC forecast ²³	184,440	2.64%			
2020	US Census			180,136	0.24%	
2030	IBRC forecast	189,441	2.71%	185,020	2.71%	
2040	IBRC forecast	191,966	1.33%	187,486	1.33%	
2050	IBRC forecast	193,388	0.74%	188,875	0.74%	
Total population added		8,948		8,739		
Total 2020	0 to 2050 growth rat	4.85%		4.85%		
Annual gr	owth rate 2020 to 20	0.16%		0.16%		

4 Q: What service area population are direct customers of Evansville?

A: None of Petitioner's witnesses provide the service area population. AECOM
states "Water is currently delivered to over 62,000 customer accounts and serves a
population of approximately 120,000 people."²⁴ AECOM's population figure is
incorrect since it ignores Vanderburgh Co. residential customers outside City
limits who are not customers of a wholesale customer. The Preliminary Design

 $^{^{22}}$ Calculated starting with Vanderburgh County's 2020 Census population of 180,136 people and a 2050 OUCC adjusted population of 188,875 people. The total growth rate is 4.85% over 30 years and the annualized growth rate is 0.16%.

²³ The unadjusted IBRC forecasted populations were derived from 2010 Census data. New IBRC population forecasts using 2020 Census data have not yet been made.

²⁴ Water Treatment Plant Advanced Facility Plan, Alternatives Report, AECOM, April 23, 2021, p. 13.

1	Summary	in	Petitioner's	Supplemental	Workpaper	indicates	а	current	City
2	population	of	118,000 and	a 173,000 serve	d population	.25			

Q: What is the future service area population for the 2050 Design Year?
A: Again, none of Petitioner's witnesses state the future population and AECOM
does not report it in the Advanced Facility Plan. The Preliminary Design
Summary lists 2050 City and total served populations of 184,400 and 253,300
people.²⁶ This represents a 66,400 City population gain and an 80,300 total served

8 population gain.

Year	Assumed City Population	Assumed Total Served Population
2050	184,400	253,300
2020	<u>118,000</u>	<u>173,000</u>
Population gain 2020 to 2050	66,400	80,300
2020 to 2050 total increase %	56%	46%
Assumed annual growth rate %	1.50%	1.28%

Table 4 – Evansville's Projected Population Gains 2020 to 2050PER - Preliminary Design Summary27

9 It appears VS Engineering calculated the 2050 populations assuming a 1.5% 10 annual City growth rate and a 1.28% annual growth rate for total served 11 population. Neither of these assumed growth rates are supported by data or IBRC 12 population projections. The unsupported 1.5% annual population city growth rate 13 matches the value used by AECOM.

 ²⁵ Attachment E: DWSRF Loan Program Preliminary Design Summary in Petitioner's Supplemental Workpaper - Preliminary Engineering Report, Water Treatment Plant, VS Eng., June 2021, page 70 of 80.
 ²⁶ Id.

²⁷ Id.

Public's Exhibit No. 4 Cause No. 45545 Page 14 of 50

1	Q:	Are Petitioner's 2050 City and total served populations reasonable?
2	A:	No. They are overstated and exceed the IBRC's 12,076-person total population
3		gain for the four-county area (2020 to 2050) by 565%. ²⁸ I compared Evansville's
4		Preliminary Design Summary population to the IBRC's projected gains for
5		Gibson, Posey, Vanderburgh, and Warrick Counties as shown in Table 5.

Year	Vanderburgh County	Gibson County	Posey County	Warrick County	Four- County Population
2010 Census	179,703	33,503	25,910	59,689	298,805
2020 Census	180,136	33,011	25,222	63,898	302,267
2020	184,440	34,077	25,053	63,818	307,388
2030	189,441	34,783	23,874	67,958	316,056
2040	191,966	34, 8 98	21,979	70,261	319,104
2050	193,388	34,950	19,969	71,157	319,464
Gain 2020 to 2050	13,252	1,939	-5,253	7,259	12,076
2020 to 2050 gain as	80,300				
Population gain 202	0 to 2050, percen	t overstate	d		565%

Table 5- Forecasted Population Gains by County 2020 to 2050 Indiana Business Research Center²⁹

6

AECOM presented 1960 to 2010 population data for Evansville and Vanderburgh 7 County showing long term declines for Evansville, a 2017 population of 117,500 people and an assumed initial 2020 population of 118,000 people that it used for 8 its residential customer flow projections.³⁰ AECOM provides no other discussion 9

²⁸ The IBRC only makes long term population forecasts for Indiana Counties. There is no 2010 to 2050 IBRC population forecast for the City of Evansville.

²⁹ The IBRC forecasted populations for 2020 to 2050 were derived from 2010 Census data. New IBRC population forecasts using 2020 Census data have not yet been made.

³⁰ AECOM's inclusion of Evansville's total 118,000 population (within City limits) in the residential customer class is incorrect because Evansville directly serves residential customers outside City limits. Residential customers living in apartments are accounted for in the Commercial customer class.

1		about the residential population or future population other than to state "Section
2		Three, Population Projections and Water Demand of the Advanced Facility Plan
3		summarizes Evansville's anticipated population growth and draws upon historical
4		usage patterns to formulate future projected demands."31 AECOM assumed
5		significant increases in water demand across all customer classes even though the
6		historical water sold trend is negative. See Tables 1 and 6.
0		historioar water sold liend is negative. See Tables I and 0.
7 8	Q:	Isn't Petitioner simultaneously requesting a declining usage adjustment and proposing to design the new treatment plant for increased demand?
7	Q: A:	Isn't Petitioner simultaneously requesting a declining usage adjustment and
7 8	-	Isn't Petitioner simultaneously requesting a declining usage adjustment and proposing to design the new treatment plant for increased demand?
7 8 9	-	Isn't Petitioner simultaneously requesting a declining usage adjustment and proposing to design the new treatment plant for increased demand? Yes. AECOM projected increased demand based on inflated population growth

Customer Types	2014	2015	2016	2017	2018	2019	2020
Residential	7.34	7.15	6.94	6.90	6.77	6.47	6.64
Commercial	5.07	5.32	5.00	5.07	4.93	4.77	4.38
Industrial	2.63	2.93	2.81	2.77	2.93	2.66	2.45
Wholesale	2.11	2.11	2.19	2.05	2.25	2.19	2.19
Public Authority	1.01	0.99	0.85	0.90	0.88	0.85	0.74
Water sold (MGD)	18.16	18.49	17.79	17.70	17.75	16.93	16.39
Water sold (BG/Yr.)	6.616	6.741	6.496	6.409	6.490	6.180	6.011
Rainfall (inches) ³²	52.68	58.65	43.20	35.80	56.24	61.22	60.61

 Table 6 – Historical Water Demand by Customer Class (MGD)

13

Petitioner's witness Mr. Baldessari graphically showed the declining use for

14

annual water sold on page 34 of his testimony, which I include as Figure 1.

³¹ Water Treatment Plant Advanced Facility Plan, Alternatives Report, AECOM, April 23, 2021. See p. 3.

³² Water demand on an annual basis appears to be relatively unaffected by rainfall totals.

Public's Exhibit No. 4 Cause No. 45545 Page 16 of 50

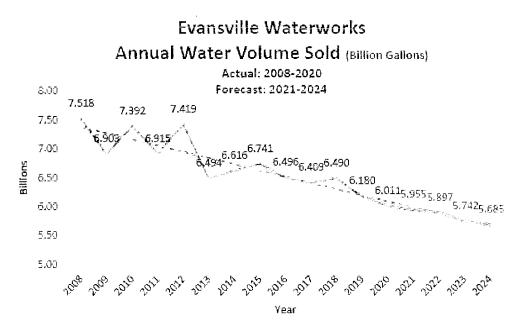


Figure 1 – Declining use graph (Mr. Baldessari's case-in-chief testimony, page 34)

1 Q: What did AECOM project for 2050 residential water demand?

A: AECOM projects residential demand will rise from 8.26 MGD in 2020 to 12.91
MGD in 2050. As I explained earlier, the 8.26 MGD demand for 2020 is a
projected value, not actual, and is overstated by 24%. Actual 2020 residential
water sold was only 6.64 MGD.

6 Q: Is AECOM's projected 2050 residential demand of 12.91 MGD reasonable?

A: No. AECOM's projection has a starting point (2020) that is 1.62 MGD higher
than it should be. AECOM's projection also includes an inflated population
growth projection. I estimate AECOM's projection is inflated by 85% (5.94 MGD
overstated) and will not occur. I estimate residential demand will rise from 6.64

1		MGD in 2020 to approximately 7 MGD in 2050.33 AECOM reported current
2		water usage of 115 gallons per customer per day and 58 gallons per capita per
3		day. ³⁴ At these daily consumption rates, to reach the estimated 12.91 MGD
4		residential demand in 2050, Evansville would have to add another 54,522
5		customers to its current 59,605 residential customers. ³⁵ For AECOM's projections
6		to be realistic Evansville's total residential customers would need to be 114,127 in
7		2050 or increase by 91 percent.
8 9	Q:	Are AECOM's assumed 1.5% annual residential population growth rate and the 12.91 MGD forecasted 2050 residential demand justified?
10	Q:	No. Evansville will not add another 54,522 residential customers over the next 30
11		years. As a check on how unlikely AECOM's projected growth is, I calculated the
12		expected population from 54,522 new residential customers based on 2010
13		Census data for Evansville of 2.23 people per housing unit. The 54,522 new
14		residential customers are equivalent to 121,584 people. ³⁶ This far exceeds the
15		Vanderburgh County population gain of 8,948 people forecasted by the IBRC.
16		See Table 3.
17 18	Q: A:	Are growth in the other customer classes similarly overstated? Yes. AECOM's growth rates in the other customer classes also appear to be

19 overstated. Petitioner did not provide support for any of its initial 2020 demand

³³ Based on an annual population growth rate of 0.16% for Vanderburgh County per the IBRC population forecast. *See* Table 3 for the annual population growth rate. The OUCC estimate of 2050 residential water demand is calculated as 1.0016 raised to the power of 30 times 6.64 MGD (2020 residential water sold) equals 6.97 MGD.

³⁴ Water Treatment Plant Advanced Facility Plan, Alternatives Report, AECOM, April 23, 2021. See Table 3-5 2017 Individual Category Daily Water Use, page 17.

³⁵ Calculated as 12.91 MGD (2050 projected residential) minus 6.64 MGD (2020 actual residential) equals 6.27 MGD residential demand growth. At AECOM's 115 gallons per day ("gpd") per customer usage, additional residential customers are 6.27 MGD times 1,000,000 divided by 115 gpd per customer equals 54,522 new residential customers.

³⁶ Calculated as 54,522 new residential customers times 2.23 people per housing unit (2010 Census housing data) equals 121,584 people.

volumes and annual growth rates. Also, the starting point for each customer class
 is overstated because AECOM did not use actual 2020 data.

3 Q: Did you prepare demand and annual growth rate estimates that could be 4 used to establish the new plant's needed capacity?

5 Yes. I estimated 2050 water demands under two growth scenarios, which I 6 summarize in Table 7. These estimates reflect actual 2020 water sold volumes and 7 residential growth rates calculations based on IBRC population projections. In 8 OUCC Growth Estimate 1, I assumed the commercial growth rate would mirror 9 the residential growth rate and I lowered the industrial growth rate to 1.5% based 10 on the negative demand trend. I matched the wholesale, public authority and leaks 11 and losses growth rates assumed by AECOM. Under Growth Estimate 1, the new 12 treatment plant should be sized for a maximum day demand of 34.5 MGD.

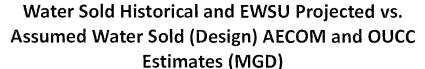
13 In OUCC Growth Estimate 2, I matched AECOM's assumed rates for the 14 industrial, wholesale, public authority classes. I tripled the residential annual 15 growth I calculated using IBRC data for Estimate 1 to 0.474% and used a 1.25% 16 commercial rate. Commercial growth rates should track with the residential growth, but I conservatively gave more growth, over 2.5 times the residential rate, 17 18 to the commercial class. Based on the more optimistic Growth Estimate 2, the 19 new treatment plant should be sized for a maximum day demand of 39.7 MGD 20 (rounded up to 40 MGD) and an average day demand of 28.4 MGD. For design, I 21 recommend Evansville's new plant have a design maximum day capacity not to 22 exceed 40 MGD. I compare the various AECOM assumed growth rates and water 23 demand projections to actual 2020 water demands and Growth Estimates 1 and 2 24 in Table 7.

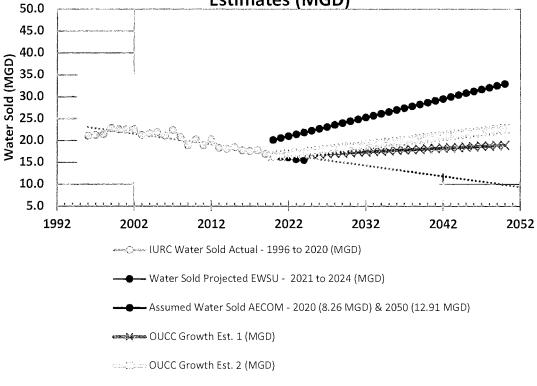
	Actual	AECOM Assumed Demand				
Demand Source	2020 (MGD)	2020 (MGD)	% Annual Growth	2050 (MGD)		
Average Residential	6.64	8.26	1.5%	12.91		
Average Commercial	4.38	5.00	2.0%	9.05		
Average Industrial	2.45	3.00	2.5%	6.29		
Average Wholesale	2.19	2.88	0.75%	3.60		
Average Public Authority	0.74	1.00	0.25%	1.08		
Avg. Leaks and Losses	6.13	3.50	-0.25%	3.25		
Avg. Day Demand ³⁷	22.53	23.6		36.4		
Max. Day Demand	28.8	31.7		49.4		
Max Day / Avg. Day	1.28	1.34		1.36		
2050 H	Forecasts – Ol	UCC Project	tions ³⁸			
	OUCC Gro	wth Est. 1	OUCC Gr	owth Est. 2		
Demand Source	% Annual Growth Estimate	2050 Est. Demand (MGD)	% Annual Growth High Est.	2050 High Demand (MGD) ³⁹		
Average Residential	0.16%	6.96	0.474%	7.65		
Average Commercial	0.16%	4.59	1.25%	6.36		
Average Industrial	1.5%	3.83	2.5%	5.14		
Average Wholesale	0.75%	2.74	0.75%	2.74		
Average Public Authority	.0.25%	0.80	0.25%	0.80		
Avg. Leaks and Losses	-0.25%	5.69	-0.25%	5.69		
Avg. Day Demand		24.6		28.4		
Max. Day Demand		34.5	·	39.7		
Max Day / Avg. Day		1.4		1.4		

Table 7 – Comparison of Actual 2020 Demand (MGD), AECOM Assumed2020 and 2050 Demands, and OUCC Projected Demands

1

I compare AECOM's water demand to OUCC Growth Estimates 1 and 2 in


³⁷ Actual 2020 average day demand of 22.53 MGD and maximum day demand of 28.8 MGD were taken from Evansville's Monthly Reports of Operation ("MRO") submitted to IDEM.


³⁸ Values shown in red text are different than values used by AECOM in its demand projections.

³⁹ The high demand estimate is for population growth nearly three times (0.474% annual growth vs. 0.16%) above the OUCC's best estimate based to meet IBRC's population projections (based on 2010 Census data) which have not yet been updated to reflect actual lower population growth using 2020 Census data.

Public's Exhibit No. 4 Cause No. 45545 Page 20 of 50

Figure 2. I also show historical water sold from 1996 to 2020 and Evansville's projected 2021 to 2024 declining use. The graph visually depicts AECOM's overstated water demand assumptions that if followed will lead to construction of an oversized 50 MGD treatment plant instead of the OUCC's recommended 40 MGD plant.

^{.....} Linear (IURC Water Sold Actual - 1996 to 2020 (MGD))

6 Q: What do you recommend for the new treatment plant's design capacities?

7 A: Petitioner's current plans to build a 50 MGD WTP are not warranted. Doing so

Figure 2 – Graphical presentation of historical water sold and forecasted water demands (excludes leaks and losses) by AECOM and the OUCC.

1	will oversize the new surface water treatment plant ("SWTP") by 25% due to
2	overestimated and unsupported water demand projections. I recommend that
3	Petitioner re-evaluate AECOM's water demand forecasts, preferably using
4	updated IBRC population forecasts based on 2020 Census data to confirm that the
5	new treatment plant can be sized for an average day demand of 28.4 MGD in
6	2050 and a maximum day demand of 40 MGD instead of Evansville's proposed
7	50 MGD capacity. A 28.4 MGD design average day capacity is 26% higher than
8	the 2020 average day flow, is sufficient to meet three times the IBRC forecasted
9	population increase, and includes Petitioner's assumed higher growth rates for the
10	industrial, wholesale, public authority classes and leaks and losses.

IV. <u>NEW SURFACE WATER TREATMENT PLANT</u>

11Q:In Cause Nos. 44760 (2016) and 45073 (2018) what type of treatment plant12did Petitioner originally propose to build?

13 Petitioner proposed to construct collector wells and new raw water mains on land A: along the Ohio River southeast of the existing treatment plant and a new 60 MGD 14 15 groundwater treatment plant ("GWTP") at the existing City garage site using 16 chemical oxidation of iron and manganese without softening, gravity filters and a 17 new 6-million-gallon finished water reservoir to replace the existing Ohio River 18 surface water treatment plant. The basis for the new groundwater plant was a 19 2014 Feasibility study which indicated the new GWTP and collector wells could 20 be constructed (with a 20% contingency) for \$79 million with a 20% nonconstruction cost of \$15.8 million and a total project cost of \$96 million.⁴⁰ The 21

⁴⁰ New Groundwater Treatment Plant Feasibility Study, HNTB Corporation, December 2014.

1		reasons for using groundwater instead of river water included protection against:
2		a. <u>spills and river contamination</u> that could force Evansville to close the river
3		intake causing a loss of supply to utility customers;
4		b. water main breaks in the winter caused by near freezing river water
5		adversely affecting the City's cast iron water mains;
6		c. intake structure damage during floods or barges colliding with the intake
7		causing a loss of raw water supply; and
8		d. <u>treatment variability</u> caused by turbidity spikes and varying water quality.
9		AECOM discusses the groundwater benefits over river water in the Advanced
10		Facility Plan. ⁴¹
11	Q:	Would a new groundwater plant address other Evansville water issues?
12	A:	Yes. Petitioner did not mention a new GWTP would also address discharges of
13		mercury and total suspended solids ("TSS") to the Ohio River from blowdown of
14		sediments removed in sedimentation tanks and filter backwash water. AECOM's
15		life cycle cost analyses looking at existing plant rehabilitation, construction of
16		new surface water treatment or a 50:50 blend of groundwater and surface water,
17		did not include the added construction costs and operation and maintenance cost
18		for a residuals treatment system to address the mercury and TSS.
19 20	Q:	Did Evansville previously secure funding for planning and design of the new groundwater treatment plant?
21	A:	Yes. In 2016, under Cause No. 44760, Petitioner requested financing authority for
22		\$10 million for planning and design of the new GWTP and \$650,000 for purchase
23		of property and easements for the new Ranney collector wells and raw water

а – с 3

⁴¹ Water Treatment Plant Advanced Facility Plan, Alternatives Report, AECOM, April 23, 2021, pp 44-45.

-

1		mains. The Commission granted financing authorization in 2016.42 Evansville
2		secured funding through an open market 2016A Water Bond in December 2016.
3		The \$10 million was for work in 2017 and 2018 to complete aquifer testing,
4		planning and design of the new GWTP including plans and specifications needed
5		for competitive bidding. ⁴³
6 7	Q: A:	What is the status of the new GWTP planning and design? In this Cause, Petitioner has chosen to retain using Ohio River water for its source
8		of supply and now plans to build a new surface water treatment plant on a new
9		site rather than pursue the new GWTP. Evansville cites well capacity testing
10		results below the expected 15 MGD per collector well causing the number of
11		wells needed to increase to be able to meet Petitioner's proposed 50 MGD
12		maximum day production.
13		Evansville did not purchase any properties for the new wells and has only
14		spent \$2.506 million of the \$10 million total that was earmarked in 2016 for
15		planning and design. Subsequent planning focused on AECOM's preparation of
16		the Advanced Facility Plan for continued surface water treatment but at a new
17		offsite plant. AECOM developed and evaluated the following alternatives:
18		<u>Alternative 1</u> – Rehabilitation of the existing surface water treatment plant;
19 20		<u>Alternative 2A</u> – Construct a new SWTP with conventional pretreatment, ozonation and biological filtration on the existing plant site;
21 22 23		<u>Alternative 2B</u> – Construct a new SWTP with conventional pretreatment, ozonation and biological filtration on the Evansville Street Maintenance Department garage site east of the existing SWTP; and

 ⁴² Cause No. 44760 Final Order, October 5, 2016, pages 11 and 13.
 ⁴³ See Attachment JTP-3 for Petitioner's response to Data Requests under Cause Nos. 44760 and 45073 pertaining to the status of the proposed groundwater treatment plant.

Alternative 3 – Construct a new treatment plant with a 50:50 split between 1 2 groundwater treatment with softening and a new SWTP. 3 **O**: What treatment alternative does Petitioner propose to construct? 4 A: Evansville proposes to construct Alternative 2B with residuals treatment at a total 5 estimated construction cost of \$175,838,000 without engineering design. 6 Petitioner's life cycle cost analysis used to select Alternative 2B - a new surface 7 water treatment plant did not include the added costs for residuals treatment. 8 **O**: What is the status of the new WTP design? 9 A: Evansville requested Proposals for engineering planning and design services for 10 the new WTP in November 2018. In August 2019 Evansville retained AECOM's 11 design team to develop alternatives including evaluation and pricing of treatment 12 equipment for the new plant and preparation of 30% design including up to 60 13 drawings and a specifications list. AECOM submitted a draft Advanced Facility 14 Plan in late 2020 and a Final WTPAFP dated March 2021. This WTPAFP was 15 included as Attachment SMB-1 to Mr. Breese's case-in-chief testimony. The 16 March 2021 WTPAFP recommended Alternative 2B but did not discuss or 17 analyze the need, costs, or O&M impacts for the \$30 million residuals process. 18 **Q**: Was another Advanced Facility Plan prepared? 19 A: Yes. A revised WTPAFP including a new Chapter 10 – Residuals Management, 20 was prepared between March and April 2021. The OUCC did not know this 21 revised WTPAFP existed until August 25, 2021, when the OUCC obtained a copy 22 from the Indiana Finance Authority. 23 Why was Alternative 2B selected? **O**:

A: AECOM conducted a 30-year life cycle cost analysis ("LCCA") that included construction costs, 30 years of operation and maintenance, and replacement costs.

3 did not include the residuals management system's \$29,714,000 construction of	1	The LCCA was based on construction of a new plant to treat an average day
4 or \$43,547,000 30-year operating and replacement cost (present worth). The te	2	demand of 36.4 MGD and a maximum day demand of 50 MGD, but the LCCA
	3	did not include the residuals management system's \$29,714,000 construction cost
5 30-year life cycle dewatering cost would be \$73,261,000.44	4	or \$43,547,000 30-year operating and replacement cost (present worth). The total
	5	30-year life cycle dewatering cost would be \$73,261,000.44

6 7 Q:

Do you have any observations about the proposed new surface water treatment plant?

A: Yes. The new plant does not address the issues the City identified in Cause No.
44760. These issues include the cold river water contributing to increased
numbers of water main breaks in the winter, the potential risk of spills and river
contamination forcing Evansville to have to completely close the river intake, and
the risk of damage to the intake structure caused by floods and collisions of
barges with the intake. These issues remain unaddressed with the new surface
water plant.

AECOM's Non-Monetary Scoring omits cold water temperatures during the winter causing increased water main breaks and the danger of barges damaging the intake structure. The Scoring matrix also appears to be skewed with equal weighting (5 points each) for the Environmental Factors of susceptibility to earthquakes, tornados, and floods. Flooding, by far the major risk, should be weighted higher than earthquakes and tornados. Environmental Factors weighting at 20 points nearly equals factors of greater importance such as turbidity spikes in

⁴⁴ Water Treatment Plant Advanced Facility Plan, Alternatives Rpt., AECOM, April 23, 2021, pp 140-142.

1	the river (3 points), river spills / contamination (3 points), taste and odor control
2	(3 points), and organics and disinfection byproducts (3 points). ⁴⁵

In addition, in Cause No. 45073, Petitioner stated concerns with leakage 3 into the 6.5 MG concrete clearwell during high river stages as a reason for a new 4 5 6.0 MG clearwell. The bottom of Petitioner's proposed 5 MG concrete clearwell 6 (at approximate elevation 333.0 ft. based on 28 feet excavation per the Timberline 7 estimate) appears to be 15 feet *lower* than the bottom of the existing clearwell 8 (elevation 348.0 feet) which is located in the river levee. In addition, Petitioner's 9 preferred site for the new plant is located in a low-lying area that is protected by 10 Evansville's levee system. However, this area can flood when the river is at high 11 stage if the ponding water cannot be pumped to the river.

V. NEW SURFACE WATER TREATMENT PLANT COSTS

12 Q: What is the estimated total project cost for Alternative 2B?

13 A: There are differing cost estimates for the new WTP. For purposes of the OUCC's 14 review, we have focused on the \$175,838,000 construction cost estimate listed in 15 Mr. Baldessari's case-in-chief testimony and the Capital Improvement Plan 16 summarized on pages 6-9 of Attachment DLB-1. Capital costs include offsite construction of a new, larger City garage, five phases of construction for the new 17 treatment plant, a mercury/TSS treatment process, and \$6.28M for construction 18 19 engineering services/resident project representatives ("CES/RPR") as summarized 20 in Table 8.

⁴⁵ <u>*Id.*</u>, page 149 of 291.

Public's Exhibit No. 4 Cause No. 45545 Page 27 of 50

Description of Work	Year	Cost Estimate	Source of Funds
City Garage Replacement Demolition and Relocation	2022	\$13,200,000	Revenue Bond (non SRF eligible)
Plant Replacement, Phase I	2022	11,029,000	SRF
Mercury/TSS Treatment Process	2022	30,000,000	SRF
Plant Replacement, CES/RPR	2022	6,280,000	SRF
Plant Replacement, Phase II	2023	30,573,000	SRF
Plant Replacement, Phase III	2024	35,302,000	SRF
Plant Replacement, Phase IV	2025	37,793,000	SRF
Plant Replacement, Phase V	2026	11,661,000	SRF
Total Construction Cost		\$175,838,000	

Table 8 Alternative 2B New Surface Water Treatment PlantConstruction Cost Estimate per Attachment DLB-1

1 Q: What is the Estimate Class for the new WTP construction cost estimate?

2 A: Petitioner does not report the estimate class in its testimony. It appears that the 3 construction cost estimates prepared to date and submitted in the case-in-chief and 4 in the Preliminary Engineering Report should be considered AACE Class 3 estimates.⁴⁷ I consider it a Class 3 estimate for the following reasons: 5 6 Known water quality and treatment processes - The proposed SWTP is similar a. 7 to the existing SWTP (with known river water quality, known treatment 8 processes similar to existing, known new processes (ozone, biologically active 9 filtration ("BAF")).

10

b. Components and sizing - All unit processes and system components appear to

⁴⁶ Attachment <u>DLB-1</u> to Mr. Baldessari's case-in-chief testimony, pages 6-9.

⁴⁷ AACE International cost estimate classifications range from Class 5 for planning and concept screening with 0% to 2% project definition to Class 1 for bidding, project controls and change management for up to 100% project definition. AACE stands for the Association for the Advancement of Cost Engineering. *See* Attachment JTP-4 for the cost estimate classification matrix of the AACE International Class that describes the five Classes, their project definition basis and their uses.

- 1 be identified and sized.
- c. <u>Detailed unit costs</u> were prepared by AECOM with Assembly Level line
 items. This information was provided in response to a data request and
 included Excel worksheets, Timberline cost estimating software output and
 equipment quotations.⁴⁸ The level of spreadsheet detail, the material
 quantities, and equipment vendors budgetary quotations is a good indication
 the estimate is a Class 3.
- 8 d. <u>30% design</u> AECOM's contract list preparation of a Class 4 estimate and
 9 preliminary design drawings as scope of work tasks.⁴⁹
- e. <u>Budget and financing</u> EWSU has established its requested project budget
 and is seeking financing authorization. This is another main reason to judge
 the estimates as Class 3.
- 13 However, AECOM identified the construction cost estimate as a Rough Order of
- 14 Magnitude ("ROM") with no AACE Class level identified.⁵⁰ In other discovery,
- 15 Petitioner stated that the cost estimates were based on the alternative evaluations
- 16 report, which it indicated was at the conceptual level (approximately 10% design).⁵¹

17 Q: What are the various cost estimates that have been prepared?

- 18 A: AECOM shows a \$150,902,000 total estimated project cost without design costs
- 19

in the Advanced Facility Plan (Table 9-9 Plant Alternative 2B Total Estimated

⁴⁸ Petitioner response to DR 17-6 Attachment 1 (Excel file tabulating costs from the Timberline cost estimating software – 13 worksheets), Attachment 2 (pdf file of Timberline cost estimating software output, 20-018 Engineer's ROM Estimate Level 4, June 12, 2020 – 54 pages) and Attachment 3 (2020 and 2021 equipment vendors budgetary quotes and scopes of supply and details for major pieces of equipment). See Attachment JTP-5.

⁴⁹ Attachment JTP-6 for the Scope of Services from AECOM's Engineering Services Contract.

⁵⁰ Petitioner's response to Data Request 17-6.

⁵¹ Petitioner's response to Data Request 17-7.

Public's Exhibit No. 4 Cause No. 45545 Page 29 of 50

1		Construction Cost) including \$13.691 million for a new City garage but omits
2		existing plant demolition, renovations of existing treatment plant buildings that
3		are to remain (unspecified but believed to include the original 1897 well and
4		pump house and the 1912 and 1938 filters building), and the \$30 million residuals
5		treatment system.52 The PER lists \$166,925,000 for the Alternative 2B cost in
6		Table 21 (on page 46 of 80) without design costs and omits demolition and City
7		garage replacement costs (non SRF eligible) but includes \$27,650,000 for the
8		residuals treatment system. The WTPAFP and PER cost estimates are compared
9		in Attachment JTP-7.
10		In the testimonies of Mr. Breese and Mr. Baldessari, the treatment plant
11		construction costs are shown as \$181 million and \$175.838 million respectively.
12		Both estimates include a \$30 million residuals management system. In addition,
13		Evansville's new SWTP has been initially listed on IFA's Project Priority List
14		("PPL") at an estimated \$250 million cost (#4 priority project – 2022 1st Quarter
15		PPL, July 19, 2021) which greatly exceeds the amount of financing Petitioner is
16		requesting in this Cause. ⁵³
17 18	Q:	What is the overall contingency included in Petitioner's WTPAFP and PER cost estimates for Alternative 2B?
19	A:	Petitioner does not identify the project's overall contingency. Petitioner shows
20		additional construction contingencies at 3% totaling \$4,152,180 in the PER,
21		Table 21 but does not identify the large estimating contingencies (20% up to

 ⁵² Table 11-3 - Total Estimated Project Cost of Preferred Alternative 2B in the WTPAFP shows a cost of \$180,616,000 if residuals treatment (dewatering) is required by IDEM.
 ⁵³ See Attachment JTP-8, Indiana Finance Authority Drinking Water State Revolving Fund ("DWSRF")

^{2022 1}st Quarter Project Priority List ("PPL"), July 19, 2021

Public's Exhibit No. 4 Cause No. 45545 Page 30 of 50

1 30%) and the 5% construction contingencies embedded in most line items of the 2 cost estimate. In the WTPAFP, Table 9-9, the <u>additional</u> construction 3 contingencies at 3% total \$3,602,000. The additional construction contingencies 4 vary for each of the four Alternatives evaluated as summarized in Table 9. Given 5 the cost details provided that identify the majority of project costs, I recommend 6 that Petitioner use a standard 10% contingency in its cost estimates which 7 matches the maximum contingency allowed by the Indiana Finance Authority.

Table 9 – Comparison of Added Construction Contin	gency
for the Four Alternatives	

Alternative Description			Construction ontingency	Construction Cost with	
		%	Amount	Added Contingency	
1	Rehabilitate the existing SWTP	15%	\$14,319,000	\$121,822,000	
2A	New SWTP on existing site	10%	\$12,096,000	\$141,605,000	
2B	New SWTP on City garage site	3%	\$3,602,000	\$140,049,000	
3	New 50:50 SWTP / GWTP	10%	\$14,795,000	\$175,599,000	

8 Q: Did Petitioner provide support for its cost estimates in its case-in-chief?

9 A: No. In the Advanced Facility Plan, AECOM provided single page construction 10 cost estimates for process alternatives and for each of the four alternatives 11 (Alternatives 1, 2A, 2B, and 3) but did not provide any detailed cost support, 12 material quantities, unit costs or equipment quotations. The WTPAFP and PER 13 cost estimates for each alternative show lump sum costs for various-line items 14 representing individual unit processes. Additionally, the individual unit processes 15 also show lump sum costs for various line items, again with no detail beyond the 16 listed lump sum costs.

Public's Exhibit No. 4 Cause No. 45545 Page 31 of 50

1		In response to discovery, Petitioner provided cost details from an	
2		estimating program called Timberline, but the output was in pdf format that did	
3		not link to an excel file that could be manipulated to understand how costs were	
4		developed and rolled up into the lump sum costs shown in the WTPAFP and PER.	
5		Because of this, the OUCC could not be easily see how costs rolled up for	
6		individual processes and then tied into the WTPAFP and PER cost tables.54	
7		Petitioner provided an Excel file of the Timberline data, but the data was hard	
8		coded making review difficult. The Timberline software includes assembly level	
9		detailed listings with entries for labor, materials, installation equipment,	
10	subcontractors, and process equipment costs.		
11	Q:	Did you review the lump sum costs listed in the WTPAFP and PER tables?	
12	A:	Yes. In reviewing the detailed estimates forming the basis for AECOM's cost	
13		estimates, I noticed WTPAFP and PER costs were always much higher than	

rolled-up costs generated through the Timberline cost estimating software. I 14 15 reviewed AECOM's cost estimates in depth for two process components: 1) 16 rehabilitating the river intake; and 2) constructing new high service pump station 17 #4. Based on my review it appears costs that AECOM listed for the intake and 18 HSP Station #4 in the total construction cost estimates are 107% and 272% higher 19 than the total amount listed in the rolled-up Timberline estimate. The Timberline costs appear to be base costs without contingencies and the contractor's overhead 20 21 and profit and general conditions.

⁵⁴ Petitioner's response to DR 17-6 and DR 17-10. See Attachment JTP-5.

Public's Exhibit No. 4 Cause No. 45545 Page 32 of 50

1	I assembled the various cost estimates for the Intake and HSP Station #4
2	and summarized them in Attachments JTP-9 and JTP-10. I also summarized the
3	cost estimate increases from the AECOM base costs generated through the
4	Timberline estimating software to the estimated costs presented in the WTPAFP
5	and PER. See Table 10.

Table 10 – Summary of Cost Estimate Increases for the Intake and HSP Station #4

Cost Estimate Source	Intake Rehab	HSP Station #4
DR 17-6 Attach. 2 Timberline estimate Total Amount (Base Cost)	\$3,260,760	\$2,995,741
DR 17-6 Attach. 2 Timberline estimate Total Price Amount	\$4,995,583	\$4,586,577
DR 17-6 Attach. 1 Grand Total Cost	\$6,752,000	\$7,870,000
Advanced Facility Plan Cost Estimate	\$6,752,000	\$11,130,000
Percent Increase above Base Cost	107%	272%
Advanced Facility Plan Cost Table	Table 7-5, page 51	Table 9-9, page 128

VI. <u>NEW STREET DEPARTMENT MAINTENANCE GARAGE</u>

6 **Q**: Where does Evansville plan to construct the new surface water treatment 7 plant? 8 Petitioner plans to build its new plant on land occupied by the Evansville Street A: 9 Maintenance Department's garage ("garage" or "City garage"). At an offsite 10 location, Evansville proposes to construct a new City garage that is larger and with more amenities than the existing 1985 garage. Petitioner requests \$13.2 11 12 million to fund the new garage's entire cost at water utility ratepayer expense.

Public's Exhibit No. 4 Cause No. 45545 Page 33 of 50

1 Has Petitioner started work to replace the City garage? 0: 2 A: No. Petitioner provided a feasibility assessment for the new garage but did not document in its case-in-chief that it had acquired another property.⁵⁵ In response 3 to discovery, Petitioner stated property acquisition has not started and that "design 4 5 of the new Street Garage will start when it is known this rate case will move forward as petitioned. Anticipated construction schedule of the new Street Garage 6 7 is embedded in the Gantt chart in the PER for the water treatment plant, previously submitted."⁵⁶ Figure 10-1 in the WTPAFP shows garage relocation 8 work starting in the 3rd quarter of 2021 and ending by the 3rd quarter of 2022.⁵⁷ 9 10 **Q**: Who determined the new WTP site? Petitioner's witness Mr. Labitzke stated "EWSU, in conjunction with its 11 A: 12 consultants, evaluated a number of potential locations" and stated AECOM's evaluation indicated the most cost-effective option is to build on or near the 13 existing WTP, specifically preferring the City garage site as the (Alternate 2B).⁵⁸ 14 What sites did AECOM evaluate for the new WTP? 15 **O**: 16 Petitioner's witness Mr. Breese discusses only three sites for Alternative 2B: A: 17 Site 1 The City garage site immediately east of the existing WTP (selected). 18 Site 2 An undeveloped site 2.4 miles southeast of the existing WTP outside the 19 floodplain or any wetlands. 20 Site 3 An undeveloped site 2,900 feet south of the existing WTP within the floodplain but unprotected by the existing levee. 21

⁵⁵ Mr. Labitzke's case-in-chief testimony and Attachment <u>ML-5</u> Facility Relocation Feasibility Assessment, for the Evansville Street Maintenance Department & Evansville Vanderburgh Levee Authority, VS Engineering, Inc., Dec. 15, 2020,

⁵⁶ Petitioner response to DR 17-9, August 9, 2021.

⁵⁷ Mr. Breese's case-in-chief testimony and Attachment <u>SMB-1</u> Water Treatment Plant Advanced Facility Plan, Alternatives Report, AECOM, March 2021, page 138 of 276.

⁵⁸ Mr. Labitzke's case-in-chief testimony, page 12.

Public's Exhibit No. 4 Cause No. 45545 Page 34 of 50

1 Q: Has Evansville considered other nearby locations for the new WTP? 2 A: I don't believe so. Because of benefits from being near the existing Ohio River 3 Intake Structure (being retained) or possible well sites, Evansville was justified in only considering sites on or near the existing WTP. However, by effectively 4 5 limiting its off-site review to only the adjacent Street Maintenance Department 6 garage and Levee Authority site, Evansville failed to evaluate placing the new 7 WTP on other unused City owned land that also sits adjacent to the existing WTP. 8 This other adjacent 20-acre area just south of the Levee Authority and City garage 9 would have eliminated the need to demolish and relocate the garage thereby 10 saving \$13,200,000. This city owned vacant land is shown in Figure 3.

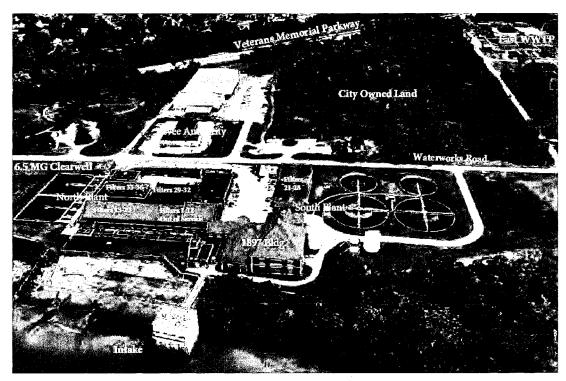


Figure 3 – View of Evansville's existing water treatment plant looking east with the City garage, the proposed site of the new plant, in the upper left. This pre 2019 photo does not show the Waterworks Road relocation across the wooded City owned land.

1 2	Q:	What infrastructure exists on the property south of the Levee Authority and City garage?
3	A:	Until 2019 it appears that the land only had a 48-inch water transmission main
4		running east from the water plant. Evansville installed two new 36-inch water
5		transmission mains at a construction cost of \$2,625,669.59 Evansville also
6		relocated Waterworks Road in 2019 as part of the Sunrise Effluent Pump Station
7		project (wastewater) at a construction cost I estimate at \$1,680,000.60
8 9	Q:	Could Evansville save time and ratepayer money by building the new WTP on the 20-acre site south of the Levee Authority?
10	A:	Yes. I estimate Petitioner could relocate portions of the 48-inch concrete and two
11		new 36-inch ductile iron transmission mains and the new Waterworks Road for
12		about \$5.0 million. The cost to relocate the infrastructure on the site would be less
13		than half of the \$13.2 million requested cost to relocate the City garage. ⁶¹ Costs
14		could even be reduced from the \$5 million if portions of the new road and 36-inch
15		and 48-inch transmission mains could remain in place or be removed, inspected,
16		and reinstalled. Evansville could also accelerate the WTP project schedule by
17		eliminating the need to acquire an offsite property and relocate the City garage.
18	Q:	Please describe the existing Street Maintenance Department garage.
19	A:	The facility, constructed in 1985, consists of a 52,800 square feet single story
20		commercial/industrial type metal frame and metal sided garage building with a

21

12,000 square feet two-story brick and metal exterior office with a mezzanine and

⁵⁹ Waterworks Road – (2) 36" Water Main Relocation project (unknown Project No.). This 2,625,669 water transmission main project was not separately listed in Cause No. 45073. It is believed to be part of the 21,032,206 PER A Project No. 25, High Service Pump Station and Clearwell that was disallowed by the Commission in Cause No. 45073.

⁶⁰ Based on an OUCC estimated road construction cost of \$1,200 per lineal foot (2021 cost) times 1,400 lineal feet equals \$1,680,000.

⁶¹ The cost to relocate the existing 48-inch PCCP pipe is estimated at \$500 per LF for 1,250 LF equals \$625,000. Total cost to relocate the road and water transmission mains would be \$1,680,000 + \$2,625,669 + \$625,000 equals \$5,000,000 (rounded up).

Public's Exhibit No. 4 Cause No. 45545 Page 36 of 50

1		two metal industrial canopies on the east and south building edges. ⁶² The building
2		floor and canopy floors are concrete. The existing garage is a 36-year-old
3		commercial/industrial type building that is rated by the Assessor to be in average
4		condition. VS Engineering listed operational deficiencies in the Facility
5		Relocation Feasibility Assessment. ⁶³ The building sits on approximately 3.5 acres
6		of city owned land just east of Evansville's existing WTP.64 The parking and
7		equipment / material storage areas are primarily unpaved (gravel). There does not
8		appear to be any storm water detention basin for runoff control. Attachment JTP-
9		12 contains aerial photos of the existing garage site and Attachment JTP-13
10		contains garage photos taken during the OUCC's July 21, 2021 site visit.
10 11	Q:	contains garage photos taken during the OUCC's July 21, 2021 site visit. What does Petitioner propose for the new City garage?
	Q: A:	
11	-	What does Petitioner propose for the new City garage?
11 12	-	What does Petitioner propose for the new City garage? Petitioner proposes to build a new 85,000 square feet garage / office at an offsite
11 12 13	-	What does Petitioner propose for the new City garage? Petitioner proposes to build a new 85,000 square feet garage / office at an offsite location with paved employee parking separated from equipment storage areas, a
11 12 13 14	-	What does Petitioner propose for the new City garage? Petitioner proposes to build a new 85,000 square feet garage / office at an offsite location with paved employee parking separated from equipment storage areas, a storm water detention pond, fencing, and other garage features listed in
11 12 13 14 15	-	What does Petitioner propose for the new City garage? Petitioner proposes to build a new 85,000 square feet garage / office at an offsite location with paved employee parking separated from equipment storage areas, a storm water detention pond, fencing, and other garage features listed in Attachment <u>ML-5</u> . The Street Maintenance Department requested the new offices
11 12 13 14 15 16	-	What does Petitioner propose for the new City garage? Petitioner proposes to build a new 85,000 square feet garage / office at an offsite location with paved employee parking separated from equipment storage areas, a storm water detention pond, fencing, and other garage features listed in Attachment <u>ML-5</u> . The Street Maintenance Department requested the new offices be enlarged to 15,000 square feet (25% larger) and the garage be increased in size

⁶² The Property Record Card for the existing Street Maintenance Department garage indicates a 52,800 square feet garage and a 12,000 square feet office area. See Attachment JTP-11
 ⁶³ Attachment <u>ML-5</u> Facility Relocation Feasibility Assessment, for the Evansville Street Maintenance Department & Evansville Vanderburgh Levee Authority, VS Engineering, Inc., Dec. 15, 2020.

 ⁶⁴ The 3.5 acres is the OUCC's estimate. Petitioner does not indicate the acreage of the City garage site.
 ⁶⁵ The existing garage dimensions are 352 ft. by 160 ft. equals 52,800 square feet. The proposed garage dimensions are 400 feet by 175 feet equals 70,000 square feet.

⁶⁶ Football field dimensions are 360 feet by 160 feet.

Public's Exhibit No. 4 Cause No. 45545 Page 37 of 50

1	Q:	Has any valuation been made of the existing City garage?
2	A:	Yes. The Vanderburgh County Assessor determined a Replacement Cost New
3		("RCN") valuation of \$3,115,340 for the City garage and a depreciated value of
4		\$684,900. ⁶⁷ The Levee Authority building and the City garage sit on a 13.05-acre
5		parcel valued at \$566,400. The City garage parcel that I estimate to be 3.5 acres
6		would have a prorated value of \$152,000. The RCN and land value totals
7		\$3,267,340. The depreciated value of the garage and 3.5-acre site is \$1,251,300.
8 9	Q:	Why does Petitioner seek to include the entire cost of building a new, larger City Garage as part of the new water treatment plant project?
10	A:	Petitioner's witness Mr. Baldessari asserts the full \$13.2 million estimated
11		construction cost of relocating and building a new City Garage is a proper
12		acquisition cost chargeable to the new WTP project.68 He opined the Street
13		Maintenance Department cannot be forced to transfer the property unless the
14		Water Utility pays for the entire replacement garage. He noted the City could
15		simply use the condemnation process for privately owned property but cannot
16		condemn property already dedicated to public use. He further opined that the
17		Water Utility would have to negotiate for the purchase and that it would be
18		reasonable to expect under such circumstances that the seller (i.e., Evansville's
19		Street Maintenance Department) would require that Evansville's Water Utility
20		provide the funds to acquire a new site and build a new City garage.

⁶⁷ See Attachment JTP-11 for the Property Record Card from the Assessor's office

⁶⁸ VS Engineering estimated the offsite land purchase and construction cost for the new garage at \$13,277,395. This cost does not include the \$624,000 estimated cost to demolish the existing City garage. *See* Mr. Labitzke's case-in-chief testimony, Attachment <u>ML-5</u>, page 7 of 34. VS Engineering increased its cost estimate to \$13,690,900 (includes the \$624,000 City garage demolition cost) in the Preliminary Engineering Report, June 2021. AECOM also reported the \$13,690,900 cost to acquire the City garage site and relocate the garage. *See* Mr. Breese's case-in-chief testimony, Attachment <u>SMB-1</u>, page 123 of 276.

- 1 Q: Did Petitioner provide any testimony about negotiations it may have held 2 with the Street Maintenance Department?
- 3 A: No.
- 4 5

6

۰. ۲

> Q: Do you agree with Mr. Baldessari's assertion that the Water Utility must pay the entire cost of a new City garage rather than the appraised Fair Market Value of the existing garage?

7 A: No. Evansville's proposal to have the Water Utility absorb the replacement costs 8 in their entirety including additional costs for a larger and more costly garage with 9 no Street Maintenance Department funding participation is not reasonable or in 10 the ratepayers' interest. This approach fails to account for the garage's age and 11 condition. Both entities (Water and Street Maintenance) are City departments, but 12 they do not have the same customer base. The Water Utility serves customers 13 outside Evansville's city limits including wholesale customers. Approximately 32% of Petitioner's customers do not live in Evansville city limits.⁶⁹ Water Utility 14 15 funds should not be used to subsidize the Street Department by replacing an aged, 16 average condition garage with a new, improved and larger garage at a higher cost. 17 What does the term functional replacement mean for property acquisitions? **O**: 18 Property acquisitions are based on appraised Fair Market Value. Under property A: 19 acquisition rules (Federal Highway Administration and INDOT), functional 20 replacement provides additional financial assistance when typical Fair Market 21 Value compensation for acquiring a public facility such as the City garage may be

23

22

insufficient to restore it to the level needed to provide the same services that were

being provided at the acquired site. "Costs of increases in capacity and other

⁶⁹ The percentage living outside City limits is based on the reported current population served of 173,000 minus the Evansville population of 118,000 equals 55,000 people outside City boundaries or 32%. *See* Cause No. 45545 Supplemental Workpaper, *Preliminary Engineering Report – Water Treatment Plant*, VS Engineering, June 2021, page 70 of 80.

Public's Exhibit No. 4 Cause No. 45545 Page 39 of 50

1		betterments or enhancements are not eligible for federal or state participation
2		except where necessary to replace the facility's utility, unless required by existing
3		codes, laws or zoning regulations, or related to reasonable prevailing standards for
4		the facility being replaced." ⁷⁰
5 6 7	Q:	Has Evansville estimated the additional costs for the increase in capacity and other betterments or enhancements the Street Maintenance Department wants for the new City garage?
8	A:	No. Petitioner does not address this issue and did not determine the value of the
9		existing City garage.
10 11	Q:	What should Petitioner contribute to the new Street Maintenance Department garage?
12	A:	Instead of requiring the water customers to pay the full \$13.2 million requested,
13		Petitioner should only contribute the replacement cost of the existing garage along
14		with the value of the land or approximately \$3.5 million. I calculated this value
15		based on the Assessor determined \$3,115,340 Replacement Cost New ("RCN")
16		for the City garage \$154,600 of design fees (5% of the RCN), and the \$197,00
17		land acquisition cost (includes surveying/legal fees) rounded up to \$3.5 million.
18 19	Q:	Do you have other observations about the interaction between Evansville's Street Department and the Water Utility?
20	A:	Yes. Evansville's Water Utility relocates its water mains whenever road projects
21		require it at no expense to the Street Department. In the previous three rate cases,
22		Evansville obtained over \$45 million for water main relocation projects as
23		summarized in Table 11. In this Cause, Petitioner is requesting financing
24		authority for another \$40 million bringing the water main relocation total to
25		approximately \$85 million since 2013.

⁷⁰ Indiana Department of Transportation - Real Estate Division Manual August 2018, Chapter 1, pages 23-26.

Cause No.	Period	Amount
44137 (2012)	2013-2015	\$ 12,000,000
44760 (2016)	2017-2020	\$ 12,000,000
45073 (2018)	2019-2021	\$ 21,027,800
45545 (2021)	2022-2026	\$ 39,806,000
Total		\$ 84,833,800

Table 11 - Funding for Water Main Relocations Caused by Road Projects

· .

۰,

1 Against this backdrop of water main relocation costs imposed on the Water Utility 2 because of road projects, Petitioner now seeks \$13.2 million to fund a new City 3 garage at no expense to the Street Maintenance Department. The OUCC does not 4 object to a new garage but opposes Petitioner's plan to build a larger garage with 5 betterments and to finance it entirely through water rates. Evansville Street 6 Department interactions with the Water Utility must be a two-way street. 7 Therefore, I recommend the Commission only authorize financing of \$3.5 million 8 for acquiring the City garage property for the WTP project and relocating the City 9 garage to a new offsite property. All additional costs for increased capacity, 10 betterments, and enhancements to the new City garage should be funded through 11 the Street Department budget and not through water rates.

VII. OTHER ISSUES

Q: Did Petitioner complete all the water main replacement and relocation projects from Cause Nos. 44760 and 45073?
A: No. In Cause No. 45073, the OUCC's testimonial positions were that water main cost estimates were inflated, the replacement schedule was overly ambitious, and the financing amount authority should be reduced. The OUCC did not oppose any

1		water main project. Petitioner rebutted by stating the only thing holding									
2		Evansville back in achieving the 1.5% water main replacement rate was funding.									
3 4	Q:	How many miles of water main replacements did Evansville complete annually from 2018 to 2021?									
5	A:	In response to discovery, Evansville did not indicate how many miles were									
6		completed. Instead, Evansville responded "In order to provide a response to this									
7		request, EWSU assumed the list to include encumbered projects that have									
8		received a notice to proceed. ⁷¹ (Emphasis by the OUCC). Based on the									
9		\$93,494,523 amount of funds remaining as of June 1, 2021 from the 2016A,									
10		2018A2, and 2019A Waterworks District Revenue Bonds (total amount of									
11		\$151,317,000), it is clear that Evansville is behind in its water main replacement									
12		program. Some funding from Cause No. 45073 included in the amounts listed									
13		above at \$5,245,024 was for the eleven treatment plant projects allowed by the									
14		Commission that have not been completed and are on hold pending the new									
15		plant. ⁷² Petitioner reported that some electrical work is currently under contract.									
16 17	Q:	What do you recommend regarding Petitioner's completion of its proposed water main projects from prior causes and from this Cause?									
18	A:	I recommend that Petitioner file annual reports (with its IURC Annual report)									
19		outlining the status of each capital improvement project. Each report should									
20		include the estimated cost of each project, the actual costs incurred by calendar									
21		year for each project, the actual total cost of each completed project, the projected									
22		completion dates for unfinished projects, and the actual completion dates for each									
23		finished project. Such a reporting requirement was included for Evansville in									
	71										

⁷¹ Petitioner responses to DRs 10-1 to 10-6.

⁷² Petitioner response to DR 15-6.

1	Cause No. 43190.73 I also recommend that Evansville track its water main
2	replacements and fill in those IURC Annual Report sections detailing the work
3	completed annually. Evansville previously provided this information in its annual
4	reports for the city.74 Documenting Evansville's progress addressing its aging
5	water main infrastructure is valuable information.

ι,

VIII. RECOMMENDATIONS

6 Q: What do you recommend for the capacity for the new surface water 7 treatment plant? I recommend that Evansville size its new plant for 40 MGD instead of the 8 A: 9 proposed 50 MGD. This recommendation flows from my analysis of likely future 10 water demands and is counter to AECOM's use of overly aggressive growth projections. I also recommend Petitioner conduct another life cycle cost analysis 11 12 for a properly sized plant able to meet the 28.4 MGD design average day flow and the 40 MGD maximum day design considering all capital and operating costs. 13 14 What do you recommend should be authorized for constructing the new City **O**: 15 garage? I recommend the Commission authorize approximately \$3.5 million for 16 A: 17 acquisition of the City garage site, relocation of the City garage to a new offsite 18 location instead of Petitioner's requested \$13.2 million. In the alternative, I 19 recommend moving the site for the new plant to just south of the proposed City 20 garage site. This will require moving three water transmission mains and

⁷³ Cause No. 43190, Finding paragraph 11, Final Order, September 26, 2007, pages 11 and 12.

⁷⁴ See Attachment JTP-14, 1922 Water Department report regarding water mains.

- Waterworks Road but the cost for this alternative site will be approximately half
 of Petitioner's requested \$13.2 million.
- 3 Q: What do you recommend should be authorized for constructing the new 4 treatment plant?
- 5 A: I recommend AECOM's estimated \$120,055,000 construction cost for the new 6 plant be reduced by 20% or \$24,011,000 to reflect the reduced 40 MGD 7 maximum day capacity. The new plant's total estimated construction cost with 8 \$3.5 million for the City garage would decrease from \$140,049,000 to 9 \$104,885,460. With non-construction costs (7.75%), the total estimated project 10 cost would be approximately \$113,015,000 (rounded up).
- 11Q:What do you recommend for finalizing the selection of the new treatment12plant?
- 13 I recommend Petitioner conduct another life cycle cost analysis for a properly A: 14 sized plant able to meet the 28.4 MGD design average day flow and the 40 MGD 15 maximum day design with adjustments made to the estimated costs to correct the 16 analysis by including demolition costs missing under some alternatives, adding in 17 the additional costs for residuals management under the three surface water 18 options (Alternatives 1, 2A, and 2B), and removal of some clearwell and high 19 service pumps costs missing from the selected Alternative 2B but included in the 20 other three Alternatives (1, 2A, and 3).

21 22

Q:

1.

What do you recommend regarding reporting by Petitioner about its water main replacement program?

A: I recommend Petitioner annually submit a capital improvements reconciliation
along with its Annual report to the IURC, setting forth the projects completed,
improvements actually implemented, the feet of water main replaced and the costs

thereof. To the extent planned projects, including water main replacement and relocation projects, are completed for less than the estimates included in Petitioner's cases-in-chief under Cause Nos. 44760, 45073, and 45545, Petitioner should use the savings in a prudent manner toward completion of only other needed water main replacement projects identified in Petitioner's prioritized water main replacement program at the discretion of Petitioner.

- 7 Q: Does this conclude your testimony?
- 8 A: Yes.

Appendix A

1 Q: Please describe your educational background and experience.

2 A: In 1980 I graduated from Purdue University, where I received a Bachelor of 3 Science degree in Civil Engineering, specializing in Environmental Engineering. I 4 then worked two years with Peace Corps / Honduras as a municipal engineer on 5 self-help rural water supply and sanitation projects funded by the U.S. Agency for International Development (U.S. AID). In 1984 I earned a Master of Science 6 7 degree in Civil Engineering (Environmental) from Purdue University. I have been 8 a Registered Professional Engineer in Indiana since 1986. In 1984, I accepted an 9 engineering position with Purdue University, and was assigned to work as a 10 process engineer with the Indianapolis Department of Public Works ("DPW") at 11 the City's Advanced Wastewater Treatment Plants. I left Purdue and subsequently 12 worked for engineering consulting firms, first as a Project Engineer for Process 13 Engineering Group of Indianapolis and then as a Project Manager for the 14 consulting firm HNTB in Indianapolis. In 1999, I returned to DPW as a Project Engineer working on planning projects, permitting, compliance monitoring, 15 16 wastewater treatment plant upgrades, and combined sewer overflow control 17 projects.

18

4

۰,

Q: What are the duties and responsibilities of your current position?

A: My duties include evaluating the condition, operation, maintenance, expansion,
and replacement of water and wastewater facilities at utilities subject to Indiana
Utility Regulatory Commission ("Commission") jurisdiction.

22 Q: Have you previously testified before the Commission?

23 A: Yes.

Public's Exhibit No. 4 Cause No. 45545 Page 46 of 50

Appendix B - List of Attachments

- Attachment JTP-1 Petitioner's responses to Data Requests 3-15 to 3-18 pertaining to annual growth assumptions used to estimate 2050 water demands for each customer class
- Attachment JTP-2 Excerpts on demographics, housing, and utilities from the *Evansville-Vanderburgh County Comprehensive Plan, 2015-2035*, Evansville-Vanderburgh County Area Plan Commission, June 27, 2016
- Attachment JTP-3 Petitioner's response to Data Requests under Cause Nos. 44760 and 45073 pertaining to the status of the proposed groundwater treatment plant
- Attachment JTP-4 Cost estimate classification matrix AACE International
- Attachment JTP-5 Petitioner's responses to DR 17-6 and DR 17-10 regarding cost support for the new treatment plant
- Attachment JTP-6 Scope of Services from AECOM's Engineering Services Contract, August 20, 2019
- Attachment JTP-7 Comparisons of WTPAFP and PER Cost Estimates
- Attachment JTP-8 Indiana Finance Authority Drinking Water State Revolving Fund ("DWSRF") 2022 1st Quarter Project Priority List, July 19, 2021
- Attachment JTP-9 Intake cost estimates

ана и на 1 на на

- Attachment JTP-10 High Service Pump Station #4 cost estimates
- Attachment JTP-11 Property Record Card ("PRC") for the Evansville Levee Authority and Evansville Street Maintenance Department garage
- Attachment JTP-12 Aerial photos of the existing Evansville Street Maintenance Department garage site.
- Attachment JTP-13 Photographs of the Evansville Street Maintenance Department garage taken during the OUCC's July 21, 2021 site visit showing the conditions of the garage facilities.
- Attachment JTP-14 Water Department report regarding water mains

Appendix C – Description of the Evansville Water System

1 Q: What are Petitioner's characteristics?

2 A: Petitioner currently owns and operates plant and equipment for the production, 3 transmission and delivery of potable water to the public in and around the City of 4 Evansville in Vanderburgh County, Indiana and to three wholesale water 5 customers; Gibson Water, Inc., German Township Water District, and the Town 6 of Elberfeld (two connections). Petitioner's system is connected to but does 7 currently sell water to the Newburgh, IN operations of Indiana-American. 8 Evansville also provides public and private fire protection service and has 9 approximately 6,000 fire hydrants. The municipally owned Evansville Water and 10 Sewer Utility operates as a City Department under the Water and Sewer Utility 11 Board oversight. The five Board members are appointed by the Mayor of 12 Evansville. Evansville provided water service in 2020 to 63,473 customers⁷⁵ representing an estimated population of 162,000, including residents in German 13 Township, Gibson County, and the Town of Elberfeld.⁷⁶ Evansville's and 14 Vanderburgh County's 2020 population was 117,298 and 180,136 respectively.⁷⁷ 15 16 Evansville's customer base has slowly grown 0.42% annually (4.3% in the last 17 decade), but according to Utility data from its Annual Reports to the IURC, water 18 production and water sold have been relatively flat as summarized in Table 12.

⁷⁵ At the end of 2020, Evansville's customers included 59,605 residential, 3,495 commercial, 129 industrial, 230 public authorities, and three wholesale customer metered accounts. 2020 Annual Report to the IURC, page W-1.

⁷⁶ The 2017 population served estimate reported to the Indiana Department of Environmental Management ("IDEM") of 162,000 people includes up to 118,930 people in the City of Evansville (based on population forecasts by the Indiana Business Research Center), 650 people in Elberfeld, Indiana and 42,420 people located outside Evansville's corporate limits.

⁷⁷ 2020 US Census.

Public's Exhibit No. 4 Cause No. 45545 Page 48 of 50

			Customers	Water	Water	Non-		
Year	Resid.	Comm.	Indust.	Other	Total	Pumped (MGD) ⁷⁸	Sold (MGD)	Revenue Water
2008	58,242	-	2264	4	60,510	26.1	20.7	5.7
2009	58,469		2249	4	60,722	22.3	18.9	3.4
2010	58,361		2250	4	60,615	22.9	20.3	2.6
2011	58,593		2245	4	60,842	23.7	18.9	4.8
2012	58,880		2260	4	61,144	25.5	20.3	5.2
2013	59,374		2274	4	61,652	21.4	18.3	3.1
2014	58,243	3,021	89	214	61,567	22.3	18.1	4.2
2015	58,160	3,536	102	215	62,013	22.1	18.5	3.6
2016	58,618	3,548	104	221	62,491	23.2	17.7	5.5
2017	58,723	3,548	121	239	62,631	22.2	17.6	4.6
2018	58,959	3,505	132	234	62,830	22.4	17.8	4.7
2019	59,206	3,491	139	234	63,070	20.1	16.9	3.1
2020 ⁷⁹	59,605	3,495	129	234	63,473	17.0	14.4	2.6
	Aver	age 2011 -	2020		62,170	21.99	17.85	4.14

Table 12 – Customers, Water Pumped from Wells, and Water Sold, 2008 to 2020

1 Q: Where does Evansville obtain its water?

2 A: Evansville's Water Utility has been drawing surface water from the Ohio River at

- 3 approximate river mile 791.5 just upstream of downtown since the 1870s.
- 4 Q: How does Evansville treat its surface water?
- 5 A: The raw river water is screened at the Intake Structure to remove large debris by
- 6 passing through three travelling screens and pumped via six low service pumps to
- 7 treatment. The plant utilizes poly-aluminum chloride, caustic (sodium hydroxide)

⁷⁸ MGD means million gallons per day. MG means million gallons.

⁷⁹ In response to 45545 DR 15-11 asking why 2020 Water Sold shown on the Annual Water Sold graph as 6.011 BG/year (Mr. Baldessari's testimony, page 34) does not agree with the 5.255 BG/year of Water Sold reported on Evansville's 2020 IURC Annual report, Petitioner stated: "The information as reported on the 2020 Annual Report does not appear to have been entered correctly. The Petitioner would need to update the figures provided for the 2020 Annual Report."

Public's Exhibit No. 4 Cause No. 45545 Page 49 of 50

for pH control, and powder activated carbon (if needed for taste and odor control)
for raw water conditioning. Potassium permanganate is added to the raw water for
taste and odor control, reduction of nuisance organisms, and minimization of
disinfection by-products formation. Petitioner provides conventional treatment
with coagulation, flocculation, primary settling, secondary settling and rapid rate
gravity filtration on twenty-four (24) dual media filters (sand, and anthracite coal
over a gravel base and underdrains).

· .

8 The filters remove any remaining suspended solids and the filtered or 9 finished water is then stored temporarily in three on-site clear wells (underground 10 reservoirs with 8.5 MG total volume) before being pumped to distribution via 11 seven high service pumps. Treatment produces an excellent finished water with 12 low turbidity levels consistently below 0.1 NTU that averaged 0.03 NTU in 2020 (range of 0.02 to 0.06 NTUs).⁸⁰ Evansville does not remove iron or manganese or 13 soften its water since Ohio River water is naturally low in hardness, iron, and 14 15 manganese. Evansville reports the finished water's average hardness in 2020 was 119 parts per million.⁸¹ The finished water is also fluoridated and disinfected with 16 17 chlorine gas and ammonia to form chloramines, providing residual disinfection 18 throughout the distribution system.

19 Q: Please describe Evansville's finished water quality

20 A: Evansville consistently produces excellent quality water, as documented in its
21 Monthly Reports of Operation for the Water Treatment Plant and its Annual

⁸⁰ Nephelometric Turbidity Units – used to express turbidity levels for water cloudiness caused by particles. The EPA's Surface Water Treatment Rule requires utilities using conventional filtration to have turbidity no higher than one NTU. Samples for turbidity must be less than 0.3 NTU in at least 95 percent of samples in any month. Evansville has monitored filtered water turbidities from each of its 24 filters since 2002.
⁸¹ 2020 Consumer Confidence Report.

- Consumer Confidence Reports. Moreover, Petitioner's monitoring reports and test
 results indicate compliance with the Safe Drinking Water Standards.
- 3 Q: How does Evansville distribute finished water to customers?

A: From the water filtration plant, finished water flows to three interconnected 4 5 clearwells with a total volume of 8.5 MG and High Service Pump stations Nos. 2 6 and 3. The seven High Service Pumps push finished water from the clearwells 7 through several large diameter transmission mains to four pressure zones in the 8 distribution system, six Booster Stations and eight finished water storage tanks 9 including the buried concrete 20 MG Campground Reservoir built in 1927 and the 10 4 MG Killian steel aboveground reservoir. Elevated water storage (and year 11 installed) includes four 500,000-gallon tanks (Lincoln - 1967, Upper Mt. Vernon -12 1971, Grimm Road - 1974, and USI - 2010), one 1 MG tank (New Harmony or 13 Darmstadt - 1974), and one 1.5 MG tank (Volkman -1999). Total storage capacity 14 in the distribution system is 28.5 MG. Combined with the existing clearwells at 15 the treatment plant, finished water storage capacity totals 37 MG.

16 Q: Please describe Evansville's transmission and distribution mains.

A: Evansville's water transmission and distribution network includes approximately
1,015 miles of water mains ranging in diameter from 1-inch up to 60-inches.
Water mains are primarily cast iron (45.3% or 460 miles) according to the 2016 *Water Master Plan.* Evansville uses ductile iron and PVC pipe currently for
replacement and new development mains. Evansville reports having primarily
copper service lines although it also has 1,300 lead service lines.

OUCC DR 3-15

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:

Showing calculations and inputs, please explain precisely how Evansville determined each of the growth estimates from page 18 of Attachment SMB-1 on:

- a. City population growth rate of 1.5% per year, maintaining the same per capita demand through 2050.
- b. Initial wholesale demand of 2.88 MGD with flow increase of 0.75% per year.
- c. Initial industrial demand of 3.0 MGD with flow increase of 2.5% per year.
- d. Initial commercial demand of 5.0 MGD and a growth rate of 2.0% per year.
- e. Initial public authority demand of 1 MGD and growth rate of 0.25% per year.

Information Provided:

Initial demands were established from billing records and as presented in Table 3-5 Attachment SMB-1. The mathematical formula for calculating final values for demand or population through the 30-year period is as follows:

$$(Value_{Future}) = (Value_{Present}) (1 + \mathcal{N}_{annual growth})^{\# of years}$$

A further explanation of the reasoning behind the growth values are provided in the response to the next question. However, the noted rates specifically considered the following factors:

a. City Population: Although Evansville has been experiencing decline in population since the 1960s, a goal of any major infrastructure project is to give the ability for the utility to comfortably meet demand while not providing an excessively oversized and expensive system. The 2016 Water Master Plan had assumed a somewhat aggressive growth rate, resulting in an anticipated maximum day water demand of 47 MGD by the year 2035 and proposing a 60 MGD facility (compared to 49 MGD by 2050 in the Advanced Facility Plan). As such, the proposed value being less aggressive provides a good balance of allowing for future growth while not spending excessive capital on the improvements.

b. Wholesale Demand: This is effectively like population growth in the City's service area. However, the wholesale areas have a lower population density and therefore assumed a lower growth rate through the planning period.

c. Industrial Demand: This growth rate was assumed to exceed that used for population and reflects land currently zoned and available for industrial growth in the water service area. Economic and industrial downturn surrounding the 2008 recession

resulted in a loss of industry, with the goal now being to encourage development of the available industrial parks within the City.

ана се страна 1 страна се страна с 1 страна се страна се

d. Commercial Demand: This growth is complimented by the assumed industrial growth rate. Both industrial and commercial demand relate to overall economic growth of the area, for which Evansville has experienced an uptick in recent years.
e. Public Authority: Given the size of the City, most of the public authority bodies are well established and water demand and is not expected to experience considerable growth through the planning period. Therefore, this rate was reduced well below the population growth estimate.

OUCC Attachment JTP-1 Cause No. 45545 Page 3 of 5

OUCC DR 3-16

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:

Please identify with relevant page numbers and provide any study, report, analysis or other authority used to determine each of the percentages listed in the preceding request?

Information Provided:

Forecasting population, land use, and water demand relies on professional opinions of consultants, developers, and owners / end-users. They are performed for the planning of infrastructure and there is no exact scientific method of determining rates of future growth or decline. Rather, values are established using an agglomeration of available factors including historical population trends, availability of undeveloped land and the designated zoning of said land, and known infrastructure projects which would impact growth or decline (i.e. construction or development of a major transportation corridor or industry). The only two recent and publicly available studies proposing a potential future water demand were the 2016 Water Master Plan and the 2016 Evansville-Vanderburgh County Comprehensive Plan for 2015 through 2035. The master plan identified a 20-year maximum day demand of 47 MGD and proposed plant capacity of 60 MGD without citing any documentation for growth rates. The Comprehensive plan suggested a projected average day demand of 33.8 MGD in 2035 by assuming a net population increase of 7% through the planning period. Historical population trends are another useful tool for projections. However, census data indicates Evansville has experienced an average population decline of 3% per decade since 1960 and continuing such a trend from today's average day demand is not a good long term planning model for a new water treatment plant. Although these two 2016 studies and previous census data could be used as a citation, EWSU worked together with their consultants to establish, review, and vet the appropriateness of the assumed growth rates and demands. The end result is a more comprehensive approach to the projections which do not propose an excessively large facility (high cost and operational challenges) while at the same not taking away capacity that may be needed in the future. As a consulting firm regularly conducting water demand forecasting for utilities throughout the county and world, AECOM stands by its recommendations for the proposed 50 MGD facility.

OUCC DR 3-17

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:

Showing calculations and inputs, please explain precisely how Evansville determined the initial leaks and losses volume of 3.50 MGD cited on page 18 of Attachment SMB-1.

Information Provided:

The estimate of leaks and losses was effectively established by first subtracting the total volume of water sold to customers from the total water pumped to the distribution system on an annual basis. These numbers are as follows:

Year	Water Supplied	Water Purchased	Net Loss (Year)	Net Loss (Day)
2014	8147 MG	6620 MG	1527 MG	4.18 MGD
2015	8074 MG	6740 MG	1334 MG	3.65 MGD
2016	8261 MG	6410 MG	1851	5.05 MGD

As shown in the table, the annual net losses are more than 3.5 MGD and are in fact quite high compared to most water utilities. However, EWSU has been undertaking extensive capital improvement projects in recent years to replace their aging cast iron waterlines, which are a core cause of water loss, and such improvements are now starting to be realized. It was therefore assumed that leakage would continue to trend downward through the planning period and was why a value of 3.5 MGD of water loss was considered. As a net impact, altering this value by +/- 1 MGD has little or no consequence on the proposed plant capacity.

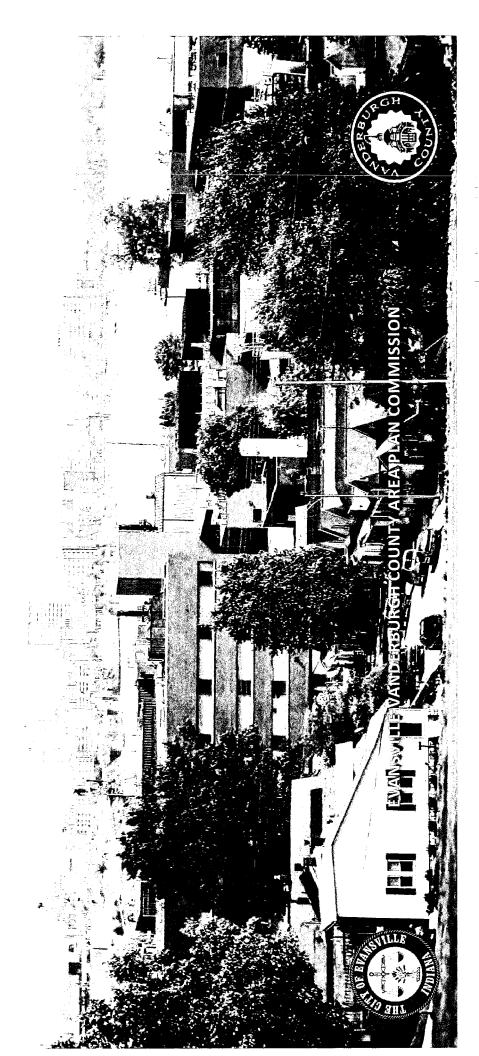
OUCC Attachment JTP-1 Cause No. 45545 Page 5 of 5

OUCC DR 3-18

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:


s i i

Please identify with relevant page numbers and provide any study, report, analysis or other authority used to determine initial leaks and losses volume of 3.50 MGD cited on page 18 of Attachment SMB-1.

Information Provided:

EWSU or other authority have not conducted a city-wide assessment to evaluate and publish the rate of leakage or total water loss. The 3.5 MGD value was established as part of our study as noted in the response to Question 3-17 and, in our opinion, is an accurate representation of water losses to consider through the planning period.

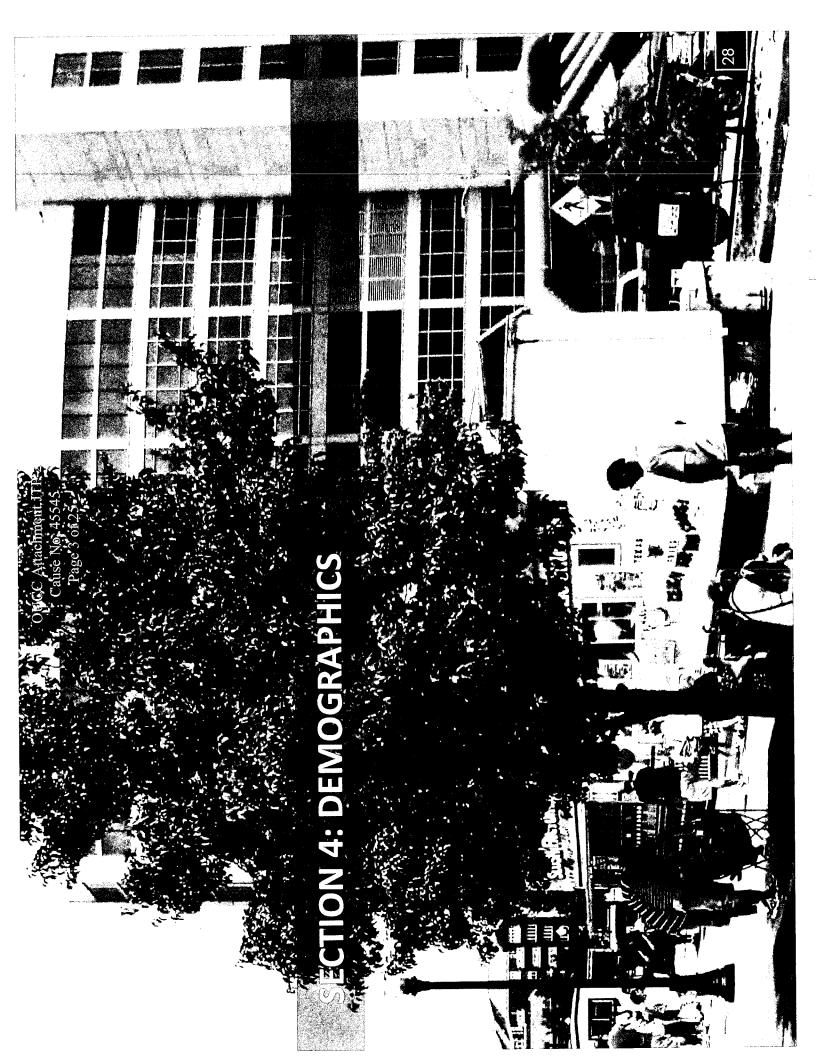
2015 EXECUTIVE SUMMARY

Some of the highlights of the Plan include:

POPULATION

According to Census data, the population for both Vanderburgh County and the City of Evansville increased by 14,645 persons from 1990 to 2010. The Plan presents a County population projection of 202,224 people for the year 2035 as the most likely future scenario. This projection represents the high population growth scenario from the 2010 base year (a 12.53% increase) in comparison to the other population projection in the Plan calling for a moderate growth population trend (6.99%).

EMPLOYMENT


In recent years, County employment has continued to increase. By Year 2035, the County is projected to have approximately 24,699 additional employees which represents a 19.78 percent increase. Considering the major developments under construction or expected for the near future like the projects mentioned earlier, the County employment and economic outlook is bright.

FUTURE HOUSING NEEDS PROJECTIONS

The County is projected to gain approximately 10,898 more housing units by Year 2035 requiring an additional seven square miles of residential land. Due to the aging population, the type of housing in the future is expected to change from single family homes on large lots to a more dense mix of smaller single family, attached and multi-family housing. Of the many areas designated in the Plan for future residential use, the forecast used by the model in allocating new housing units showed that the City's east side is projected to experience the most residential growth, followed by northeastern Vanderburgh County outside the City.

Although these areas are one and two in residential growth, the forecasts in the Plan show a major reversal in the urban core decline trend by predicting Pigeon Township to have the third fastest growth over the next 20 years (2015 permit records show that Pigeon Township was the second fastest City/County residential growth area). It is anticipated that about 2,000 blighted homes mostly in Pigeon Township could be demolished in the next 5 to 10 years creating significant opportunities for redevelopment. The Plan also generally calls for protecting the residential character of neighborhoods from incompatible uses.

EVANSVILLE

OUCC Attachment JTP-2 Cause No. 45545 Page 4 of 25

DEMOGRAPHICS

POPULATION

This Section describes the local population using data from the 2010 Census. Knowing the characteristics of our local population is essential in developing a plan that is appropriate for the residents of our community.

EVANSVILLE METROPOLITAN STATISTICAL AREA

This discussion begins at the regional level, with Vanderburgh and the surrounding counties. Our region is known as the Evansville Metropolitan Statistical Area (MSA). The City of Evansville is the central city for our MSA.

An MSA is defined by the Census Bureau as having at least one urbanized area of 50,000 or more population, plus adjacent territory that has a high degree of social and economic integration with the core as measured by commuting ties.

The MSAs were established to provide statistics on geographic areas that include large urban areas and their closely interrelated surrounding counties. A map of the Evansville MSA counties is provided in Figure 11-1 in Section 11. Table 4-1 shows the growth of the counties in the Evansville MSA since 1960. The 2010 regional population was 358,676.

COUNTIES	1960	1970	1980	1990	2000	2010
Gibson, IN	29,949	30,444	33,156	31,913	32,500	33,503
Posey, IN	19,214	21,740	26,414	25,968	27,061	25,910
Vanderburgh, IN	165,794	168,772	167,515	165,058	171,922	179,703
Warrick, IN	23,577	27,970	41,474	44,920	52,383	59,689
Henderson, KY	33,519	36,031	40,849	43,044	44,829	46,250
Webster, KY	14,244	13,282	14,832	13,955	14,120	13,621
County Total	286,297	298,239	324,240	324,858	342,815	358,676
MSA Total	199,313	232,775	309,408	278,990	342,815	358,676

Table 4-1: Evansville Metropolitan Statistical Area (MSA) Counties and their Population: 1960 - 2010

Notes: BOLD numbers represent those counties that were in the MSA for that decade.

(The Evansville, Indiana-Kentucky MSA was redefined in 2013 to no longer include Gibson County, Indiana and Webster County, Kentucky) Source: STATS Indiana, Population

OUCC Attachment JTP-2 Cause No. 45545 Page 5 of 25

SECTION 4

Evansville-Vanderburgh County Comprehensive Plan

VANDERBURGH COUNTY AND CITY OF EVANSVILLE

The 2010 Vanderburgh County population was 179,703 as shown on the next page on Table 4-2. There was very little change in the County population between 1960 and 1990. Between 1990 and 2010, the population grew by 8.9 percent. This is the highest level of growth the County has experienced over the last 50 years.

In regard to the City population, historical data indicates that the City continued to grow until 1960. Interpretation of this data is complicated by past annexations which resulted in added population. Figure 4-1 shows the growth in City land area by annexation from 1819 to the present. Since the City population peak in 1960, Table 4-2 shows consistent population decline to its 2010 total of 117,429. It is evident that Evansville has followed the strong national trend toward decentralization of population from the urban core into outlying areas (also known as out-migration or movement of residents from inside to areas outside the City). From 2000 to 2010, the City population decreased by 3.4 percent.

Population change results from two components: natural increase (births minus deaths) and net migration (people moving into the County minus those moving out). Table 4-3 on the next page reflects the components of population change from 1990 to 2000 and 2000 to 2010. The data shows the impact that the strong birth rate and migration had on the County population. Over the last 20 years, the out-migration trend of the 1980's reversed as the County is now strongly trending to positive net migration. As a result, contributions from both the birth rate and migration have provided a welcome boost to the County population totals over the last two decades.

City Incorporated Area

Figure 4-1: City Growth By Annexation

I- P

1.0

Table 4-2: Change in Population: Vanderburgh County and City of Evansville: 1950-2010

		COUNTY		СІТҮ			
YEAR	POPULATION	AMOUNT OF CHANGE	PERCENT OF CHANGE	POPULATION	AMOUNT OF CHANGE	PERCENT OF CHANGE	
2010	179,703	7,781	4.53	117,429	- 4,153	- 3.42	
2000	171,922	6,864	4.16	121,582	- 4,690	- 3.71	
1990	165,058	-2,457	- 1.47	126,272	- 4,224	- 3.24	
1980	167,515	-1,257	74	130,496	- 8,268	- 5.96	
1970	168,772	2,978	1.80	138,764	- 2,779	- 1.95	
1960	165,794	5,372	3.35	141,543	12,907	10.03	
1950	160,422			128,636			

Source: STATS Indiana, Population

Table 4-3: Components of Population Change for Vanderburgh County

YEAR	1990 to 2000		YEAR	YEAR 2000 to 2010		
1990	Population	165,058	2000	Population	171,922	
	Births	+ 22,787		Births	+ 28,844	
	Deaths	- 17,311		Deaths	- 24,785	
	Migration	+ 1,388		Migration	+ 3,772	
2000	Population	171,922	2010	Population	179,703	
	Net Change	+ 6,864		Net Change	+ 7,781	

Source: Birth and death statistics are compiled by the Evansville-Vanderburgh County Health Department

GENERAL POPULATION CHARACTERISTICS

AGE

As shown in Table 4-4, the County population is aging. In the 2010 Census, the median age for Vanderburgh County was 37.5, which was more than 0.5 year older than the median age for the nation and state. Over the past 50 years, the median age has increased by six years, which is consistent with national and state trends. The largest increase in percentage of the overall County population was recorded in the over 65 age group, while declines in percentage occurred in the two youngest age groups shown on the Table. These trends are expected to continue in the future.

Table 4-4: Percentage of Population in Selected Age Groups: 1950-2010

YEAR	preschool (0-4)	SCHOOL (5-17)	COLLEGE (18-24)	ADULT (25-64)	AGE 65 & OLDER	MEDIAN AGE
2010	6.47	15.72	11.80	51.60	14.41	37.5
2000	6.22	16.92	11.52	50.02	15.31	36.9
1990	6.93	16.95	10.08	50.32	15.72	34.5
1980	6.88	18.61	13.81	46.97	13.73	31.4
1970	7.48	25.39	10.81	44.75	11.56	30.3
1960	11.08	24.10	7.61	47.12	10.08	31.3
1950	10.81	18.94	10.32	51.86	8.06	30,8

Source: U.S. Census

The aging population trend results from an increase in life span and a decline in birth rate. Continuation of this trend will directly impact the City and County by affecting the types of services and facilities the population will require. Senior housing, parks and recreation, transportation, medical care, and education are only some of the services that will be affected by this age shift.

SEX

The percentage of population that is female (51.8%) is higher than that for males (48.2%). These percentages have changed very little (1%) since the 1950 census. Compared to Indiana and the nation, Vanderburgh County has had a slightly higher percentage of female population since 1950 (1%).

RACE

The U.S. Census divides population into four minority groups, including Blacks, American Indians, Asians, and other races. In the 2010 Census, the minority population in the County was 13.8 percent of the population. This was a 4 percent increase from 2000 toward diversity. Further analysis shows that 14.7 percent of the minority population lives in the unincorporated part of the County, while 85.3 percent live in the City. Historical County data on minority population is shown in Table 4-5.

Table 4-5: Percentage of County Population by Race: 1950-2010

YEAR	WHITE	BLACK	AMERICAN INDIAN	LATINO	ASIAN	OTHER
2010	85.18	9.03	.19	2.15	1.10	2.33
2000	88.68	8.15	.16	.97	.75	1.24
1990	91.25	7.51	.19	.43	.57	.05
1980	91.87	7.15	.15	.44	.36	.02
1970	93.73	6.09	.06	n/a	.05	.06
1960	94.19	5.76	.01	n/a	.02	.01
1950	94.26	5.71	.00	n/a	.01	.00

Source: U.S. Census

DEMOGRAPHIC CHARACTERISTICS OF HOUSEHOLDS

The following analysis examines demographic and housing characteristics. Data on these characteristics can shed light on the strategies and programs that are needed to have a viable housing sector in our community. This analysis of county-wide housing statistics was obtained from the 2010 Census, 2006-2010 American Community Survey 5-year estimates and from the 2010-2014 Comprehensive Housing and Community Development Plan prepared by the Department of Metropolitan Development DMD.

HOUSING UNIT TOTALS

The U.S. Census Bureau classifies living quarters as either housing units or group quarters. A housing unit is a house, an apartment, or a mobile home. The housing unit growth in Vanderburgh County and the City of Evansville over time is shown on Table 4-6. In 2010, the County had a

total of 83,003 housing units, including those in the City; and Evansville had 57,799 units. This data indicates that the number of housing units has continued to increase significantly in the unincorporated County, while in the City housing units peaked in 1990 and have stayed just below that level since then. Most of the recent growth has occurred in unincorporated Center and Scott Townships. Overall, the rate of growth for housing has been exceeding the growth of the general population. Since 1990, the housing unit total in the County has grown by 14.3 percent, while the County population grew 8.9%.

TYPE OF DWELLING UNIT

There is a variety of dwelling unit types in the County from single-family homes to multi-family rental units. The most prevalent type of dwelling unit found in Vanderburgh County and in the City of Evansville is the single-family house as shown in Table 4-6. In 2010, 71.5 percent of the total units in the County were classified as single family, while the data shows that the City offers somewhat more housing options.

Table 4-6:	Housing Units,	Percent Single Family,	Percent Built before 1939
------------	----------------	------------------------	---------------------------

	VANDERBURGH COUNTY			EVANSVILLE		
YEAR	TOTAL HOUSING UNITS	% SINGLE FAMILY	% BUILT BEFORE 1939	TOTAL HOUSING UNITS	% SINGLE FAMILY	% BUILT BEFORE 1939
2010	83,003	71.50	22.20	57,799	67.80	28.20
2000	76,300	70.66	21.28	57,065	66.84	25.72
1990	72,637	69.31	25.81	58,188	65.14	29.29
1980	67,502	82.77	34.21	54,210	80.88	38.90
1970	58,011	77.14	47.23	49,139	74.32	51.27
1960	55,082	84.28	59.60	47,744	81.94	62.64
1950	49,573	66.95	75.62	40,819	61.40	78.38

Source: U.S. Census

HOUSEHOLD SIZE

The U.S. Census Bureau defines a household as all persons who occupy a housing unit. The changing age structure of the population and housing supply are among many factors that will affect the size and composition of future households. Generally, household size is the lowest in the City center and climbs with distance from the center.

The 2010 household size in Evansville (2.23) and Vanderburgh County (2.31) are both lower than for the nation and state (at 2.52). Table 4-7 illustrates a downward trend for household size in Evansville/Vanderburgh County. This trend is a result of several factors including our aging population, and changes in family structure.

Table 4-7: Occupied Housing Units, Tenure and Persons Per Household

VANDERBURGH COUNTY						EVANSVILLE		
YEAR	OCCUPIED HOUSING UNITS	PERCENT OWNER OCCUPIED	PERCENT RENTER OCCUPIED	AVERAGE PERSONS/ HOUSEHOLD	OCCUPIED HOUSING UNITS	PERCENT OWNER OCCUPIED	PERCENT RENTER OCCUPIED	AVERAGE PERSONS/ HOUSEHOLD
2010	74,454	64.50	35.50	2.31	50,588	56.00	44.00	2.23
2000	70,623	66.81	33.19	2.33	52,273	59.95	40.05	2.24
1990	66,780	64.82	35.18	2.40	52,948	58.98	41.02	2.30
1980	64,030	65.90	34.10	2.55	51,310	61.98	38.02	2.46
1970	54,771	68.69	31.31	3.00	46,404	65.01	34.99	2.90
1960	50,642	69.17	30.83	3.21	44,042	66.58	33.42	3.14
1950	47,597	58.86	41.14	3.29	39,403	54.69	45.31	3.20

Source: U.S. Census

1

DEMOGRAPHICS

GROUP QUARTERS

All persons not in households are classified by the Census Bureau as living in group quarters. Out of the 2010 total County population, 4.2% lived in group quarters. Table 4-8 shows the housing types of the group quarters population. Just over half of the non-institutional group quarters population are college students living in university housing managed by the University of Evansville and University of Southern Indiana. Nursing homes and the County Jail are examples of institutional group quarters.

Table 4-8: Vanderburgh Co.: Population by Type of Group Quarters

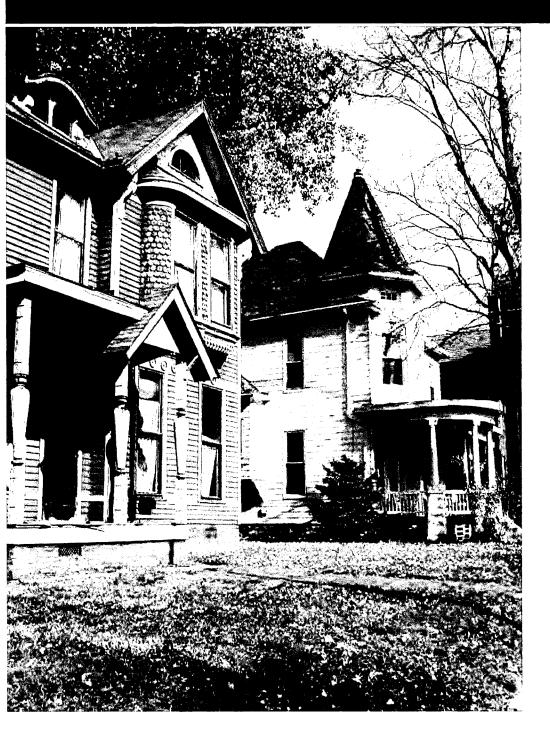
GROUP QUARTER TYPE	POPULATION	% OF GROUP QUARTER POPULATION
INSTITUTIONALIZED		
Adult Correctional Facility	691	9.2
Nursing Homes	1,497	19.9
Other	218	2.9
Total	2,406	31.9
NONINSTITUTIONALIZED		
University Housing	3,886	51.6
Other	1,239	16.5
Total	5,126	68.1
TOTAL	7,531	100.0

Source: 2010 Census

HOUSEHOLD INCOME

Household incomes since 1960 for the City and County are displayed in Table 4-9. The City median household income from the 2010 American Community Survey 5-year Estimate was \$35,469, and the County estimated income was \$42,369. Both of these median household income figures are well below that of the State and Nation. Generally, incomes are the lowest at the City center and climb with distance from the center. The population with income below poverty level in the County was estimated at 28,003 or 15.6% in 2010, an increase from the 11.2% living below poverty in 2000.

Table 4-9: Median Household Income


YEAR	VANDERBURGH COUNTY	EVANSVILLE
	HOUSEHOLD INCOME	HOUSEHOLD INCOME
2010 ACS	\$42,369	\$35,469
2000	\$36,823	\$31,963
1990	\$25,798	\$22,936
1980	\$16,070	\$14,565
1970	\$ 7,697	\$ 7,255
1960	\$ 5,405	\$ 5,299

Source: Decennial Census and 2010 American Community Survey 5-year Estimates

1.1

OUCC Attachment JTP-2 Cause No. 45545 Page 11 of 25

AVERAGE MONTHLY HOUSING COST

The census definition for monthly costs attributed to housing is the sum of rent or mortgages, taxes, insurance, and utilities. The conventional public policy indicator of housing affordability in the United States is the percent of income spent on housing. These expenditures that exceed 30 percent of household income have historically been viewed as the threshold indicating a housing affordability problem, or housing that is burdened by excessive costs. For example, a family earning the median household income in the City having monthly housing costs greater than \$887.00 would be considered as burdened.

The percentage of households burdened by housing costs since 1960 for the City and County are shown in Table 4-10. In 2010, 22.7 percent of owner occupied units and 53.1 percent of renter occupied units were burdened in the City, which results in an estimated total of 17,612 City households burdened affecting more than 35,000 household residents. The percentages for the County were slightly lower. The negative impacts of housing cost-burden on households can result in insufficient resources for families to cover other critical needs; the threats of mortgage default; eviction and homelessness; and unhealthy levels of stress.

Table 4-10: Percent of Households Burdened by Housing Costs

YEAR		RBURGH INTY	EVANSVILLE	
	OWNER	RENTER	OWNER	RENTER
2010 ACS	20.7	52.8	22.7	53.1
2000	15.0	35.3	16.2	35.2
1990	13.4	37.6	14.5	38.1
1980	14.1	33.3	14.8	34.2

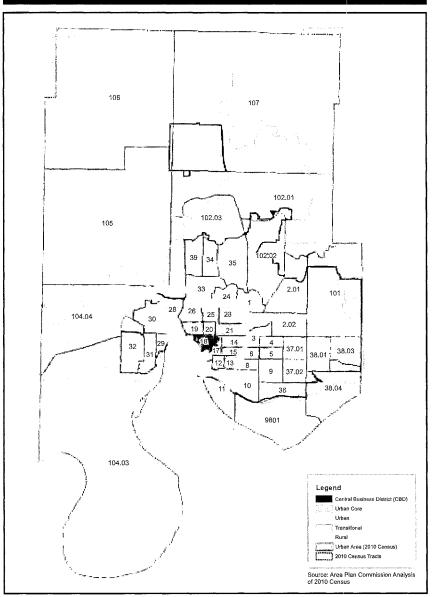
Source: Decennial Census and 2010 American Community Survey 5-year Estimate

OUCC Attachment JTP-2 Cause No. 45545 Page 12 of 25

DEMOGRAPHICS

DESCRIPTIVE AREAS

In analyzing the 2010 Census data for Vanderburgh County, it is apparent that certain areas have similar demographic characteristics. An effort has been made to identify and map these areas to:


- Better understand the demographic characteristics, similarities and differences in the Census Tracts that make up the County; and
- 2. Provide descriptive areas that can be referred to throughout the Plan.

The following variables and what they measure or reflect were used in identifying the descriptive areas:

- Population Density
- Longevity in The Same Residence
- Owner/Renter
- Housing Built Before 1939
- Vacancy

The analysis of Census data for these select demographic variables resulted in the identification of five distinct areas within the County. The five Descriptive Areas illustrated on Figure 4-2, were established using census tract/block group boundaries. The following is a general discussion of each descriptive area.

Figure 4-2: Descriptive Areas

OUCC Attachment JTP-2 Cause No. 45545 Page 13 of 25

Evansville-Vanderburgh County Comprehensive Plan

CENTRAL BUSINESS DISTRICT

The Central Business District (CBD), the traditional downtown area for the City of Evansville, is Census Tract 18. It is the location where the City of Evansville began in 1819. Today, the Evansville CBD can be characterized as a regional financial center with significant service, entertainment, and government sectors.

URBAN CORE

The Urban Core area can be characterized as having population densities greater than in the City as a whole. Applying other criteria, this portion of the City has a higher percentage of homes built before 1939, a higher renter-occupied housing percentage, and higher vacancy rates than found in the City as a whole. Its boundaries are nearly the same as Pigeon Township. Most of the City's redevelopment efforts focus on this area.

URBAN

The primary criterion used to identify this area was the Census Bureau's Urban Area designation. Other defining characteristics of this area include: lower vacancy rates, more owners than renters, and higher percentage of residents who have lived in the same house when compared to the City as a whole. Although this area is predominantly residential, many of the community's commercial areas are located in this zone. Most of the Urban area within the City has been annexed since 1950, and can be characterized as being suburban style development.

TRANSITIONAL

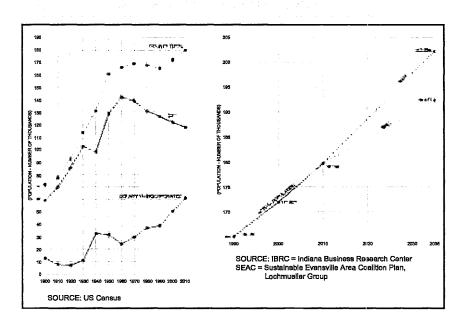
The main characteristic of this area is that it has a population density between that of the Urban Area (as defined by the Census Bureau) and that of Indiana as a whole. Land uses in the Transitional area are being converted from agricultural or open land to suburban uses, primarily residential subdivisions. This area forms a growth ring around the City. The development of this area increases the urban footprint and extends the infrastructure service area, in lieu of infill or redevelopment closer to or in the City core.

RURAL

The Rural area is identified as having a population density less than the State of Indiana as a whole, and a higher percentage of rural farm households than any other area in the County. The dominant land use in the Rural area is agriculture, along with some scattered woodlands, villages, and single-family homes. Most of the residences in this area use septic systems for sewage disposal since public sewers are not available. Growth in this area potentially presents problems such as traffic and farm versus new subdivision conflicts.

FUTURE DWELLING NEEDS ANALYSIS

The population size of a city or county gives an indication as to the dimensions of the man-made environment. It supplies a base measurement from which current estimates of needs can be made. When planning for the future, estimates or projections of the population size are essential to quantify the "target" population for the planning process, which helps determine what tomorrow's needs might be.

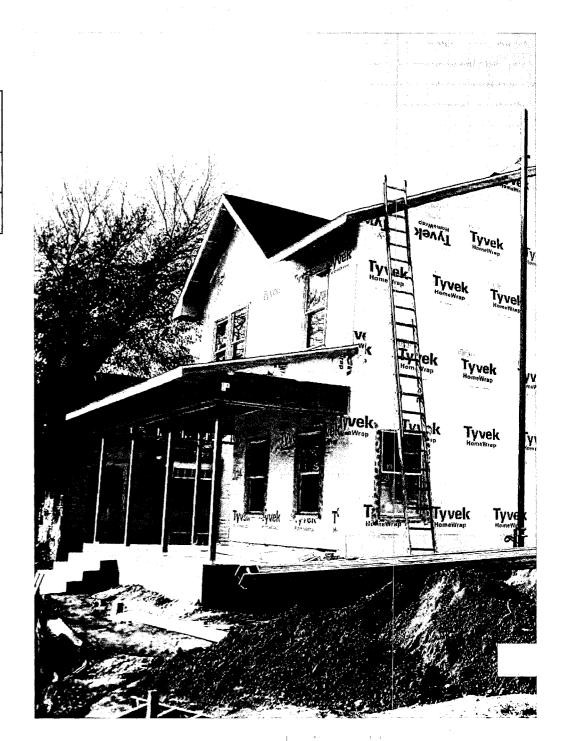

As shown in the Historical Population graph on Figure 6-5, the population of the County has experienced both growth and decline. In the past 20 years (1990-2010) the County grew by 8.9%. Past trends are one of the factors considered in the methodologies used for calculating the population projections.

It is common practice for comprehensive plans to use a 20-year horizon as the planning period. To be consistent with standard planning practice and our previous comprehensive plans, this Plan projects the population to Year 2035.

There are many methods that can be used in population projections with each producing somewhat different results, and some being better or more scientific than others. For this reason, the two Vanderburgh County population projections presented below for comparison, discussion and analysis are the two most recently published projections for the County. The range of these future population figures provides a moderate and a high projection alternative for the County.

The IBRC, the demographic clearinghouse for the State of Indiana, produced population projections in 2012 for all Counties in Indiana. Their projections are developed using the Cohort Survival Method, which involves the distribution of the population into age cohorts. It forecasts

the age groups forward into the future, applying past birth and death rates, and factoring the impact of migration. The results of the IBRC methodology predicts a 2035 population of 192,271 persons.

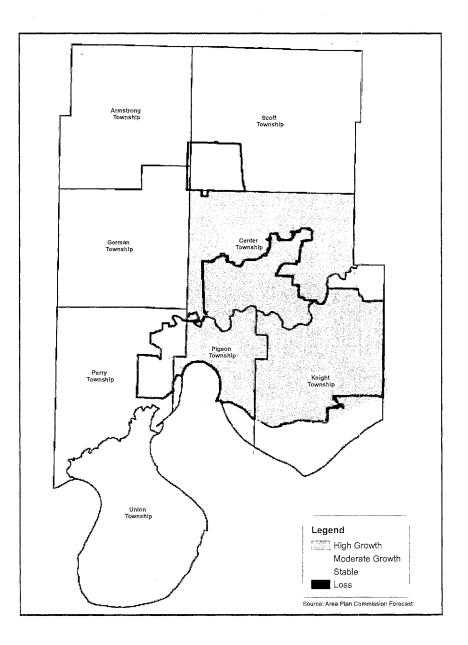

The Sustainable Evansville Area Coalition (SEAC) Regional Plan for Sustainable Development compared the projections from the IBRC, Kentucky State Data Center (KSDC), and Woods & Poole Economics, Inc. Population projections from Woods & Poole are based on trends in economics, population and employment over time. These three data sources were compared to straight-line trends for the three counties included in the SEAC Plan, and a line of best fit was calculated to produce a composite population projection for the entire three county area. A land use model was used to distribute population between all three counties based on higher or lower amounts of infill development. Of these infill scenarios, the one selected as the best fit for the future development pattern in the SEAC Plan resulted in a 2035 County population projection of 202,224 people. Table 6-4 summarizes these County population projections that provide both a moderate and high growth scenario.

IBRC	179,703	192,271	12,568 (6.99%)
SEAC	179,703	202,224	22,521 (12.53%)

Sources: Indiana Business Research Center and the Sustainable Evansville Area Coalition Regional Plan for Sustainable Development

These projections quantify our growth and show a relatively bright outlook for the County population in the future. The SEAC projection would involve significantly higher in-migration than the IBRC projects. Some of the recent and expected positive developments in regard to future population are that:

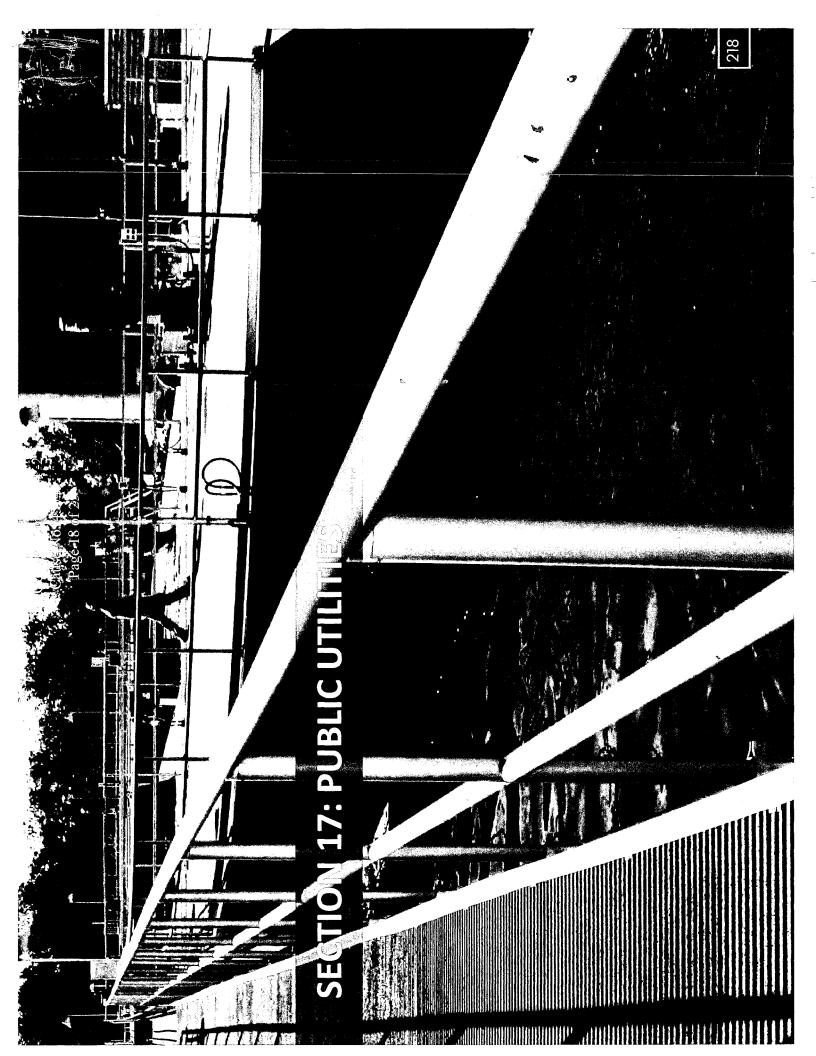
- Employment and business establishments in the County continue to steadily increase according to the IU Kelley School of Business short-term forecasts of employment and income; and the currently improving national economic trends suggest a strong local economy for the foreseeable future.
- Employment and quality of life factors will continue to attract new residents to Vanderburgh County (in-migration) and also play a role in keeping current residents here. One of the most important findings from the 2010 Census was that the County continued to grow at a steady rate even though in the later years of the last decade the economy was in a significant recession.
- A strong natural population increase is expected to continue to occur in both the County and region.
- Positive impacts are expected from the completion and opening of I-69, the downtown convention hotel, and the IU School of Medicine.



Once all of these steps are complete, CommunityViz allocates households and employment to parcels in the County based on the maximum number of households permitted or the maximum commercial square footage feasible, household and employment projections, and the suitability score of each parcel.

Based on the SEAC Plan 2035 County population total, the land use model calculated estimates for occupied housing units for each township. Table 6-5 shows the projected amount of occupied housing change between 2010 and 2035 by Township. The Table also shows the future population projections for Townships based on the occupied housing projections from the land use model, and an APC analysis assigning population into the projected 2035 housing. The assumptions used in these calculations were based upon recent Census data trends and the following assumptions:

- The percentage of occupied housing to the total number of housing units will stay consistent with the current trend;
- The number of institutional and group quarter residents will remain the same;
- Average household size will continue to decline;
- The estimate of total housing units needed for the 2035 population is for occupied units (projecting volatile vacancy rates is problematic); and
- The density of new single and multi-family housing (measured by average housing units per acre) will increase.


The final results of the modeling process are shown in Table 6-5 and Figure 6-6, which illustrate the projected amount of change in occupied housing units between 2010-2035 by Township. Comparing the historic growth data for residential units on Figure 6-1 with the anticipated growth shown on Figure 6-6, it is evident that growth trends are expected to change somewhat. Knight Township, located mostly within the City but also partially in the unincorporated County, is expected to be the fastest growing area through Year 2035 with a gain of 3,808 households (or almost a 13 percent increase) and an additional 7,133 new residents. Center Township, which has been the leading growth area in the County for many years, is projected to have the second highest gain. The majority of this growth is still projected to be single-family houses, although it is expected to also include a variety of housing types.

For other areas, this forecast shows significant growth projected for the City, while Armstrong, German and Union Townships are to remain stable. In Pigeon Township, the trend of decline is expected to transition to infill growth for the neighborhoods surrounding the downtown. Instead of the decline that has gripped the Urban Core since the late 1950's, Pigeon Township is projected to add almost 2,000 new households representing a 16 percent increase from the 2010 total, and over 4,000 additional residents by Year 2035. This projected change would be both exciting and refreshing news, as past perceptions of the Urban Core would become invalid once major redevelopment and new construction begins to transform the area. The current options for buying new housing are nearly all located in the unincorporated County. However, as redevelopment occurs in the Urban Core, the options for new housing in the City will also increase, expanding the residential market in that area. Revitalizing Pigeon Township is the biggest challenge facing the future of Evansville.

Vanderburgh	179,703	202,224	22,697	12.63%	74,454	85,352	10,898	14.64%
Armstrong TWP	1,599	1,817	218	13.63%	604	695	91	15.07%
Center TWP	39,007	43,842	4,835	12.39%	15,478	17,691	2,213	14.30%
German TWP	7,441	8,145	704	9.46%	2,791	3,096	305	10.93%
Knight TWP	67,945	75,078	7,133	10.50%	30,070	33,878	3,808	12.66%
Perry TWP	25,092	27,777	2,685	10.70%	9,904	11,253	1,349	13.62%
Pigeon TWP	29,797	33,836	4,039	13.55%	12,275	14,262	1,987	16.19%
Scott TWP	8,528	11,437	2,909	34.11%	3,191	4,336	1,145	35.88%
Union TWP	292	292	0	0%	141	141	0	0%

Source: 2010 Census; Housing Projections from Land Use Model and Population Projections from APC Analysis

OUCC Attachment JTP-2 Cause No. 45545 Page 19 of 25

PUBLIC UTILITIES

The public utilities addressed in this section are water, sanitary sewer, storm sewer/ drainage, and solid waste. The other utilities that serve the community such as cable (television and internet), electric, trash collection, natural gas, and telephone (land and cell) are private. The location and availability of water and sewer utilities are essential in order for land development to occur. Therefore, the capacity and extension of public utilities are effective tools to allow for and guide growth.

The Evansville Water & Sewer Utility mission is:

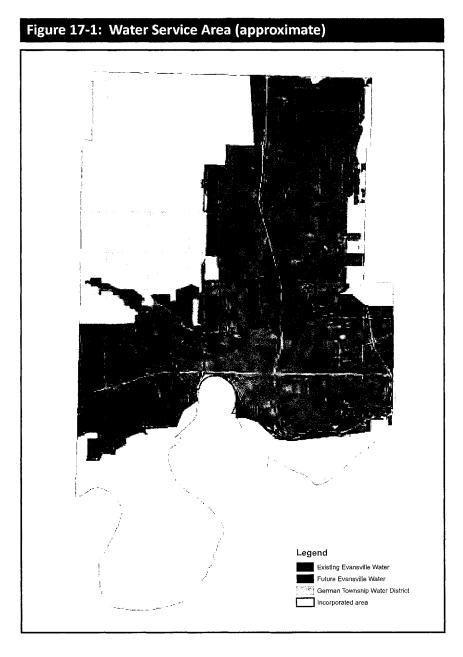
To provide the Evansville metro area with high quality, safe, dependable water and sewer service at rates which encourage economic development. The Utility will manage land and water resources to ensure quality for future generations.

WATER

The Evansville Water Utility has a service area of approximately 100 square miles. Figure 17-1 shows the Evansville Utility Direct Water Service Area. Water is provided to approximately 93 percent of the residents within Vanderburgh County. The population served is approximately 163,000, and the Water Utility has a total of 60,000+ residential and commercial customers. It also has four wholesale customers: the German Township Water District in Vanderburgh County and three others in Gibson and Warrick Counties. The German Township Water District also serves Armstrong Township and some of Posey County.

EXISTING FACILITIES

The source of water for the system is the Ohio River. The intake water is treated to potable standards in a treatment plant located just southeast of and upriver from downtown Evansville. The Evansville Water Treatment Plant first supplied treated water to the City in 1912. Since then, the plant has been expanded and modernized several times. The treatment processes must comply with the federal standards and requirements of the Safe Drinking Water Act. This plant has a filtering capacity of 60 million gallons per day (MGD). The average daily amount of water processed and treated is 35 MGD, while the average pumped to customers is 29 MGD. In 2014, it had a one day maximum of 45.4 MGD of water filtered. The plant's seven existing raw water supply pumps have an 80 MGD capacity, greatly exceeding projected needs.


The distribution system includes approximately 1,000 miles of water mains, seven existing pumping stations of varying capacity, and approximately 6,000 fire hydrants. The Evansville water system contains eight water storage facilities ranging in size from 500,000 gallons to 20 MG. The total system storage capacity is 37 MG.

One of the major challenges the Utility faces is its aging infrastructure and equipment. This, in fact, is a national challenge facing most communities across the United States. The Evansville water system was constructed in the early 1900s. Most of the water lines are cast iron, which are at the end of their life and increasingly require maintenance and expensive repairs to stay operational. Line breaks often cause collapse of the street. These necessary repairs continue to increase the Utility operating costs. The state of the system is due to years of under investment and lack of a long term capital plan for system-wide older water line replacement.

10

OUCC Attachment JTP-2 Cause No. 45545 Page 20 of 25

SECTION 17 SECTION 17

FUTURE CAPACITY

Table 17-1 illustrates the projected amount of water that will be required on a daily basis to meet future demands on the Evansville water system. The 10-year projection from the 2009 Water Master Plan was based on the areas designated for future growth in the 2004 Evansville-Vanderburgh County Comprehensive Plan. The 2035 projected water demand will need to accommodate the areas planned for development on the Future Land Use Map in Appendix I. The projected rate of population growth of about seven percent through 2035 should be a good indicator of future water needs. The table below shows that the 2035 daily water use is projected to increase by 4 MGD from the 2014 level to a total of 33.8 MGD.

Table 17-1:	Projected Average in MGD (Million Gallo		
Existing Filtering Capacity	2014	2018 Projected	2035 Projected*
60	29.7	31.5	33.8

Note: * Projection from Water Master Plan extended at same growth rate to 2035

50

RECOMMENDED WATER SYSTEM IMPROVEMENTS

The primary responsibility of the Evansville Water Utility is to provide customers with an adequate supply of high quality water at acceptable pressures. In order to evaluate whether the system is accomplishing this responsibility, periodic hydraulic analyses are conducted. These identify deficiencies in the distribution system and facilitate the establishment of an improvement program designed to reinforce the existing system, keep pace with growth, assure high quality water service, and provide a reliable base for commercial and industrial development.

A Capital Improvement Projects (CIP) list was developed to address the improvement needs through Year 2018. The total cost of the capital water projects proposed to 2018 is \$90 million dollars. With the current and projected demands, the CIP developed for the water filtration plant and the distribution system will keep the system at least 20 percent ahead of demand through Year 2018. The 2035 projected daily user demand of 33.8 MGD is well below the existing 52.5 MGD filtering capacity at the Water Plant. Therefore, unless water demand is much higher than currently anticipated, there should be adequate excess water capacity in 2035. A new 30-year Water Master Plan will be completed in 2016 which will explore and make recommendations for plant capacity and distribution system improvements.

SEWER

The area where sewer service is currently available includes the City of Evansville and the portions of Vanderburgh County shown on Figure 17-2. This area contains approximately 60 square miles. Buildings in the portions of the County located outside of the existing sewer service area are on individual septic systems. The Town of Darmstadt's pressurized sewer system connects to and discharges sewage through the Evansville wastewater collection and treatment system.

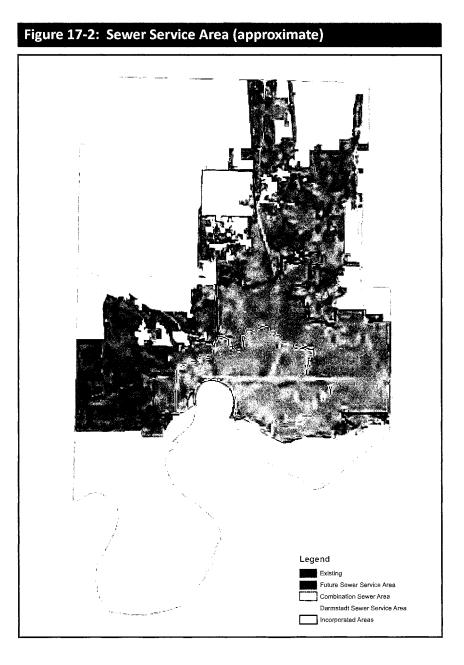
EXISTING TREATMENT FACILITIES

The Water and Sewer Utility owns, operates, and maintains the City sewer system including two wastewater treatment plants (WWTP) referred to as the East and West Plants. Built in 1954 and 1956 respectively, the WWTP's have undergone several improvement and upgrade projects over the years. Table 17-2 describes the two plants' capabilities.

Table 17-2: Treatment Plant Statistics in MGD (Million Gallons per Day)

Plant	Treatment	Design Capacity	2014 Process Average Flows
East	Secondary	22.5	12
West	Secondary	30.6	12

COLLECTION


The collection system contains approximately 890 miles of sewer collector lines and 93 lift stations. Some of these collectors carry separated wastewater and some carry combined wastewater and storm water. The construction of separate systems has been required for all new development since the mid 1970's.

1 1

221

OUCC Attachment JTP-2 Cause No. 45545 Page 22 of 25

SECTION 17 🔮 Evansville-Vanderburgh County Comprehensive Plan

COMBINED SEWERS

The first wastewater collectors to be installed were the combination storm water and sanitary sewers. These combined sewers were made of brick and many of them were built over 100 years ago. There are over 500 miles of combination sewer lines in the system. The majority of the older areas of the City (south of Pigeon Creek, roughly west of Vann Avenue and east of Tekoppel Avenue) are served by the combined collectors. This area is shown in the Sewer Service Area Map in Figure 17-2.

During heavy rainfall, Evansville residents are all too familiar with the problems associated with the combined system. These problems include local street flooding, reduced capacity and efficiency of the treatment plant operations caused by treating storm water, sewers backing up into basements, and direct sewage overflow discharge. When the amount of storm water in the system exceeds plant capacity, the overflow gates open to allow the contents of the combined sewers to discharge directly into the Ohio River and Pigeon Creek. These gates and discharges are known as combination sewer overflows (CSOs). There are a total of 22 permitted CSO outfalls in the collection system -- nine discharge into the Ohio River, nine into Pigeon Creek and four into Bee Slough. To provide a quantitative figure on the magnitude of this problem, the Utility estimates that 2 billion gallons of sewer overflow are discharged on an average annual basis.

The City has made progress over the years to separate the sewer systems. In conjunction with major road widening projects, the City has separated the storm and sanitary sewers along corridors such as St. Joseph Avenue, Weinbach Avenue, Fulton Avenue, Diamond Avenue, and Vann Avenue. Areas that will benefit from future separation projects include both sides of Diamond Avenue, the State Hospital, and around Akin Park.

PUBLIC UTILITIES

¢- 30

6

More than a thousand cities throughout the United States have or have had combined systems similar to Evansville's. To meet U.S. Clean Water Act standards, these cities must eventually eliminate combination sewers, and many of them are currently going through the process of making system changes to comply with this mandate. The list includes cities in Indiana such as Indianapolis, Fort Wayne and South Bend.

To this end, the City of Evansville Water and Sewer Utility entered into a Consent Decree with the federal government and the State of Indiana in February, 2011 on a plan to address the combination sewer overflow volumes through remedial actions. Consent Decree modifications were agreed to by the parties in February, 2016 in final negotiations that resulted in additional projects being included in the CSO plan at an estimated total cost of \$729 million to be phased in over the next 24.5 years. The effort to comply with the Consent Decree and the specific mandates of the agreement with state and federal regulators is known as "Renew Evansville". In accordance with the agreement, the Utility developed an integrated set of specific planning documents creating:

- An overall capital improvements plan for the Combined Sewer and Sanitary Sewer Systems, referred to as an Integrated Overflow Control Plan (IOCP), which proposes to remedy the capacity, operation and maintenance deficiencies in the Sewer Systems and the East and West Treatment Plants. The IOCP contains two distinct parts: the Sanitary Sewer Remedial Measures Plan (SSRMP); and the Long Term Control Plan (LTCP).
 - The SSRMP is a prioritized set of projects focused on identifying and addressing any recurring capacity-related sanitary sewer overflows, system defects, and deficiencies that could potentially cause or contribute to overflows; and
 - The new LTCP identifies strategies to reduce the frequency and duration of overflows from the combined sewer system.

Major IOCP Projects and Consolidated Cost Estimates (in millions)

Work at CSO Locations	\$284.06
Treatment Plant Improvements	\$107.00
Seventh Avenue Lift Station	\$110.79
Wetland at Bee Slough	\$151.20
Downtown Green Infrastructure	\$ 18.03
 Sanitary Sewer Upgrades 	\$ 53.56

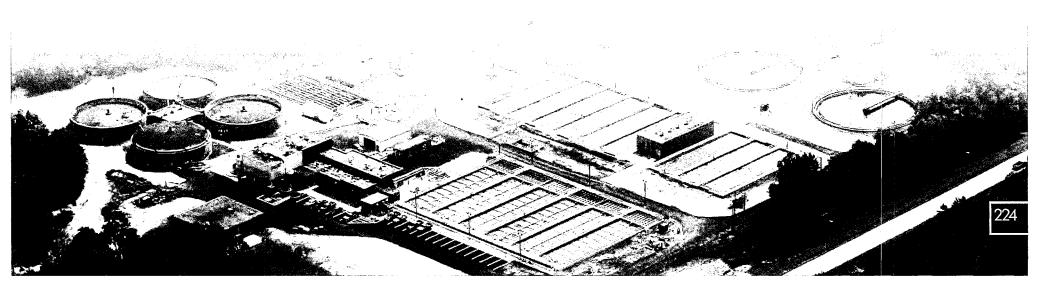
Under the new modified terms of the Consent Decree, 98 percent of the sewage overflow that currently goes into the Ohio River will be captured, allowing Evansville to comply with the Clean Water Act. Additionally, EWSU will create one of the largest wetland treatment systems in the U.S., replacing Bee Slough with a sustainable, green infrastructure solution. Other upgrades include the addition of several storage facilities, improvements to the wastewater treatment facilities, and the separation of combined storm water and sanitary sewers.

The City will use a combination of options to eliminate sanitary sewer and combination sewer overflows by: continuing to separate storm sewers from the combined sewers; reducing the amount of storm water entering the system; increasing storage prior to treatment; increasing treatment plant capacity; and adding satellite treatment. As part of the last option mentioned, the Utility's strategy will also involve a Green Infrastructure (GI) component. The GI initiative will include ways to eliminate storm water from entering the combined sewers by increasing infiltration (green areas allowing percolation of water into the soil), interception/ absorption by new trees and other plantings; and storm water reuse. Implementation of the GI initiative will likely involve policy and ordinance changes.

Given the importance of the Consent Decree, complying will be a major emphasis of the Water and Sewer Department for the foreseeable future. The City's goal is to accomplish compliance in a manner that minimizes sewer rate increases needed to fund system improvements. Achieving this goal, however, will be complicated by the fact that Renew Evansville will be the most extensive and costly capital improvements initiative ever undertaken by the City.

RECOMMENDED WASTEWATER IMPROVEMENTS

A system-wide wastewater plan was prepared for the City in 2009 by a consultant. This Plan addressed existing deficiencies and future needs by identifying a list of recommended long-range capital improvement projects to be implemented. This plan will expire in 2018 and a new master plan effort is underway to run parallel with the Consent Decree. A new 30-year Wastewater Master Plan will be completed in 2016 which will explore and make recommendations for non-Consent Decree projects including lift station rehabilitation, waste treatment plant modification for pending additional regulations, collection system rehabilitation, and collection system expansion for projected growth.


There are several projects related to CSOs currently underway or in the planning stage involving the addition of green infrastructure, underground storage and infiltration of storm water, inflow and infiltration reduction projects in the sanitary sewer system, large interceptor cleaning, and the addition of inlets in Bee Slough. Aside from these current projects, the final approved IOCP, along with the non-IOCP project list, will contain a well defined project list of improvements for the City to work from. Implementation of these improvements by the City will fulfill the federal mandate.

Extensions of the existing sewer service area are expected to occur in the future to serve new development. Figure 17-2 shows the recommended 2035 future service area. This area is based upon past growth patterns, the results of the land use model and the Area Plan Commission 2035 growth projections.

The areas recommended for sewer service extension are:

- The remaining un-served pockets in the City;
- The remaining un-served portions of unincorporated Center Township;
- The areas around the Boonville-New Harmony/I-69 and S.R. 57/I-69 interchanges due to growth expected from the I-69 project; and
- Western unincorporated Perry Township including the area around the University Parkway south of Upper Mt. Vernon Road.

Sanitary sewer improvements must be in place for extensive development to occur. Proper utility planning is needed to guide utility extensions to serve these growth areas.

PUBLIC UTILITIES

WATER AND SEWER UTILITY ACTION PLAN

Source: Water and Sewer Utility, community input and Area Plan Commission

GOAL

• Provide the Evansville metro area with high quality, safe, dependable water and sewer service at rates which encourage economic development. The Utility will manage land and water resources to ensure quality for future generations.

OBJECTIVES

- To improve treatment plant facilities and processing to meet the needs of the community while simultaneously achieving compliance with Federal and State regulations, particularly Clean Water and Safe Drinking Water Act Amendments.
- To keep a 20 percent capacity surplus so that the system can stay ahead of the demand for new water and sewer service.
- To increase the system's reliability and maintain minimum residual pressure of 20 pounds per square inch under maximum hour demand conditions.

POLICIES

- A financing mechanism should be developed for extending and connecting service to all unserved structures within the water and sanitary sewer service areas.
- Implement the recommendations of the Water and Sewer Master Plan.
- All costs associated with extending and/or accessing the water and sanitary sewer network for new service to a development are the responsibility of the developer.

- After inspection and acceptance, the Utility shall assume ownership and maintenance of all water and wastewater facilities installed in the service area.
- Unaccepted facilities not meeting adopted standards shall be privately maintained and their expansion shall be prohibited until standards can be met.
- Ensure that the water and sewer system improvements necessary to accommodate new development are in place when needed to mitigate development impacts.

OBJECTIVE

• Phase out the flow of storm water through the combined sewer system to reduce the clear water volume reaching the treatment plants.

POLICIES

- Give priority to the use of green infrastructure concepts and other cost effective alternatives to meet the requirements of the Consent Decree in a manner that minimizes structural improvements and substantial sewer fee increases.
- To help lessen the quantity of storm water entering the system, encourage land owners/developers to add green space and plantings including trees that intercept and absorb water, and allow for infiltration of runoff into the ground.

OUCC DR 1-005

DATA INFORMATION REQUEST City of Evansville, Indiana

04/02/2016

Cause No. 44760

Information Requested:

Petitioner's proposed capital improvement plan includes \$10.0 million for Preliminary Engineering for Treatment Plant. What is the basis for the \$10.0 million estimate? Please provide a copy of any documents prepared by or for Petitioner to support it proposed estimate. Please provide a copy of any bids Petitioner has received to support its proposed estimate.

Information Provided:

The basis for the \$10.0 million estimate is the December 2014 document prepared by HNTB Corporation titled *New Groundwater Treatment Plant Feasibility Study* and that document is attached. Specifically, see Table 5.1 on page 32 of that document. The \$10 million estimate represents the design portion (typically referred to as preliminary engineering) of the \$15.8 million figure and it does not include the construction engineering (layout) and resident representative (inspection) services which would not occur until the eventual construction of any project. Professional services for preliminary engineering have not yet been solicited and will be dependent on the availability of funding.

Attachment:

Attachment to OUCC DR 1-5.pdf

New Groundwater Treatment Plant Feasibility Study, HNTB, December 2014

OUCC DR 2-001

DATA INFORMATION REQUEST City of Evansville, Indiana

04/13/2016

Cause No. 44760

Information Requested:

On page 6 of Exhibit DLB-1, Umbaugh Accounting Report, Petitioner provides a <u>Schedule of Estimated Project Costs and Funding</u>. Petitioner estimates it will incur \$10,650,000 for Engineering and property acquisition (NWTP and Raw Water Line) costs. That total cost is broken down on Petitioner's Exhibit No. 2, Attachment PRK-8, page 1 of 2. Please answer the following related questions:

- a. Please explain how Petitioner estimated the \$10 million cost for "Preliminary Engineering for the Treatment Plant". If Petitioner has retained an engineering firm to complete the Preliminary Engineering for the Treatment Plant, please provide a copy of the letter of engagement or contract for services. Please provide any documentation that supports the \$10 million estimated cost.
- b. Please explain how Petitioner estimated the \$650,000 cost for "Raw Water Main and Treatment Plant Property Acquisition". Please provide any documentation that supports the \$650,000 estimated cost.

Information Provided:

The industry-standard method for estimating the cost of engineering services is to a. base the cost of those services on the estimated construction costs, with preliminary design engineering services typically ranging from 8% to 15% of the estimated construction costs. In this instance, the estimated construction costs of the new treatment plant are \$79.0 million, as detailed in Table 5.1 on page 32 of the December 2014 document titled New Groundwater Treatment Plant Feasibility Study. That document is attached and was previously provided as OUCC DR 1.5 in response to the OUCC Data Request 1. Please note, that the estimated costs of construction, engineering and resident representative services have been deducted from the \$15.8 million figure detailed in Table 5.1, as those services would not be incurred until the commencement of actual construction. After deducting these costs, the remaining \$10.0 million represents the design portion estimate, which is 12.7% of the estimated construction cost of \$79.0 million. An engineering firm has not been retained for preliminary engineering, as performance of these services would be contingent on the availability of funding.

OUCC Attachment JTP-3 Cause No. 45545 Page 3 of 80

b. The basis for the estimated \$650,000 cost of the "Raw Water Main and Treatment Plant Property Acquisition" is the above referenced and attached *New Groundwater Treatment Plant Feasibility Study*. The cost is detailed on pages 30 and 31 of that document and is summarized as follows:

\$260,000 -	Well field evaluation
\$300,000 -	Property acquisition cost for wells
\$ 60,000 -	Permanent easement cost for raw water main
<u>\$ 30,000</u> -	Contingency
\$650,000 -	Total

Attachment:

Attachment to OUCC DR 2-1.pdf

New Groundwater Treatment Plant Feasibility Study, HNTB, December 2014

OUCC Attachment JTP-3 Cause No. 45545 Page 4 of 80 OUCC DR 2.1 Page 1 of 38

EVANSVILLE, INDIANA EVANSVILLE WATER AND SEWER UTILITY

NEW GROUNDWATER TREATMENT PLANT FEASIBILITY STUDY

OUCC Attachment JTP-3 Cause No. 45545 Page 5 of 80 OUCC DR 2.1 Page 2 of 38

EVANSVILLE, INDIANA EVANSVILLE WATER AND SEWER UTILITY

NEW GROUNDWATER TREATMENT PLANT FEASIBILITY STUDY

December 2014

Prepared by:

The HNTB Companies Infrastructure Solutions

HNTB CORPORATION 111 MONUMENT CIRCLE, SUITE 1200 INDIANAPOLIS, INDIANA 46204 (317) 636-4682

HNTB Job No. 61237

OUCC Attachment JTP-3 Cause No. 45545 Page 6 of 80 OUCC DR 2.1 Page 3 of 38

PAGE NO.

TABLE OF CONTENTS

1. 1	GROUN	IDWATER AVAILABILITY 1
2.1	POTEN	IIAL NEW GROUNDWATER TREATMENT PLANT LOCATIONS
3.1	POTEN	FIAL CONNECTIONS TO DISTRIBUTION SYSTEM
4. 1		DWATER TREATMENT PLANT DESCRIPTION AND ESS SCHEMATIC
5.1	RECOM	MENDED LOCATION AND COST SUMMARY
5.2	RAW	ARY OF COSTS TO COMPLETE WELL FIELD EVALUATION, WELL, WATER MAIN, NEW GROUNDWATER TREATMENT PLANT AND HED WATER DISTRIBUTION DESIGN AND CONSTRUCTION
	5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	Well Field Evaluation30Well Field Property Acquisition Collector Well Design and Construction

OUCC Attachment JTP-3 Cause No. 45545 Page 7 of 80

LIST OF EXHIBITS

Exhibit No.

Record No.

Table No.

Page No.

1-1	Unconsolidated Aquifer Systems, Vanderburgh County, Indiana	2
1-2	Wetlands and Floodplain Mapping	3
1-3	Record of Water Wells	4
2-1	Potential Groundwater Treatment Plant Locations	14
2-2	Option A – Potential Groundwater Well and Treatment Plant Locations	15
2-3	Option B – Potential Groundwater Well and Treatment Plant Locations	16
2-4	Option C – Potential Groundwater Well and Treatment Plant Locations	17
2-5	Option D – Potential Groundwater Well and Treatment Plant Locations	18
3-1	Option A – Distribution System Tie-In	20
3-2	Option B – Distribution System Tie-In	21
3-3	Option C – Distribution System Tie-In	, 22
4-1	Basic Process Schematic	
5-1	Option A – Proposed WTP Layout	33
5-2	Option A – Land Requirements	

LIST OF WATER WELL RECORDS

Page No.

338815	East Sewer Plant
240197	Inland Marina, Depends on River Location (Kentucky or Indiana)7
338804	Landfill Highway 41
224518	Loews Theater
224459	North End of NW Property Adjacent to Shownee Drive

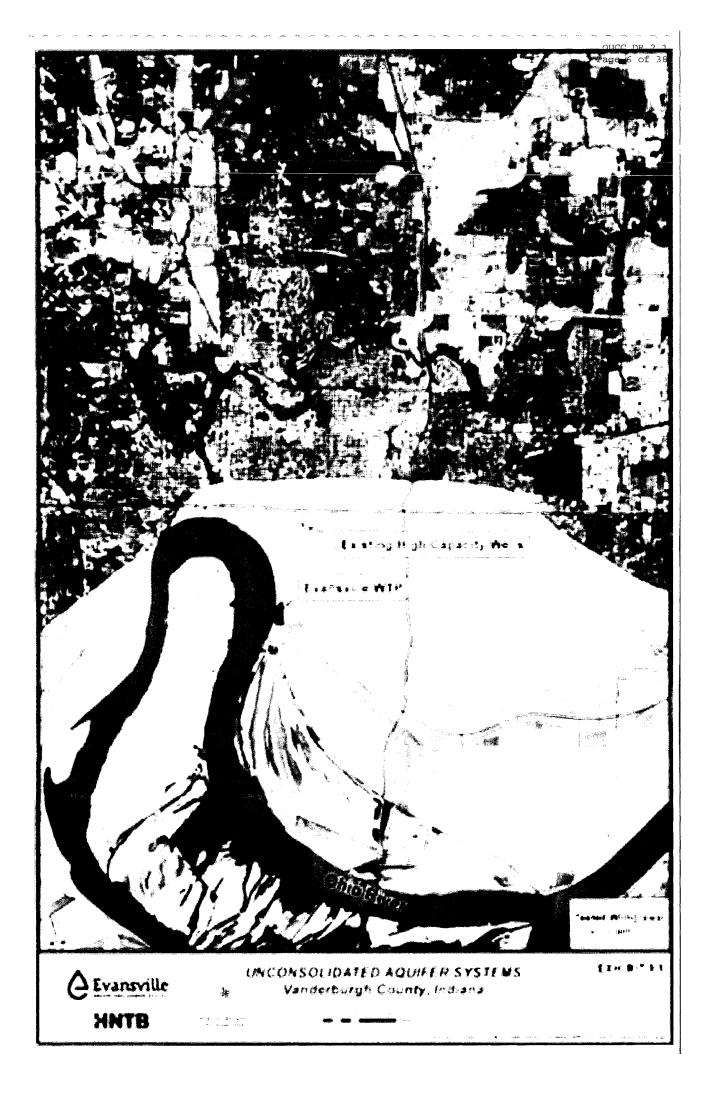
LIST OF TABLES

Page No.

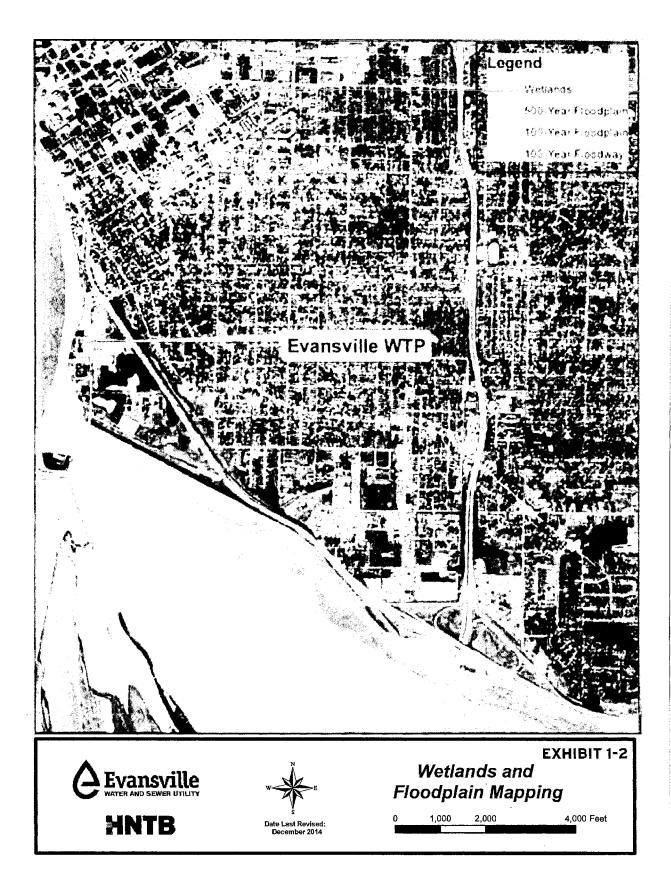
3.1	Option A – Construction Cost Estimate	23
3.2	Option B – Construction Cost Estimate	24
3.3	Option C – Construction Cost Estimate	25
4.1	Raw Water Quality Estimate	
4.2	Groundwater Treatment Plant Cost Estimate Summary for 60 MGD WTP	
5.1	Summary	

ii

OUCC Attachment JTP-3 Cause No. 45545 Page 8 of 80

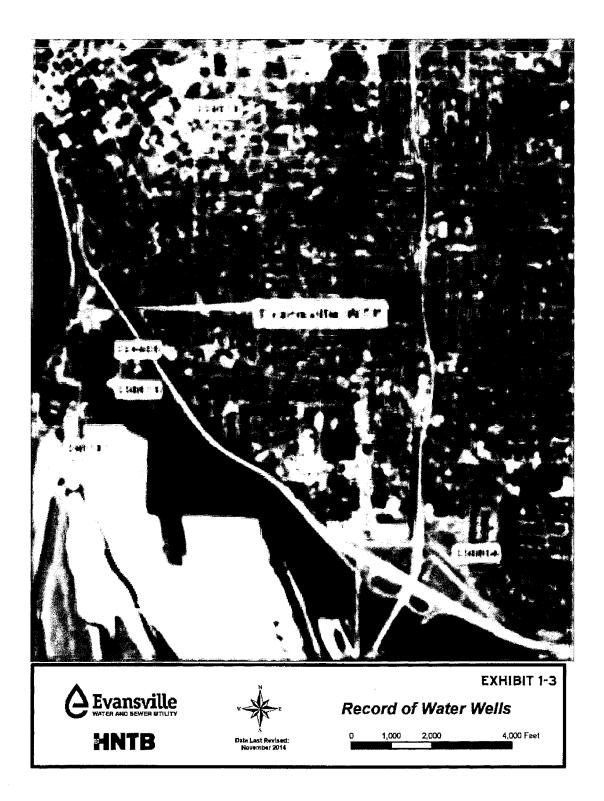

1.1 GROUNDWATER AVAILABILITY

Available information from the Indiana Department of Natural Resources (DNR), Division of Water was reviewed to develop Exhibit 1-1. Exhibit 1-1 includes the general areas in Evansville where a high-capacity groundwater well could produce in excess of 2,000 gallons per minute (gpm). Also included on Exhibit 1-1 are registered high-capacity wells defined by the DNR as wells that produce over 100,000 gallons of groundwater per day.


Exhibit 1-2 is a similar map including floodplain, floodway and wetlands information. To construct wells in the floodway or floodplain, the well casing must be sealed to a minimum of three (3) feet above the 100-year flood elevation. This means the wells will be elevated with platforms, and at certain times access to the wells will only be available by boat. An additional permit will also be required to construct wells in the floodway.

As a further confirmation of aquifer characteristics, well records were researched with locations shown on Exhibit 1-3. Following Exhibit 1-3 are the individual records by reference number. Of the included records, 338815, 338804 and 224459 were drilled to the full depth of the unconsolidated aquifer as indicated by the presence of sandstone or shale. The depth of the aquifer for these locations range from 120 feet below grade to 136 feet below grade. This available depth, along with the medium to large gravel near the bottom of the aquifer, provide confirmation that a large quantity of groundwater is available.

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 1



OUCC DR 2.1 Page 7 of 38

OUCC DR 2.1 Page 8 of 38

OUCC Attachment JTP-3 Cause No. 45545 Page 11 of 80

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 4

Indiana Department of Natural Resources

Page 1 of 2

Record of Water Well

Indiana Department of Natural Resources

Reference Num 338815	ber	Driving directions to well EAST SEWER PLANT					Date completed Oct 29, 1991		
Owner- Contractor Owner	Nam 1.G.S			Address Te			elephone		
-		 DESTY DR	LG &	RR 21	30X 651	(8	12) 847-		
Driller		LING CO	20.0			296			
Operator DALE D HARDES TY		License: 867							
Construction D	etails								
Well		Use: Test		Drilling r	nethod: Rotar	Ŋ	Pamp type:		
		Depth: 118.3			ting depth:		Water qualit	y:	
Casing		Length: 11		Material:			Diameter: 2.0		
Screen		Length: 2.0)	Material:	WELL SCRE	EEN	Diameter: 2.0	Slot size: .040	
		Type of test: Drawdown; fi,		Test rate: gpm for hr Static water level: ft.			BailTest ra Bailer Dra	te: gpm for hrs. wdown ft.	
Grouting Information Material: Installation Met		Method:	-			epth: from to under of bags used:			
Well Abandonment – Séaling mäterjal: Installation Method			Depth: from to Number of bags used:						
Administrative		County: VANDERBURGH					Township: 6S Rauge: 10W		
		Section: SE of the NW of Section 3			31 Topo map: EVA SOUTH,IN-KY			nap: EVANSVILLE LIN-KY	
		Grant Num	ber:						
		Field locate	d by:	y: verification by:			ont		
		Courthouse	location by				01); 011;		
		Location ac	cepted w/o						
		Subdivision	name:				Lot number:		
		Ft W of EL	1	Ft N of	SL:		Ft E of WL: Ft S of	NL:	
		Ground elevation:		Depth to bedrock:			Bedrock elevation: Aquife	uifer elevation:	
		UTM Easti	ng:				UTM Northing:		
Well Log		Тор	Botto.		Formation				
		0.0	5.0	ili in a stati bin na star gi	SURFACE				
		5.0	6:0		CLAY & FI	LL MED BROWN W/FILL			
		6.0	10.0		CLAY-GRA	٩Y			
		10,0	15.0		CLAY-BRO)WN/0	WN/GRAY MXD,SILTY,SAND		
		15,0	25.0			OWN, SILTY/SLIGHT GRIT			
		25.0	35.0				RAY MXD-MED		
		35.0	45,0				MED TO FINE GRA		
					OWN FINE GRAIN TO SILTY				

https://secure.in.gov/apps/dnr/water/dnr_waterwell?refNo=338815&_from=SUMMARY,, 11/26/2014

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 5

OUCC Attachment JTP-3 Cause No. 45545 Page 13 of 80

OUCC DR 2.1 Page 10 of 38

Indiana Departr	nent of Natural	Resources		Page 2 of 2
	61.0 88.0	88.0 106.1	S&G SMOOTH SURFACE GRAVEL SLIG GRAVEL 1/2" DOWN TO 1/4" SIZE	
	106.1	118.3	SANDSTONE LT GRAY WISHALE BNDS	
	118.3		TD	
Comments				

https://secure.in.gov/apps/dnr/water/dnr_waterwell?refNo=338815&_from=SUMMARY... 11/26/2014

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility

6

OUCC Attachment JTP-3 Cause No. 45545 Page 14 of 80

Indiana Department of Natural Resources

Page 1 of 1

Record of Water Well

Indiana Department of Natural Resources

Reference Number 240197	Driving directions to WELL IN ? OF INLA WHETHER OR NOT	AND MARIN		N RIVE	Date completed R	
Owner-Contractor Owner Driller Operator	Name INLÀND MARINA I L-LITTLE I L	-	ERSON KY SVILLE IND	T ele ph	one	
Construction Details						
Well	Use: industry	Drilling r	nethod: Cable To	loci	Pump type:	
	Depth: 81.0		ting depth:		Water quality:	
Casing	Length: 7.0	Material:	P .		Diameter: 6.63	
Screen	Length: 10.0	Material			Diameter: 4.0 Slot size: .020	
Well Capacity Test	Type of test:	Tes	t rate: gpm for h	rs.	BailTest rate: 60.0 gpm for 1.0 brs.	
	Drawdown: ft.	Sta	Static water level: 20.0		Bailer Drawdown 5.0 ft.	
Grouting Information	Material: Installation Method:	:		n to bags used:		
Well Abandonment	Sealing material: Installation Method:		Depth: from to Number of bags used:			
Administrative	County: VANDERBURGH			Township: 7S Range: 10W		
	Section: of Section 6				Topo map: EVANSVILL SOUTH, IN-KY	
	Grant Number: Field located by:			on:		
	Courthouse location	by:		on:		
	Location accepted w	*	n by:	0n:		
	Subdivision name:		· •		Lot number:	
	Ft W of EL:	Et N of	SL:		of WL: Ft S of NL:	
	Ground elevation:	Depth	to bedrock:	Bedro	ck Agnifer elevation	
	UTM Easting:				UTM Northing:	
		tom	Formation			
	0.0 8:0	hin an east an head an	CLAY	un terrenen an ande	n an de la calacité de la contra de la contra La contra de la contr	
	8.0 60.0	}	SAND, RIVER			
	60,0 85.0)	SAND AND S		MIXED	
Comments			•			

https://secure.in.gov/apps/dnr/water/dnr_waterwell?refNo=240197&_from=SUMMARY... 11/26/2014

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility

í

y 7

Indiana Department of Natural Resources

Page 1 of 2

Record of Water Well

Indiana Department of Natural Resources

Reference Number 338804		Driving directions to well LANDFILL HWY 41			Date completed Oct 31, 1991		
Owner- Contractor	Nam	e		Address		Telephone	
Owner	IGS					(h) n) n i d	
Driller		DESTY DRLG &		RR 2 BOX 651 LINTON IN		(812) 847- 2296	
Operator		E D HARDESTY		License: 867		2290	
Construction D	etails						
Well Us		Use: Drilling method: Depth: 146.5 Pump setting de		rilling method:	Rotary	Pump t	ype:
				Pump setting depth:		Water	quality: UNKNOWN
Casing		Length: 134.5		Iaterial: PVC		Diameter: 2.0	
Screen		Length: 2.0	M	laterial: WELL	SCREEN	Diamet	er: 2.0 Slot size: .010
Well Capacity Test — Type of test: Drawdown: ft.			Test rate: gpm for hrs Static water level: ft		BailTest rate: gpm for hrs. Bailer Drawdown ft.		
Grouting Information Material: Installatio		Material: Installation Metho	d:			th: from to nber of bags used:	
Well Abandonment Sealing material; Installation Method:		d:	Depth: from to Number of bags used:				
Administrative		County: VANDER	BURG	Н		Township: 75	S Range: 10W
		Section: SE of the NW of Section 4					Topo map: EVANSVILLI NORTH
		Grant Number:					
		Field located by:			on:		
		Courthouse locatio			on:		
		Location accepted	rification by:	ation by: on:			
		Subdivision name:				Lot number:	
		Ft W of EL:		Ft N of SL:		Ft E of WL:	Ft S of NL:
		Ground elevation:		Depth to bedro	ck:	Bedrock elevation:	Aquifer elevation:
		UTM Easting:				UTM Northi	ng:
Well Log		–	ottom	Forma	tion		
-		0.0 1		SURF.	ACE/TOP	hereeveretersticking	in and a construction of the second
			.0			BROWN MXD	
			.o			LT BROWN CI	AY
			0.0		-GRAY		
			0,0			(MOSTLY TRA	SH)
			0,0			(LOST CIRCUI	
						•	•
		40.0 6:				RAIN, MED GRAY SM, SMOOTH SURFACE	

https://secure.in.gov/apps/dnr/water/dnr_waterwell?refNo=338804&_from=SUMMARY... 11/26/2014

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 8

OUCC Attachment JTP-3 Cause No. 45545 Page 16 of 80

OUCC DR 2.1 Page 13 of 38

Indiana Department of Natural Resources Page 2 of 2 72,0. 96.0 SAND-DK GRAY 96,0 114.0 CLAY-GRAY, SOFT 134.0 121.0 GRAVEL-1/4"-1/8" SMOOTH SURFAC 121.0 136.5 S&G/SAND CONTENT 50%

SHALE-GRAY, SOFT

Comments

136.5

138.0

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 9

December 2014

 $https://secture.in.gov/apps/dnr/water/dnt_waterwell?refNo=338804\&_from=SUMMARY... 11/26/2014$

OUCC Attachment JTP-3 Cause No. 45545 Page 17 of 80

Indiana Department of Natural Resources

Page 1 of 1

Record of Water Well

Indiana Department of Natural Resources

Reference Number 224518	Driving directions to	well		Date completed May 01, 1962	
Owner-Contractor	Name	Address	Telepl	han'e	
Owner	LOEWS THEATHER				
Driller	D.L. LITTLE	2509 KORING,RD.			
Operator	D.L. LITTLE	License: null			
Construction Details					
Well	Use: Industry	Drilling method: Cable	Tool	Pump type:	
	Depth: 104.0	Pump setting depth:		Water quality;	
Casing	Length: 85.0	Material:		Diameter: 6.63	
Screen	Length: 20.0	Material:		Diameter: 8.0 Slot size: .020	
Well Capacity Test	Type of test: Pumping Irs.		.0 gpm for 4.0 BailTest rate: gpm for lirs.		
	Drawdown: ft.	Static water level	: 44.0 ft,	Bailer Drawdown ft.	
Grouting Information	Material:		Depth: froi	n ⁱ to	
	Installation Method:		Number of bags used:		
Well Abandonment	Sealing material:	ć	Depth: from to		
	Installation Metbod:	1	Number of bags used:		
Administrative	County: VANDERBU	RGH	Town	nship: 6S Range: 10W	
	Section: NW of the SE	of the NE of Section 30		Topo map: EVANSVILLE SOUTH, IN-KY	
	Grant Number:				
	Field located by: RJW		on; O	let 20, 1964	
	Courthouse location by:				
	Location accepted w/o verification by:				
	Subdivision name:			umber:	
	Ft W of EL: 850.0	Ft N of SL: 3600,	0 FtE	of WL: Ft S of NL:	
	Ground elevation: 385	.0 Depth to bedrock	: Bedri eleva	A duiler elevations 785.4	
	UTM Easting: 450033.	.0		Northiug: 4202757.0	
Well Log	Top Botto	m Formation			
2	0,0 12_0	SUBSOIL &		นแสมนายคมและสารายุระการสูงอาสุรัฐมาไทยให้สูงไป นทางสมบัตย สวีนแหน่งหม	
	12.0 100.0	S & G			
Comments					

https://secure.in.gov/apps/dnr/water/dnr_waterwell?refNo=224518&_from=SUMMARY... 11/26/2014

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 10

OUCC Attachment JTP-3 Cause No. 45545 Page 18 of 80

Indiana Department of Natural Resources

Page 1 of 2

Record of Water Well

Indiana Department of Natural Resources

Reference Number		ctions to well			Date completed	
224459	AT NORTH END OF NW PROPERTY ADJACE DRIVE APPROX. 260 FEET FROM RIVER			ENT TO SHOWNEE Jan 01, 1950		
·	Name		Address	Telepho	ĥ¢	
	EVANSVILLE DIEHL PUMP	SWATER WORKS	EVANSVILI			
Louises	DIEUT LOMÉ	& SUFFEI -	EANDAID	ыc.		
Construction Details						
Well	Use: Test	Drilling.r			mp týpe:	
	Deptb: 120.0		ting depth:		ater quality:	
Casing	Length:	Moterial: Moterial:			ameter: 6.0	
Sareen	Length:	J*L0127131		Dt	ameter: Slot size:	
Well Capacity Test	Type of test: Drawdown:		t rate: gpm for tic water level:		BailTest rate: gpm for hrs. Bailer Drawdown fi.	
Grouting Information	n Material: Installation Method:		Depth: from to Number of bags used:			
Well Abandonment	Sealing mate Installation I			epth: from to iumber of bay		
Administrative	County: VANDERBURGH			Township: 6S Range: 10W		
	Section: SE of the NW of the NE of Section 3			Topo map: EVANSVILLE SOUTH,IN-KY		
	Grant Numb	er:			,	
	Field located	by:		941		
	Courthouse)	ocation by:		,0 n :		
	Location accepted w/o verification by: USGS			on: May 01, 1963		
	Subdivision 1	dame:		Lot rum	ber:	
	Ft W of EL:	Ft N o	(SL .	Ff E of ¥	VL: Fi S of NL:	
	Ground eleve		to bedrock:	Bedrock elevation	Aquiler elevation:	
	UTM Easting	g: .		UTM No	orthing	
Well Log	Тор	Bottom	Formation			
	0.0	16.0	TOPSOIL		nan an an ann an Annaich a' an Annaichtean an Ailte ann an Aireann an an Annaichtean an Aireann	
	15.0	50.0	CLAY			
	50.0	65.0	QUICKSANI	3		
	65.0	76.0	FINE SAND	COARSE GR	AVEL	
	76.0	80:0	MED SAND			
	80.0	90.0	COARSE SAND, GRA		L BLUE CLAY	
	90.0	107.0	MED. CRS SAND		4E FINE SAN	
	107.0	112.0	CRS. SAND	& GRAVEL		
	112.0	114.0	0 LARGE GRAVEL PEA GRAVEL & CRS.			
	114.0	120.0	LARGE GRAVEL CRS SAND MED SAND			

 $https://secure.in.gov/apps/dnr/water/dnr_waterwell?refNo=224459\&_from=SUMMARY... 11/26/2014$

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility

11

.

OUCC DR 2.1 Page 16 of 38

OUCC Attachment JTP-3 Cause No. 45545 Page 19 of 80

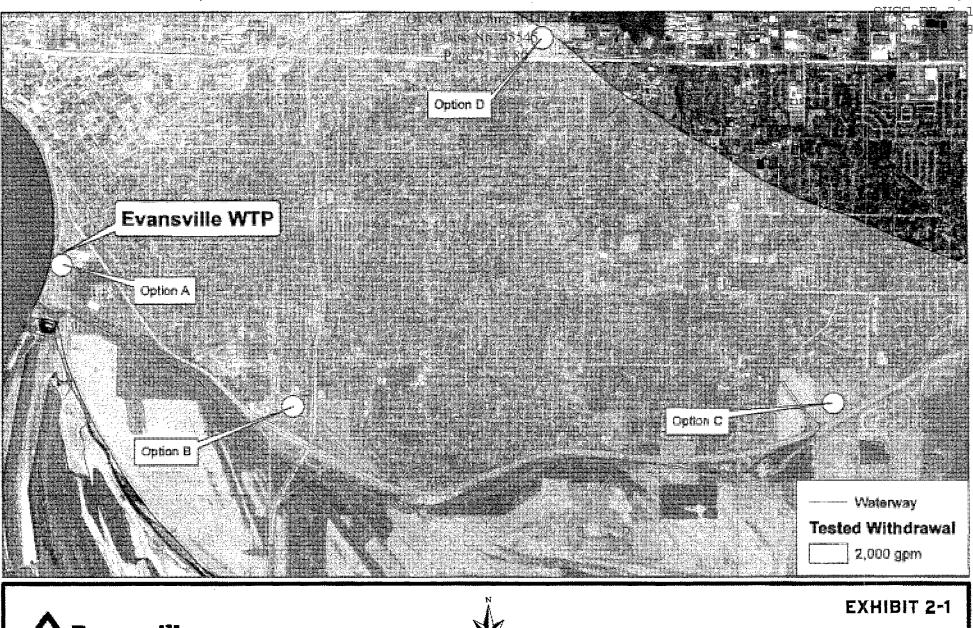
Page 2 of 2

Indiana	Department	of Natural	Recources
nuqua	DODALITIELIE	UT INATULAL	resources

	120.0	BLUE STONE	
Comments	TEST WELL #1	1991/2019 10-91 (1998) 1 (1910) 11 (1910) 110/11 (1910) 110/11 (1910) 11/1	

https://secure.in.gov/apps/dnr/water/dnr_waterwell?refNo=224459&_from=SUMMARY... 11/26/2014

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility


12

OUCC Attachment JTP-3 Cause No. 45545 Page 20 of 80

2.1 POTENTIAL NEW GROUNDWATER TREATMENT PLANT LOCATIONS

Once the viability of developing a 60-MGD groundwater supply was confirmed, the next step was to identify potential locations for the collector wells and the treatment plant. Exhibit 2-1 includes the original four options where sufficient water supply and available property appear to be available. Exhibits 2-2, 2-3, 2-4 and 2-5 provide additional details for each location. Of these original four, Option D located at the former Roberts Stadium site was quickly ruled out because it is close to the boundary where sufficient raw water quantity is expected to be available and high-capacity wells will have a large radius of influence potentially pulling in contaminants from old industrial facilities, gas stations or dry cleaners.

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 13

HNTB

Potential Groundwater Treatment Plant Locations

2,600

D

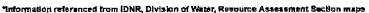
1,300

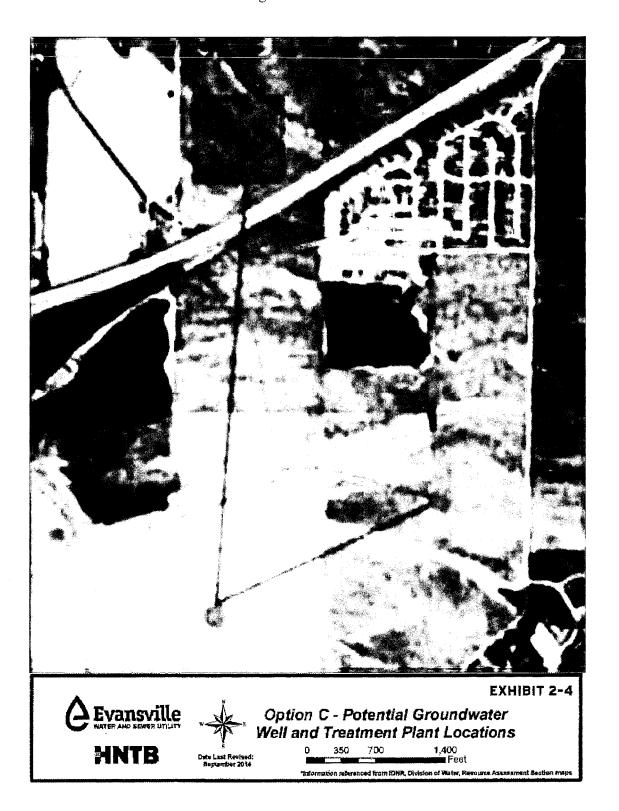
Date Last Revised: December 2014

Information referenced from IDNR, Division of Water, Resource Assessment Section maps

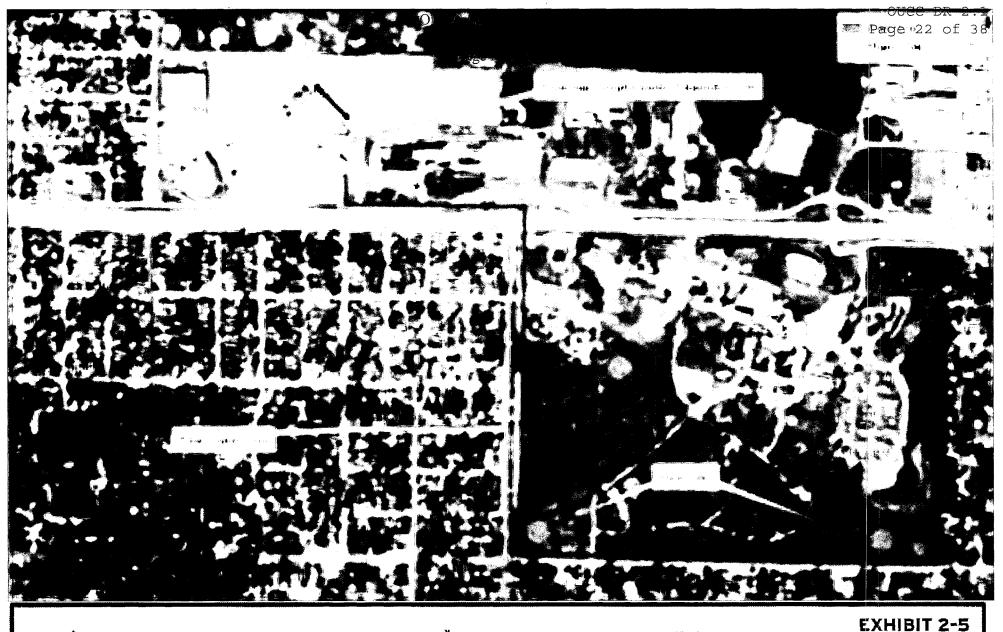
5,200 Feet

OUCC DR 2.1 OUCC Attachment JTP-3 Page 19 of 38 Cause No. 45545 Page 22 of 80 Rew Vileter Line New We EXHIBIT 2-2 **∆** Evansville Option A - Potential Groundwater Well and Treatment Plant Locations HNTB 500 inte Lant (Second A. Districts of Weiter, Pe





Option B - Potential Groundwater Well and Treatment Plant Locations EXHIBIT 2-3


500

OUCC Attachment JTP-3 Cause No. 45545 Page 24 of 80 OUCC DR 2.1 Page 21 of 38

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 17

Option D - Potential Groundwater Well and Treatment Plant Locations

0	212,5	425	85	Ø
				Feet

Date Lest Revised: September 2014 OUCC Attachment JTP-3 Cause No. 45545 Page 26 of 80

3.1 POTENTIAL CONNECTIONS TO DISTRIBUTION SYSTEM

In addition to the new treatment plant and wells, water mains must be installed from the wells to the plant and from the plant to provide adequate flow and pressure of finished water into the distribution system. Exhibits 3-1, 3-2 and 3-3 include potential locations and lengths of water main required as determined utilizing the existing WaterCAD model.

For all three options, the length and size of raw water main is essentially the same. To provide redundancy, the exhibits include dual, 48-inch-diameter mains from the wells to the new plant location. Depending on the final layout, the length may vary, but will not be enough to significantly impact the overall project cost.

From this evaluation, the primary difference between the options is the site and length of the finished water main required to provide up to 60 MGD into the system while allowing for potential breaks in major transmission mains. With the proximity to the existing plant, Option A is the least-cost option with no major finished water mains required. The new high-service pumps can be directly connected to the 36-inch and 48-inch transmission mains near the existing plant. Exhibit 3-1 includes potential locations for the collector wells, raw water main and new water treatment plant. Table 3.1 includes the estimated cost of almost \$14,000,000 for the raw water main.

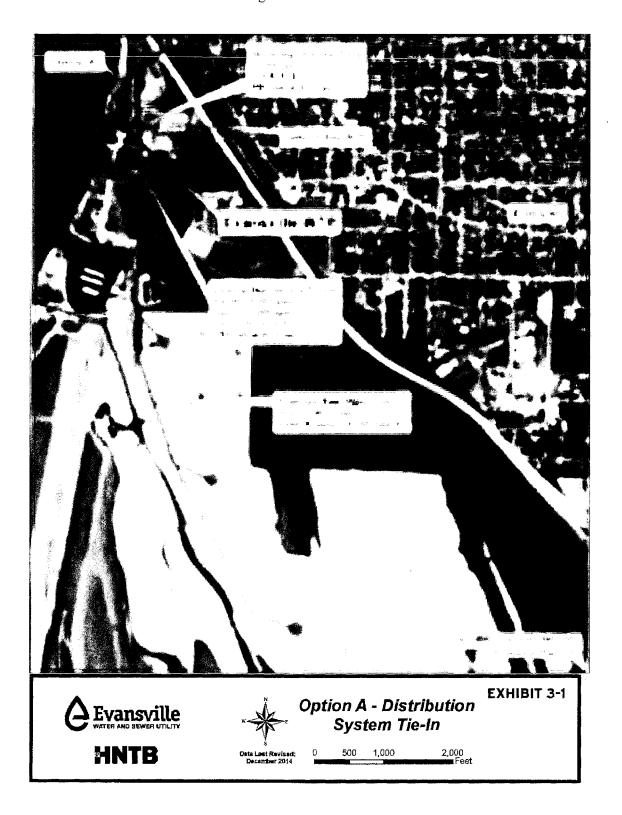
The model results for Option B included on Exhibit 3-1 indicate the high-service pumps would need to provide slightly more pressure, approximately 10 feet total dynamic head, to provide the same level of service into the distribution system. Option B would also require a significant investment in finished water mains estimated to include:

- 13,000 feet of 48-inch
- 16,000 feet of 30-inch

As can be seen on Table 3.2, the Option B total water main cost is estimated to be approximately \$36,000,000, over \$22,000,000 more than Option A.

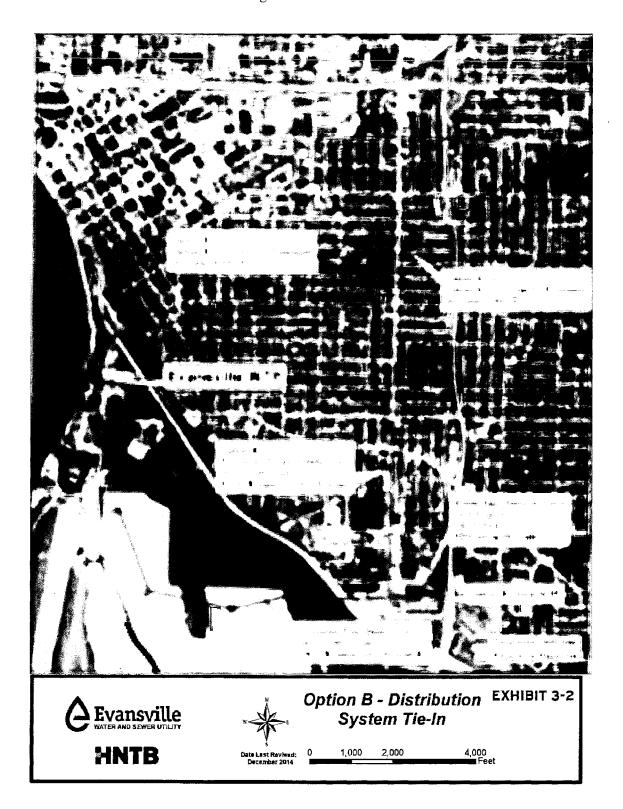
By being located further from the largest transmission main in the system, Option C is even more challenging to tie into the distribution system. As indicated on Exhibit 3-3, the finished water mains required to provide the same level of service into the distribution system include:

- 24,000 feet of 48-inch
- 25,000 feet of 30-inch

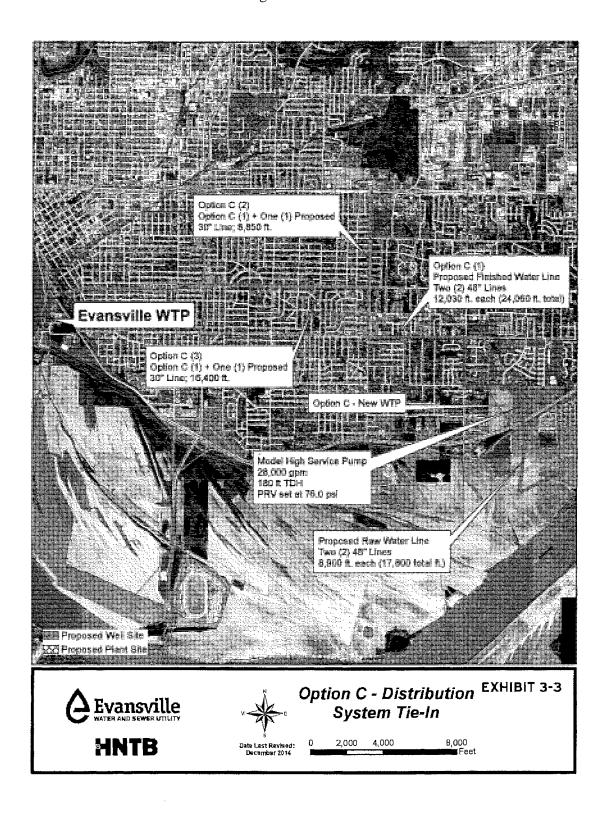

As expected, the cost estimate included in Table 3.3 is significantly higher than either Option A or B coming in at just over \$51,000,000.

Because of the significant difference in costs associated with the water main installation, Option A is the recommended alternative to be further evaluated.

OUCC Attachment JTP-3 Cause No. 45545 Page 27 of 80


Ć

OUCC DR 2.1 Page 24 of 38


New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 20

OUCC Attachment JTP-3 Cause No. 45545 Page 28 of 80 OUCC DR 2.1 Page 25 of 38

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 21

OUCC Attachment JTP-3 Cause No. 45545 Page 29 of 80

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 22

OUCC Attachment JTP-3 Cause No. 45545 Page 30 of 80

TABLE 3.1 OPTION A

HNTB	CONSTRUCTION COST ESTIMATE							
OPTION A - WTP ADJACENT TO EXISTING					• • • • • • • • • • • • • • • • • • •			
PROJECT NO.: 61237-PL-001-001	PREPARED BY: SAL		DATE:	11/24/2014				
PROJECT NAME: Evansville WTP Planning	CHECKED BY		RTP	DATE:	11/24/2014			
	CHECKED BY	r,		DATE:				
PROJECT MGR.: JAT								
			UNIT	ESTIMATED				
ITEM / DESCRIPTION	QUANTITY	UNIT	PRICE	CONS. COST	REMARKS			
Construction Costs								
DIVISION 2 - SITE WORK								
Erosion and sedimentation control	1	LS	\$5,000	\$5,000	L			
Excavation for raw water mains	49,100	CY	\$50	\$2,455,000				
48" DI pipe for dual raw water mains- installed	17,200	LF	\$400	\$6,880,000				
Backfill for water mains	33,200	CY	\$35	\$1,162,000				
SUBTOTAL				\$10,502,000				
			A500.000	A F00.000				
Mobilization/Demobilization (5%)	1	LS	\$526,000	\$526,000				
Site restoration (3% of site work)	1	LS	\$316,000	\$316,000				
SUBTOTAL	•			\$11,344,000				
Contingency @ 20%	•			\$2,270,000				
				· · · · · ·				
TOTAL				\$13,614,000				

NOTE ! This estimate represents our judgment as professionals familiar with the construction industry. We cannot and do not guarantee that bids will not vary from this estimate.

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility

OUCC Attachment JTP-3 Cause No. 45545 Page 31 of 80

TABLE 3.2 OPTION B

HNTB OPTION B - WTP NEAR US 41/VETERAN'S MEN			CTION C	OST ESTIN	ЛАТЕ
INTERCHANGE					
PROJECT NO.: 61237-PL-001-001	PREPARED BY	·. ,	SAL	DATE:	11/24/2014
PROJECT NAME: Evansville WTP Planning	CHECKED BY		RTP	DATE:	11/24/2014
	CHECKED BY	':	4	DATE:	
PROJECT MGR.: JAT				· · · · · · · · · · · · · · · · · · ·	
			UNIT	ESTIMATED	
ITEM / DESCRIPTION	QUANTITY	UNIT	PRICE	CONS. COST	REMARKS
Construction Costs					
DIVISION 2 - SITE WORK Erosion and sedimentation control	1	LS	\$5,000	\$5,000	
Excavation for raw water mains	52,700	CY	\$50 \$50	\$2,635,000	
48" DI pipe for dual raw water mains- installed	19,800	LF	\$400	\$7,920,000	·
Backfill for raw water mains	34,400	CY	\$35	\$1,204,000	
Excavation for finished water mains	60,000	CY	\$50	\$3,000,000	
48" DI pipe for dual finished water mains-					
installed	12,900	LF	\$600	\$7,740,000	
30" DI pipe for finished water mains-installed	16,300	LF	\$250	\$4,075,000	
Backfill for finished water mains	40,000	CY	\$35	\$1,400,000	
DIVISION 9 - FINISHES					
Coatings	1	LS	\$10,000	\$10,000	
SUBTOTAL				\$27,989,000	· · · · · · · · · · · · · · · · · · ·
Mobilization/Demobilization (5%)	11	LS	\$1,400,000	\$1,400,000	
Site restoration (3% of site work)	1	LS	\$840,000	\$840,000	
SUBTOTAL				\$30,229,000	
		L			
Contingency @ 20%				\$6,046,000	
TOTAL				\$36,275,000	

NOTE ! This estimate represents our judgement as professionals familiar with the construction industry. We cannot and do not guarantee that bids will not vary from this estimate.

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility

OUCC Attachment JTP-3 Cause No. 45545 Page 32 of 80

TABLE 3.3 OPTION C

HNTB	CONSTRUCTION COST							
	ESTIMATE							
OPTION C - WTP ON EAST SIDE OF CITY								
PROJECT NO.: 61237-PL-001-001	PREPARED B		SAL	DATE:	11/24/2014			
PROJECT NAME: Evansville WTP Planning	CHECKED B		RTP	DATE:	11/24/2014			
	CHECKED B	<u> </u>		DATE:				
PROJECT MGR.: JAT								
ITEM / DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	ESTIMATED CONS. COST	REMARKS			
Construction Costs								
DIVISION 2 - SITE WORK								
Erosion and sedimentation control	1	LS	\$5,000	\$5,000				
Excavation for raw water mains	47,500	CY	\$50					
48" DI pipe for dual raw water mains- installed	17,800	LF	\$400	\$7,120,000				
Backfill for raw water mains	31,000	CY	\$35	\$1,085,000				
Excavation for finished water mains	110,000	CY	\$50	\$5,500,000				
48" DI pipe for dual finished water mains- installed	24,100	LF	\$600	\$14,460,000				
30" DI pipe for finished water main- installed	25,000	LF	\$250	\$6,250,000				
Backfill for finished water mains	75,000	CY	\$35					
DIVISION 9 - FINISHES								
Coatings	1	LS	\$10,000	\$10,000				
SUBTOTAL				\$39,430,000				
Mobilization/Demobilization (5%)	1	LS	\$1,972,00	\$1,972,000				
Site restoration (3% of site work)	1	LS	\$1,183,00 0	\$1,183,000				
SUBTOTAL				\$42,585,000				
Contingency @ 20%				\$8,517,000				
TOTAL				\$51,102,000				
·								

NOTE ! This estimate represents our judgement as professionals familiar with the construction industry. We cannot and do not guarantee that bids will not vary from this estimate.

OUCC Attachment JTP-3 Cause No. 45545 Page 33 of 80

4.1 GROUNDWATER TREATMENT PLANT DESCRIPTION AND PROCESS SCHEMATIC

Raw water quality and the treatment approach are the two aspects that would be most impacted should Evansville change their raw water source from the Ohio River to groundwater from the aquifer southeast of the existing water treatment plant (WTP) site. This narrative describes the anticipated raw groundwater quality and the treatment facilities anticipated to efficiently treat it to potable water standards (following Ten States Standards).

Raw water would be higher in iron, manganese and hardness as compared to surface water, in the approximate ranges tabulated in Table 4.1.

		Anticipated Concentrations					
Constituents	Units	Groundwater	Surface Water				
Hydrogen Sulfide	mg/L	Detectable Odor	Undetectable				
Iron	mg/L	2.0 - 2.5	Trace				
Manganese	mg/L	0.5 - 0.8	Тгасе				
Hardness (as CaCO ₃)	mg/L	180 - 400	150				

TABLE 4.1RAW WATER QUALITY ESTIMATE

The treatment processes described below are designed to produce water meeting the following finished water quality goals:

- Compliance with secondary standard goals for maximum concentrations of iron (0.3 mg/L) and manganese (0.05 mg/L).
- Filtered water turbidity below 0.1 NTU.
- Stable water that will comply with the Lead and Copper Rule and minimize corrosion, precipitation and deposition within the water distribution system.
- Reduction of taste and odor to the lowest acceptable level.
- Maintaining a free chlorine residual of 1.0 mg/L through the treatment process and provide adequate disinfection protection in the distribution system by meeting the TSS standard of 1.0 to 2.0 mg/L throughout the system.
- Maintaining minimum finished water pH of 7.5.
- Planning WTP layout and hydraulics to allow a softening process to be added in the future (producing finished water with hardness in the 120-150 mg/L range).
- Providing WTP with a firm treatment capacity of 60 MGD and an onsite finished water storage capacity of 6 million gallons (MG), in a two-train arrangement so that 30 MGD can be filtered, stored and pumped with half the filters and clearwell out-of-service.

The basic treatment process schematic, included as **Exhibit 4-1**, illustrates the primary features of a groundwater treatment plant applicable for the Evansville groundwater. Following metering of the raw water, chemical oxidation of iron and manganese with chlorine and potassium permanganate will result in the formation of insoluble iron and manganese hydroxides precipitates. The incoming.

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 26

OUCC Attachment JTP-3 Cause No. 45545 Page 34 of 80

water will be conditioned to a pH of about 7.5 while maintaining a chlorine residual of 0.5 to 1.0 mg/L.

The chemically conditioned raw water will be conveyed by gravity and distributed to the filters, where those oxidized metals solids will be removed by adsorption and entrapment within the filter media. Media will consist of anthracite and sand in a deep-bed gravity arrangement with modern block or plate underdrain media supports.

Ten State Standards recommend filtering rates with regard to raw water quality, pretreatment and filter media. The recommended range is from 2 to 4 gallons per minute per square foot of filter media surface (gpm/sf). In using the maximum filtering rate of 4 gpm/sf with a firm capacity of 60 MGD (one filter out-of-service), 10 filters will be required. Each 1,200 sf filter is recommended to be a two-cell arrangement (with each cell 600 sf, with an approximate geometry of 20 ft by 30 ft).

Following filtration, the water will be disinfected with chlorine and chemically conditioned with sodium hydroxide (for pH adjustment), hydrofluorosilic acid (for fluoridation) and a corrosion inhibitor, if warranted.

Finished water will be stored in an onsite ground storage reservoir prior to the distribution to the Evansville system via high-service finished water pumps. The clearwell will consist of two 3 MG baffled compartments and interconnected with three pumping wells (two for finished water pumps and one for the filter backwash pumps).

Each filter cell will be backwashed separately but sequentially (one backwashed while the other cell-isolated). The maximum backwash flow rate is approximately 9,000 gpm, which represents a filter cell with an area of 600 sf and Ten States Standards maximum wash rate of 15 gpm/sf. The backwash pumps will be adjustable speed so that backwashing flow rates can be fine-tuned as the WTP transitions from a new to established facility, as well as adjustments for seasonal operation.

Per Ten States Standards, the filters will have a backup backwash water supply system consisting of a pressure-reducing valve between the finished water pump discharge main and the backwash water supply header. This secondary system takes finished water going from the discharge main, and reduces its pressure to an acceptable level for backwashing prior to entering the filters.

The iron and manganese residuals removed from the treated water will be collected in a twocompartment backwash water holding tank. Residuals settled in the tank will be pumped to the sanitary sewer system. The spent backwash water drawn off the holding tanks will be chemically conditioned to eliminate its chlorine residual and filtered through a slow sand filter to reduce any solids, prior to being discharged to the Ohio River.

Table 4.2 shows the cost estimate for the plant, as described.

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 27

OUCC Attachment JTP-3 Cause No. 45545 Page 35 of 80

TABLE 4.2 GROUNDWATER TREATMENT PLANT COST ESTIMATE SUMMARY FOR 60 MGD WTP

Description	2014 Total Cost
Site Work and Residuals Pump Station	\$ 3,000,000
Treatment and Chemical Building Equipment	\$14,300,000
Treatment and Chemical Building Piping and Fittings	\$ 6,400,000
Yard Piping and Fittings	\$ 2,600,000
Concrete	\$ 9,100,000
Building Components	\$ 2,400,000
HVAC Components	\$ 800,000
Plumbing Components	\$ 200,000
Electrical Components	\$ 3,400,000
Instrumentation and Controls	\$ 1,200,000
Subtotal	\$43,400,000
Mobilization and Bonds (8% of Subtotal)	\$ 3,500,000
Contingency (20% of Subtotal)	\$ 8,700,000
Escalation for 2 Years (6% of Total)	\$ 2,600,000
TOTAL ESTIMATED CONSTRUCTION COST	\$58,000,000

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 28

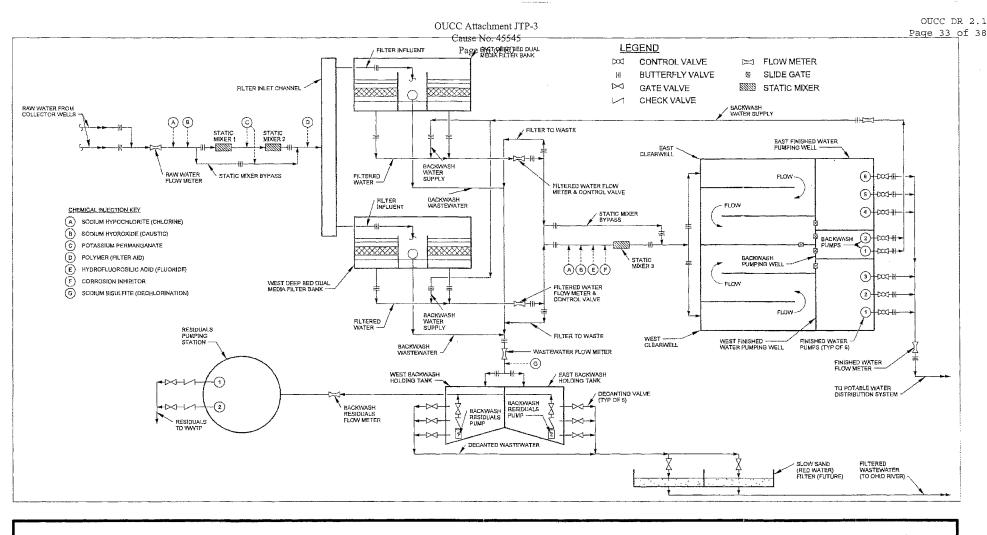


EXHIBIT 4-1

Basic Process Schematic New Evansville Groundwater Treatment Plant

OUCC Attachment JTP-3 Cause No. 45545 Page 37 of 80

5.1 RECOMMENDED LOCATION AND COST SUMMARY

As described in Section 4, the determining factor in choosing a location for the new groundwater treatment plant is the ability to efficiently pump water into the distribution system. With the difference in cost of at least \$20,000,000 for finished water main design and construction, Option A along Waterworks Road is the recommended location for the new groundwater treatment plant. Exhibit 5-1 includes a basic layout for the new facilities to be located at the existing Levee Authority office and DPW garage site. Exhibit 5-2 provides a potential layout for the three (3) collector wells, raw water main and treatment facilities along with the estimated amount of land to be purchased or for permanent easements.

5.2 SUMMARY OF COSTS TO COMPLETE WELL FIELD EVALUATION, WELL, RAW WATER MAIN, NEW GROUNDWATER TREATMENT PLANT AND FINISHED WATER DISTRIBUTION DESIGN AND CONSTRUCTION

5.2.1 Well Field Evaluation

Obtain options on approximately 40 acres to conduct exploratory test drilling program. Estimated cost \$500 per acre, total: \$20,000.

Complete exploratory test drilling to verify subsurface conditions, collect formation and water samples for analysis and conduct tests to determine transmissivity. Estimated cost of \$20,000 per location for three locations, total: \$60,000.

Conduct detailed aquifer testing to refine aquifer characteristics, predict well yield and gather information for final well design, including installation and test pumping of a temporary production well. Estimated cost: \$150,000.

Complete data analysis and final report with well design criteria. Estimated cost: \$30,000.

TOTAL ESTIMATED COST FOR WELL FIELD EVALUATION: \$260,000

5.2.2 Well Field Property Acquisition Collector Well Design and Construction

Purchase property for wells. Approximately 10 acres are required for each of 3 wells for a total of 30 acres at \$10,000 per acre. Total property cost for wells: \$300,000.

Design and construct collector wells complete with pumps, buildings, and auxiliary equipment. Three (3) wells at \$3,000,000 each would be a total of \$9,000,000. Add design, bidding, construction engineering and resident representative services at 20 percent of the estimated construction cost for a total estimated cost of \$10,800,000. Cost estimate for wells provided by Ranney Collector Wells, a division of Layne Henry Civil.

TOTAL ESTIMATED COST FOR PROPERTY ACQUISITION, WELL DESIGN AND CONSTRUCTION: \$11,100,000

OUCC Attachment JTP-3 Cause No. 45545 Page 38 of 80

5.2.3 Raw Water Main from Well Field to New Water Treatment Plant

Acquire easements to install raw water main. Estimated distance from furthest well to new plant site is 9,200 feet with 30-foot-wide permanent easement and 100-foot-wide temporary easement required. Permanent easement will require approximately 6 acres at \$10,000 per acre for a total of \$60,000.

Design and construct new raw water main from well field to new water treatment plant. To provide redundancy, install dual 48-inch-diameter ductile iron mains. Estimated construction cost for dual 48-inch ductile iron main is \$11,500,000. Add design, bidding, construction engineering and resident representative services at 20 percent of estimated construction cost for a total cost of \$13,800,000.

TOTAL ESTIMATED COST FOR THE RAW WATER MAIN DESIGN, PROPERTY ACQUISITION AND CONSTRUCTION: \$13,900,000

5.2.4 New Water Treatment Plant

Locate new plant and finished water reservoir on existing City-owned property now consisting of Levee Authority offices and Department of Public Works (DPW) facilities. No costs are expected to acquire the property; however, costs will be incurred to demolish the existing buildings and prepare the site for construction. The estimated cost to prepare the site is \$250,000, plus additional costs to relocate the Levee Authority and DPW depending on the arrangement with the City. For the purpose of this report, it is estimated the Evansville Water and Sewer Utility (EWSU) will contribute \$250,000 towards moving the Levee Authority and DPW for a total property cost of \$500,000.

Design and construct a new 60 million gallons per day (MGD) groundwater treatment plant utilizing chemical oxidation of iron and manganese, gravity filters and a new 6-million-gallon finished water reservoir. The total estimated construction cost for the plant and reservoir is \$58,000,000. Adding 20 percent for design, bidding, construction engineering and resident representative services, brings the total estimated project cost to \$70,000,000.

5.2.5 Finished Water Mains and Connections into Existing Distribution System

By locating the new plant at the site of the existing Levee Authority and DPW garage, minimal improvements are necessary to connect the new high-service pumps into the distribution system. For this estimate, the total cost of this effort is not expected to exceed \$500,000.

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 31

OUCC Attachment JTP-3 Cause No. 45545 Page 39 of 80

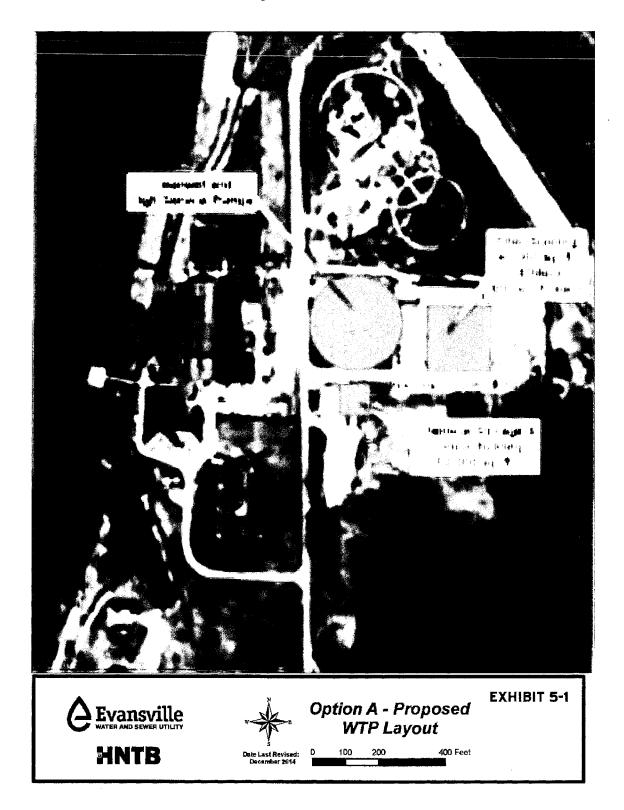
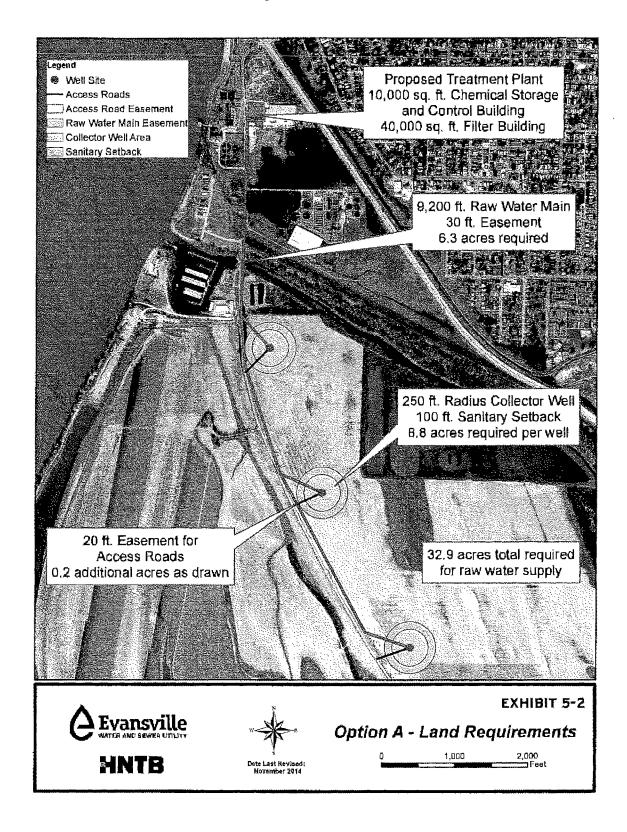

OUCC DR 2.1 Page 36 of 38

TABLE 5.1 SUMMARY

Well Field Evaluation	\$ 260,000
Property Acquisition	
Well Field	\$ 300,000
Raw Water Main	\$ 60,000
Treatment Plant	\$ 500,000
Construction	a)
Collector Wells	\$ 9,000,000
Raw Water Main	\$ 11,500,000
Water Treatment Plant	\$ 58,000,000
Finished Water Main Connection to Distribution System	\$ 500,000
Total Estimated Construction Cost with 20% Contingency	\$ 79,000,000
Engineering (Design, Bidding, Construction Engineering and	
Resident Representative Services) at 20% of Total Construction	\$ 15,800,000
TOTAL ESTIMATED PROJECT COST	\$ 96,000,000

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 32


OUCC Attachment JTP-3 Cause No. 45545 Page 40 of 80 OUCC DR 2.1 Page 37 of 38

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 33

OUCC DR 2.1 Page 38 of 38

OUCC Attachment JTP-3 Cause No. 45545 Page 41 of 80

New Groundwater Treatment Plant Feasibility Study Evansville Water and Sewer Utility 34

OUCC DR 8-001

DATA INFORMATION REQUEST City of Evansville, Indiana

06/20/2016

Cause No. 44760

Information Requested:

In response to OUCC data request 1-5, Petitioner indicates that the basis for the \$10 million dollar estimate for "Preliminary Engineering for Treatment Plant" is the New Groundwater Treatment Plant Feasibility Study, Table 5.1, on page 32 (prepared by HNTB Corporation). Petitioner stated that the \$10 million estimate "represents the design portion (typically referred to as preliminary engineering) of the \$15.8 million figure ..." Please answer the following questions:

- a. Please list and explain what services will be provided for the \$10 million figure.
- b. Please provide the cost for each service described above.
- c. Please explain how the costs associated with each service were determined or developed.
- d. Please explain the need for each service to be provided.
- e. Will any construction be funded by the \$10 million?

Information Provided:

- a. The services to be provided would consist of the design and preparation of detailed construction drawings and specifications for:
 - 1. a new facility utilizing the existing source water (Ohio River); or
 - 2. a new facility utilizing groundwater as the source water; or
 - 3. upgrade of the existing facility (originally constructed in the late 1800's) and continuing to utilize the existing source water; or
 - 4. conversion of the existing facility to utilize ground water as the source water.

The determination of which option is to be designed will be made based on the studies identified in the response to Request 8-003 below.

OUCC Attachment JTP-3 Cause No. 45545 Page 43 of 80

OUCC DR 8-001 (Cont'd)

DATA INFORMATION REQUEST City of Evansville, Indiana

06/20/2016

Cause No. 44760

Information Provided (cont'd):

- b. The cost of the aforementioned design and preparation of construction drawings and specifications would be lump sum and the eventual amount of these professional services (currently estimated at \$10 million) would be negotiated with the consultant eventually selected.
- c. The cost was estimated as detailed in OUCC DR 2-001.
- d. The existing facility is approximately 120 years old and is Petitioner's sole source of supply to provide water to over 60,000 service connections and a population of approximately 200,000 individuals. Continued reliance on this aging facility is not an option. Petitioner must do something (i.e. replace or refurbish the existing facility) to address the age of the facility and mitigate risks related to barge traffic, chemical spills, etc. The completion of the studies identified in the response to Request 8-003 will allow Petitioner to determine the preferred recommended course of action.
- e. The \$10 million figure does not include any construction.

OUCC Attachment JTP-3 Cause No. 45545 Page 44 of 80

OUCC DR 8-002

DATA INFORMATION REQUEST City of Evansville, Indiana

06/20/2016

Cause No. 44760

Information Requested:

Please describe or explain what studies Petitioner has performed in its effort to determine the long-term source of supply and water treatment option Petitioner will pursue (i.e. (1) upgrade existing plant to continue treating surface water; (2) upgrade / modify existing plant to treat ground water; or (3) construct new groundwater treatment plant to treat groundwater).

Information Provided:

The only formal study to-date that has been performed towards this effort is the document titled *New Groundwater Treatment Plant Feasibility Study* (previously provided in response to OUCC DR 1.5)

OUCC Attachment JTP-3 Cause No. 45545 Page 45 of 80

OUCC DR 8-003

DATA INFORMATION REQUEST City of Evansville, Indiana

06/20/2016

Cause No. 44760

Information Requested:

Please describe or explain what studies Petitioner still needs to perform in its effort to determine the long-term source of supply and water treatment option Petitioner will pursue (i.e. (1) upgrade existing plant to continue treating surface water; (2) upgrade / modify existing plant to treat ground water; or (3) construct new groundwater treatment plant to treat groundwater).

Information Provided:

Studies remaining to be performed in order to determine which option will be pursued are the pending master plan update that will detail the needs to keep the existing plant in operation for the next 30 years and the estimated \$650,000 project titled *Raw Water Main and Treatment Plant Property Acquisition* that was discussed in the response to OUCC DR 2-001.

OUCC DR 3-15

06/29/2018

DATA REQUEST

City of Evansville Cause No. 45073

Information Requested:

On page 3 of Mr. Keepes rebuttal testimony in Cause No. 44760, he said "we should analyze the costs and benefits of the various options and present it as part of our next case when we recommend financing for whatever choice is made." This is also referenced in the Commission's order on the top of page 7. Has Evansville performed this analysis? If so, please provide this analysis.

Information Provided:

The analysis of the costs and benefits of the various options has commenced and been ongoing since the October 5, 2016 Order of the Commission and subsequent availability of funding for the wellfield evaluation. A part of that effort is attached in the form of the document titled Preliminary Test Drilling Results-September 8, 2017 (Attachment OUCC DR 3-15.pdf). As was outlined in direct testimony, that document details the fact that potential quantities were not as promising as was hoped. However, the magnitude of importance of a thorough investigation and the long-term impacts of the eventual decision dictated that the preliminary professional recommendations in that report be followed, and easement acquisition efforts commenced to perform additional test borings. This has, unfortunately, resulted in delays to the overall analysis. Specifically, additional time was required for acquisition of these easements, and unusually high river levels resulting in inundation of the additional sites delayed the actual drilling until March 22nd, 23rd and 25th of this year. Three borings (one on each of those dates) were performed when unusually high river levels once again forced demobilization of the drilling crew. When conditions permitted, two more test borings were performed, one on May 21st and another on May 23rd. The results of these five additional borings are not yet complete but are anticipated by July 2018. As discussed in the Direct Testimony of Patrick R. Keepes in Cause No. 44760, at pg. 5, the CIP is a 4-year plan which extends until 2020. As stated previously, Evansville is currently only in Year 2 of the 4-year plan.

Attachments:

OUCC DR 3-15.pdf

ou (Layne)		CC Attachment JTP-3 Cause No. 45545 Page 47 of 80	Cause No. 45073 OUCC DR 3-15 Page 1 of 6
	ATER - MINERAL • ENERGY		MEMO
To: From:	Joe Thais, HNTB Henry Hunt	•	Ranney Collector Wells Columbus, Ohio 614.888.6263
Date:	September 8, 201	7	
Subject:	Preliminary result	ts from test drilling, Eva	nsville, IN

Test drilling was performed in accordance with our proposal of July 22, 2016 for Phase 2—Test Drilling and Preliminary Testing during the period from July 25, 2017 — August 11, 2017. Six test borings were installed in the easement area along Waterworks Road, generally south and east from the existing City water treatment plant. The approximate locations of these six borings are shown on the attached Figure 1.

The test area consists of a wide floodplain south and east from the existing water treatment plant (WTP) that extends upriver past Route 41 to within about 3 miles of Newburgh, Indiana. The entire area consists of reworked channel and riverbank deposits of the Ohio River that have evolved over many years. The last major change in the course of the Ohio River was reportedly in the 1800's possibly as the result of seismic activity. This change resulted in the present-day course of the Ohio River which may have shifted the river about 1 mile to the south and west from its' previous northern (Indiana) bank located in the vicinity of Waterworks Road, which follows the approximate current boundary between Kentucky and Indiana. This Phase of the investigation was confined to drilling sites within the State of Indiana, along Waterworks Road a distance of about 2 miles from the WTP.

Boring location, coordinates, depths and other pertinent information is presented following table.

							Bedrock	[
		State Plane (Coordinates	Grade			Surface	Static Water	Screen Setting
	Date	Indiana Wes	t Zone 1302	Elevation	Total Depth	Depth to	Elevation	Elevation	for Well/
Boring ID	Drilled	Easting	Northing	(NAVD88)	Drilled ⁽¹⁾	Bedrock ⁽¹⁾	(NAVD88)	(NAVD88)	Piezometer ⁽¹⁾
		(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
TB2017-1	7/26/2017	2,811,850	983,909.5	364.83	116	110	254.8	348.9	90 - 100
TB2017-2	7/28/2017	2,812,054	983,066.7	365.20	115	111	254.2	348.7	Abandoned
TB2017-3	7/30/2017	2,812,973	981,202.4	365.82	114	112	253.8	349.1	Abandoned
TB2017-4	8/9/2017	2,813,390	980,386.3	366.42	113	111	255.4	350.2	65 - 75
TB2017-5	8/1/2017	2,814,267	979,149.1	367.24	113	110	257.2	351.3	90 - 100
TB2017-6	8/8/2017	2,815,413	977,792.8	367.39	112	110	257.4	351,6	75 - 85

Test Boring/Observation Well Summary

Notes: (1) All depths are referenced from land surface at boring location.

LAYNE Water Resources Division - Ranney Collector Wells

OUCC Attachment JTP-3 Cause No. 45545 Page 48 of 80

In general, sandy soil conditions were encountered in all six borings, common in alluvial sediments found along the Ohio River. The stratigraphic column showed layers of soils typical of the alluvial-related deposition that would have occurred over the years as a result of glacial activity and the river migration reported in this area. TB2017-5 and TB2017-6 encountered increased amounts of coarser deposits, including coarser sands and gravels.

All test drilling sites indicated aquifer materials that could be utilized to develop a groundwater supply to wells. The finer-grained deposits encountered in borings TB2017-1 through TB2017-4 showed generally fine to coarse sands with some silt. TB2017-6 showed a similar sequence of sand but contained gravel deposits over the interval from 55 to 86 feet. TB2017-5 showed a higher percentage of coarse gravel deposits that extended over the interval from 54 to 104 feet below grade (with a sequence of sand from 80 to 90 feet).

While each boring encountered aquifer formation deposits suitable for developing a groundwater supply, the yield for each well will vary according to the hydraulic characteristics of the aquifer formation that would be screened by each well. From our preliminary evaluation of the test data, we would expect that a collector well constructed at the locations of TB2017-1 through TB2017-4 could develop a capacity ranging from about 4-6 MGD. A collector well located at TB2017-5 would be expected to be in the range of 10 MGD, while a collector well constructed at the location of TB2017-6 would be expected to be in the range of 5-6 MGD. Site specific aquifer testing (Phase 3) is required to develop firm estimates of the aquifer characteristics necessary to verify expected well capacities and develop well design parameters. Typically, the detailed aquifer test is conducted at the boring site with the most indicated potential, in this case TB2017-5.

The boring sites were located along Waterworks road, and the distance from the borings to the Ohio River (recharge source) varied from about 2000 feet at TB2017-1 to over a mile at TB2017-4, 5 and 6. This distance from the river would likely result in wells that pump largely groundwater from storage within the floodplain area. Wells constructed closer to the Ohio River would be expected to develop some percentage of water that would recharge the aquifer through induced (e.g. riverbank) infiltration which would be expected to support 30% to 50% higher individual well yields. Additionally, wells located near the river would be expected to produce water lower in mineral content than wells constructed further back, such as along Waterworks Road.

As part of the preliminary testing of the test borings, a short pumping test was conducted and water samples were collected and submitted to a laboratory for preliminary screening purposes. A general summary of the laboratory results for each boring is presented in the following table.

OUCC Attachment JTP-3 Cause No. 45545 Page 49 of 80

		ТВ 2017-1	TB2017-2	TB2017-3	TB2017-4	TB2017-5	TB2017-6
Constituent	Units	90-100 ft	90-100 ft	70-76 ft	65-75 ft	90-100 ft	75-85 ft
Arsenic	mg/l	0,009	0.008	ND	ND	0.008	0.005
Iron	mg/l	3.63	3.38	1,75	1.70	4.46	1.49
Manganese	mg/l	0,276	0.398	2.260	3.390	0.359	1.950
Hardness, (Total)	mg/l	410	420	360	310	590	350
рН	s.u.	6.9	6,8	6.8	6.6	6,9	6.8
Total Dissolved Solids	mg/l	480	480	430	380	700	390
Chloride	mg/l	15	17	21	23	43	36
Nitrate as N	mg/l	ND	ND	ND	ND	ND	ND
Nitrite as N	mg/I	ND	ND	ND	ND	ND	ND
Sulfate	mg/I	100	120	86	71	200	30

Laboratory Water Quality Results

These concentrations are reflective of groundwater quality in alluvial aquifers along the Ohio River. If the wells could be constructed closer to the river, we would expect recharge from the river would result in lower concentrations in some parameters. For comparison, concentrations of hardness observed in several collector wells located along the riverbank of the Ohio River have been observed at:

Industry in Brandenburg, KY – 300 mg/l Industry in Henderson, KY – 180 mg/l Louisville Water Company – 200-250 mg/l

Additional Investigation

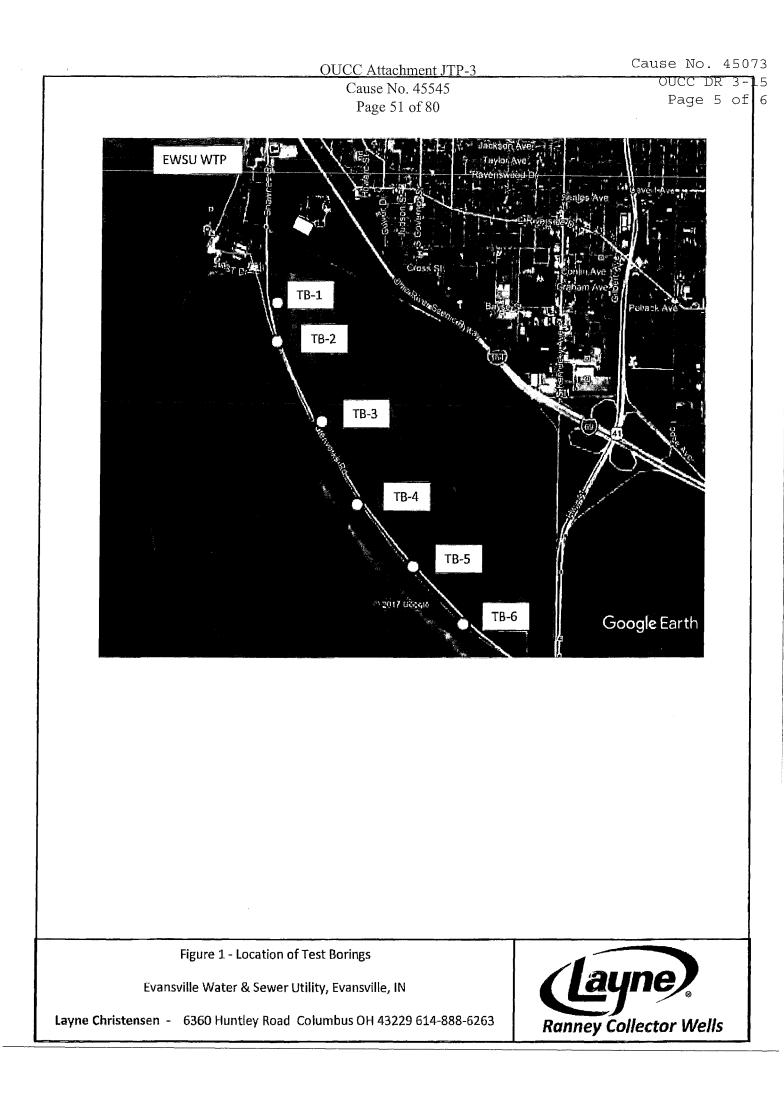
Based upon the preliminary testing conducted in Phase 2 to date, it will require multiple collector wells to develop a firm capacity of 40 MGD, or more. If sites can be identified that have more favorable aquifer characteristics, higher individual well capacities would be expected and fewer wells would be required to meet the projected demand. The test borings at TB2017-5 and TB2017-6 encountered the most favorable aquifer deposits at the southeastern end of the line of borings. It appears that formation deposits may be improving in that direction, suggesting that further exploratory test drilling could identify additional sites, and sites with better potential to meet higher well capacities.

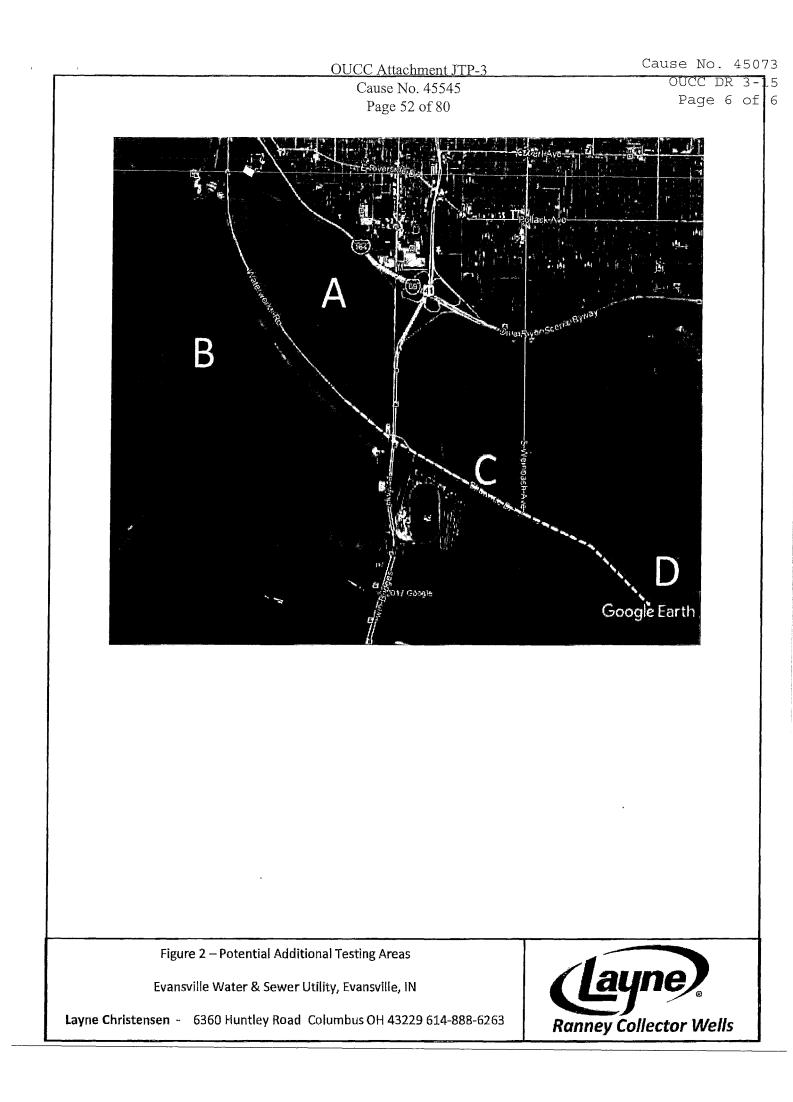
Four additional areas (Figure 2) have been tentatively identified as possible sites where additional exploration is warranted:

A: area away from the river, generally to the east of Waterworks Road. Since the property owner where TB2017-5 and 6 were installed appears amenable to allowing site access, perhaps areas on that property should be considered.

LAYNE Water Resources Division - Ranney Collector Wells

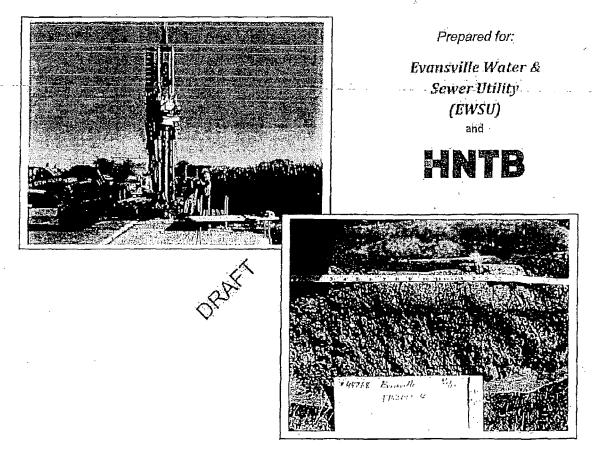
B: area toward the river, on property within the State of Kentucky. As mentioned above, higher individual well capacities and improved raw water quality are anticipated from wells located closer to the river.


C: areas continuing down the easement along Waterworks Road across and past Route 41 (this becomes Shawnee Drive), possibly extending down as far as the intersection of Shawnee Road and the Ohio River.


D: areas where Shawnee Road reaches the Ohio River. If favorable geologic deposits exist and a hydraulic connection exists between the aquifer the river, wells in this area could offer the benefit of developing higher percentages of infiltrated water which should provide increased well capacities and improved raw water quality.

Preliminary Recommendations

The test drilling has identified suitable aquifer formation deposits to develop a groundwater supply to meet future demands for EWSU. The results of the test drilling showed improving geologic conditions as the borings progressed down Waterworks Road, suggesting that more favorable locations may exist outside of the area designated for the preliminary test drilling. It is critical to locate the most favorable sites to minimize the number of wells needed. Wells located closer to the river will have higher yields as well as better water quality, especially in regard to dissolved solids and hardness. By locating wells within 300 feet of the river, yield increases of 30- 50 % are possible, along with quality improvements.


It is recommended that additional test borings be made in one or more of the areas listed above to identify the most favorable site (or sites) for the detailed aquifer testing proposed for Phase 3.

DRAFT

Report of Findings Collector Well Feasibility Investigation

Prepared By:

Columbus, Ohio August 3, 2018

OUCC Attachment JTP-3 Cause No. 45545 Page 54 of 80

DRAFT

TABI	LE OF CONTENTS	3	· · · · ·			PAGE
1. IN	ITRODUCTION		*****	*****		
11	BACKGROUND				*******	
1.2	SCOPE OF WORK	38.36.68.69.83.68.94.8 ³ .92.94.94.94.94.94.19				
1.3	LIMITATIONS	Text Least territoria and a second	*****			
2 FI	ELD PROCEDURES	1 + + + 1 + + + + + + + + + + + + + + +			******	
2.1	TEST DRILLING	1949 1715 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	*****	****	
2.2	HYDRAULIC INTERVAL TESTING					
3 ТА	ASK 2 RESULTS				6	./
3.1	DRILLING RESULTS					5
3.2	GRAIN SIZE DISTRIBUTION ANALYSIS					
3.3	HYDRAULIC INTERVAL TEST RESULTS	4				
3.4	FIELD WATER QUALITY RESULTS					· ·
3,5	LABORATORY WATER QUALITY RESULT				•	-
	DLLECTOR WELL YIELD ESTIMATES					
	IMMARY AND RECOMMENDATIONS					
5.1	$\mathbf{C}^{\mathbf{a}}$					
5.2	CL3					
	a se tra de la serie de la	** } **********************************				

LIST OF FIGURES (REAR OF REPORT)

FIGURE 1 -- BORING LOCATION MAP FIGURE 2 -- GEOLOGIC CROSS-SECTION MAP FIGURE 3 -- GENERALIZED GEOLOGIC CROSS-SECTION FIGURE 3 -- TB2017-1 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 5 -- TB2017-2 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 6 -- TB2017-3 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 7 -- TB2017-4 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 8 -- TB2017-5 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 9 -- TB2017-5 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 9 -- TB2017-6 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 10 -- TB2018-7 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT

EWSU

Collector Well Feasibility Investigation

11

TABLE OF CONTENTS (CONTINUED)

FIGURE 11 – TB2018-8 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 12 – TB2018-9 HYDRAULIC INTERVAL TEST SEMI-LOG DRAWDOWN VERSUS TIME PLOT FIGURE 13 – POTENTIAL TEST AREA

LIST OF TABLES (REAR OF REPORT)

TABLE 1 -- TEST HOLE INFORMATION SUMMARYTABLE 2 -- GRAIN SIZE ANALYSIS SUMMARYTABLE 3 -- HYDRAULIC INTERVAL TEST RESULTSTABLE 4 -- FIELD WATER QUALITY RESULTSTABLE 5 -- LABORATORY WATER QUALITY RESULTSTABLE 6 -- COLLECTOR WELL YIELD ESTIMATES AND CALCULATION ASSUMPTIONS

LIST OF APPENDICES (REAR OF REPORT) EXCERPT OF APPENDIX A INCLUDED ONLY

APPENDIX A - TEST HOLE LOGS AND LITHOLOGIC SAMPLE PHOTOGRAPHS APPENDIX B - SIEVE ANALYSIS DATA APPENDIX C - HYDRAULIC INTERVAL TEST DATA APPENDIX D - LABORATORY WATER QUALITY REPORTS -

EWSU Collector Well Feasibility Investigation [44768] August 3, 2018 Ranney Collector Wells

DRAFT

OUCC Attachment JTP-3 Cause No. 45545 Page 56 of 80

DRAFT

1 INTRODUCTION

Ranney Collector Wells (Ranney), a division of Layne Christensen (Layne) was contracted by the HNTB Corporation (HNTB) to assist with a hydrogeological investigation along the Ohlo River to locate a groundwater supply of up to 40 million gallons per day (MGD) for the City of Evansville Water and Sewer Utility (EWSU). The purpose of this investigation was to determine the potential for developing a riverbank filtration (RBF) water supply using horizontal collector well technology. The focus area of this investigation was located along Waterworks Road to the southeast of the EWSU Waterworks (Figure 1). The work was conducted in accordance with the Ranney proposal dated July 22, 2016 as authorized by the Professional Services Agreement between Ranney and HNTB for HNTB Project No. 62609 dated October 2016.

1.1 BACKGROUND

The focus area for Phase 1 consists of a wide floodplain within the Green River Island area. The sufficial geology along the Ohlo River valley in this area consists of a variety of glacial and interglacial lithologic sequences characterized by alluvial and lake depositional events (USGS, 2011). The only aquifer in the area potentially capable of yielding the desired quantity and quality of water is the unconsolidated alluvium and glacial outwash deposits that fill the Ohlo River bedrock valley. The thickness of these deposits can exceed 100 feet in the Evansville area. The fill is mainly fine to medium grained lithic quartz sand, interbedded with lenses of clay, clayey silt, silt, coarse sand, and gravel (USGS, 2009). Typically, the lower part of the fill is gravely sand to sandy gravel, the middle part is mostly sand, and the upper part consists of a surficial veneer of silt and clay interspersed with sandy levee deposits (USGS, 2009). These deposits conceal Pennsylvanian age bedrock consisting of interbedded shale and sandstone.

In 1951, an evaluation of the alluve deposits at the Evansville Waterworks was conducted to determine the feasibility of developing a groundwater supply. This evaluation indicated the depth to bedrock at the Waterworks was over 100 feet with about 70 feet of saturated sand and gravel deposits (Mikels, 1951). Aquifer testing was completed and indicated that alluvial aquifer is hydraulically connected with the Ohio River, which would provide a source of recharge to the aquifer through induced RBF infiltration. The evaluation of the Waterworks site concluded that substantial groundwater development was possible in the area (Mikels, 1951). A review of the aquifer test data from this evaluation indicated an aquifer transmissivity in the range of 150,000 to 180,000 gallons per day per foot of drawdown (gpd/ft). Based upon this information and the close proximity to the Ohio River (recharge), it is estimated that a collector well could yield up to 15 MGD at this location.

1.2 SCOPE OF WORK

The scope of the Phase 1 evaluation was divided into two Tasks.

Task 1 - Exploratory Test Drilling and Hydraulic Interval Testing

Task 2 – Data Analysis and Reporting

Collector Well Feasibility Investigation

EWSU

OUCC Attachment JTP-3 Cause No. 45545 Page 57 of 80

DRAFT

Task 1 Involved field activities consisting of the drilling and sampling of ten (10) exploratory test holes to collect site-specific hydrogeological data to evaluate the character of the aquifer for horizontal collector well development. The Task 1 activities have been completed and are the subject of this report (Task 2).

1.3 LIMITATIONS

This report was prepared for the exclusive use of EWSU and HNTB. This report was prepared for the specific application of developing a ground water supply using horizontal collector well technology. Ranney makes no warranty, whether expressed on implied, as to the actual water supply or quality available. Conclusions reached in this report are based upon the objective data made available to Ranney at the time this work was performed and the accuracy of the report depends upon the accuracy of these data. Ranney's responsibility is to apply its hydrogeology expertise, and collector well experience to provide an opinion regarding the development of water supplies of adequate capacity from horizontal collector wells developed in the alluvial aquifer along the Ohio River.

EWSU Collector Well Feasibility Investigation

- 2 -

DRAFT

2 FIELD PROCEDURES

The yield of a collector well will be dependent upon the water transmitting properties of the aquifer present, well design and recharge. The aquifer targeted for evaluation is the unconsolidated alluvium and glacial outwash deposits that fill the Ohio River bedrock valley. Initially for Task 1 of this investigation, the evaluation of the water transmitting properties of this aquifer was conducted by the drilling and sampling of six (6) exploratory test borings (TB2017-1 through TB2017-6) (Figure 1) in July and August 2017. A follow-up investigation was conducted in March and May 2018 by the drilling of four (4) additional exploratory test borings (TB2018-7 through TB2018-10). To date a total of ten (10) exploratory test borings have been drilled and hydraulically tested for Task 1 of this linvestigation.

2.1 TEST DRILLING

HNTB/EWSU arranged for access to and selected the test drilling locations along a 4% mile stretch of Waterworks Road. The borings were generally drilled within the right-of-way for Waterworks Road as local property owners were reluctant to provide permission to drill on their properties within the State of Indiana. Access was granted for one boring (TB2018-7) that was drilled along a farm lane about 2,600 feet east of Waterworks Road. Prospective sites on the south side of Waterworks Road were suggested, but not pursued due to being on the Kentucky side of the border. The drilling was directed by a Ranney Hydrogeologist experienced in collector well evaluations. The test borings were drilled by the Layne Specialty Drilling Division using rotasonic drilling technology. In rotasonic drilling, a drill casing is advanced into the ground using rotasonic drilling technology. The rotasonic drilling method produces a nearly continuous core of the subsurface materials penetrated by the sample tube. This method does not require the use of drilling mud; so there is no mud to dispose of, and disturbance of the ground surface is minimal.

Each boring was advanced until bedack was encountered. Lithologic samples were generally obtained every five feet and at each change in formation materials. The lithologic samples were placed in suitable containers, plainly identified as to date of collection, hole number, and depth of stratum. Sieve analyses were performed on selected lithologic samples collected from the test borings to help characterize aquifer materials and evaluate hydraulic conductivity. Upon completion of the project, all samples not selected for sieve analysis were turned over to EWSU.

Hydraulic Interval tests (discussed below) were completed on both test holes. Following completion of the hydraulic Interval testing, the test holes were either converted to 2-inch PVC observation wells or properly abandoned by filling the boreholes with bentonite grout.

Following the completion of the drilling and testing activities; HNTB arranged for surveying of the drilling locations. The horizontal coordinates and ground surface elevations at the drilling locations were surveyed.

2.2 HYDRAULIC INTERVAL TESTING

Hydraulic Interval testing was completed at each of the boring locations. The vertical interval tested in the test holes was selected by the hydrogeologist on the basis of the drilling and sampling results. Upon

Collector Well Feasibility Investigation

EWSÜ

reaching the total completion depth of the test boring, the casing was pulled back to the bottom of the interval to be tested, and a temporary well was constructed by installing a 10-foot length of well screen (4-inch diameter, wire-wrapped continuous slot) using the pullback method. The screen slot size was selected based on the grain size of the formation materials, with 0.020 inch to 0.060 inch slot screens utilized during the testing.

Development of the test interval was accomplished by air lifting for a two hour period after which the water produced was visibly clear and contained little or no sediment. The temporary well was equipped with a temporary pump capable of pumping up to 100 gallons per minute (gpm). An in-line electromagnetic flow meter (4-inch diameter Omega FMG1000 Series) was used to measure the pumping rates during the testing. The selected interval was pumped for a minimum of two (2) hours, with the pumping period divided into four (4) steps of at least thirty (30) minutes duration. During each step, the pumping was maintained at a constant rate,

Depths to water were measured to the nearest 0.01 foot in the temporary well prior to and during the pumping period. The elapsed time of pumping to the nearest minute and the pumping rate associated with each water level measurement were recorded.

During each step of the pumping period; water level measurements in the temporary well were made on approximately the following schedule:

- Every 1 minute for 0 to 6 minutes from the start of the step;
- Every 2 minutes for 6 to 12 minutes from the start of the step;
- Every 5 minutes after 15 minutes from the start of the step.

During the hydraulic interval testing water samples were field screened for pH, conductivity, total hardness, iron and temperature. Additionally, water samples taken at the end of the pumping period were submitted to National Testing Laboratories (NTL) of Ypsilanti, Michigan for laboratory analysis and general quality screening.

EWSU Collector Well Feasibility Investigation

- 4 -

DRAFT

3 TASK 2 RESULTS

This section presents the findings of the field activities. From this information, preliminary collector well yield and conceptual design elements can be developed,

3.1 DRILLING RESULTS

Ten (10) test borings (TB2017-1 through TB2017-6 & TB2018-7 through TB2018-10) were drilled to evaluate the aquifer properties (Figure 1) along the right-of-way for Waterworks Road. Logs for the test borings and photographs of the lithologic samples are presented in Appendix A and a summary of information on the test holes is presented in Table 1. A generalized northwest to southeast crosssection A-A' (Figure 2) was developed from the test boring lithologic information. The cross-section is presented in Figure 3.

The total drilled depths of the test borings varied from 64 to 116 feet. The depths at which the top of bedrock was encountered generally varied from 100 to 112 feet. The exception to this was the eastern most boring (TB2018-10), which encountered bedrock much shallower at a depth of 60 feet. TB2018-10 was located near the Ohio River and directly across from the edge of the valley (bedrock high) located on the opposite side of the river. It is likely that this bedrock high continues across the river into Indiana at the TB2018-10 location. Based on the surveyed ground surface elevations and the depths at which the bedrock surface was encountered, the bedrock surface is relatively uniform across the other drilling sites. The bedrock surface elevations in the test holes varied from a minimum of 254 feet NAVD88 at TB2017-3 to a maximum of 261 feet NAVD88 at TB2018-9, While the bedrock surface elevation at the shallow TB2018-10 location was 310 feet NAVD88.

The alluvial materials above the bedrock are generally comprised of a fining upward sequence comprised predominantly of fine to medium-grained lithic sand, interbedded with lenses of clay, clayey silt, silt, coarse sand, and gravel. Typically, the lower portion of the alluvial materials encountered were generally comprised of coarse-grained materials including gravelly sand and sandy gravel with occasional cobbles. The middle portion is mostly fine to medium-grained lithic sand. Occasional thin, layers of clay were encountered in each of the test drilling locations. The upper part consists of finer. overbank surficial deposits of sandy silt and clay. The bedrock encountered in the borings consisted of Pennsylvanian aged mudstone/shale and fine to medium grained sandstone. The bedrock is considered to be non-water bearing.

The two rounds of test drilling were conducted under substantially different river and groundwater level conditions. The groundwater level elevations in the test holes drilled in July-August 2017 (TB2017-1 through TB2017-6) ranged from 348.7 to 351.6 feet NAVD88 and indicated a west to northwest groundwater flow direction towards the river. The normal river pool elevation for this stretch of the Ohio River is 342 feet. During the 2017 test drilling program, the Ohio River level elevations reported at the Evansville gage (USGS 03322000) ranged from 342.1 to 349.6 feet NAVD88. The groundwater levels

EWSU

Collector Well Feasibility Investigation

- 5 -

observed in the test borings at the time of the drilling were within depths at which the formation material was predominantly sand to silty sand indicating that the aquifer is under unconfined to semiconfined conditions.

The groundwater level elevations in the test holes drilled in March 2018 (TB2018-8 and TB2018-9) were considerably higher ranging from 360.0 feet NAVD88 (TB2018-8) to 361.6 feet NAVD88 (TB2018-9). The elevated groundwater levels observed in these borings were due the recent flooding of the Ohio River. The Ohio River level elevations at the Evansville gaged during the March 2018 drilling ranged from 351.9 to 356.7 feet and had recently been as high as 375 feet. Flood waters prevented access to the TB2018-7 location until May 22, 2018. During the testing of TB2018-7, the groundwater level was found to be flowing to at least 3 feet above grade under artesian pressure (grade elevation 356.6 feet). The flowing artesian conditions were likely the result of the recent Ohio River flooding.

3.2 GRAIN SIZE DISTRIBUTION ANALYSIS

Lithologic samples from each boring were selected for sleve analysis to determine the grain size distributions. The sleve analysis results are summarized in Table 2 and the sleve analysis data and grain size distribution graphs are presented in Appendix B.

As shown in Table 2, the range of the 60% passing grain diameter (D_{60}) of the samples analyzed varies from a minimum of 0.008 inch to a maximum of 0.202 inch. The uniformity coefficients ($C_u = D_{60}/D_{10}$) for the selected samples ranged from 1.5 to 16.9, with the majority having uniformity coefficients less than 4. Material with a C_u less than 4 is considered poorly graded or uniform.

Using the sieve analysis results, hydraulic conductivity values were estimated from grain size distribution, based on equations presented in Vukovit and Soro (1992). These equations relate hydraulic conductivity to the effective grain size, grain size distribution and degree of sorting in the lithologic samples. It should be noted that hydraulic conductivity estimates based on grain size distribution are considered to have a low level of accuracy. They are presented in Table 2 to allow comparison of the vertical and horizontal variations within the aquifer materials and for comparison with the hydraulic conductivity values determined from the hydraulic interval tests.

3.3 HYDRAULIC INTERVAL TEST RESULTS

The data obtained from the hydraulic interval tests were utilized to calculate the aquifer transmissivity and hydraulic conductivity. Due to the short duration of the hydraulic interval tests and because they are single well pumping tests, the results for the aquifer parameters should be considered as approximate and are intended primarily to allow comparison of the test hole locations.

The transmissivity and hydraulic conductivity of the aquifer can be estimated from data collected during, the interval tests. Transmissivity of an aquifer can be estimated from specific capacity using the following equation (Driscoll, 1986):

T = 1500 * Q/s (unconfined)

or

EWSU Collector Well Feasibility Investigation

- 6 -

OUCC Attachment JTP-3 Cause No. 45545 Page 62 of 80

DRAFT

f = 2000 * Q/s (confined)

Where: T = transmissivity; gpd/ft Q/s = specific capacity; gpm/ft;

Hydraulic conductivity is related to transmissivity by the following equation:

K = T/b

Where: K = hydraulic conductivity, gpd/ft² b = aguifer thickness, feet

For the hydraulic interval tests, the temporary small diameter wells were used to evaluate the permeability of the selected interval in the borings. The specific capacity data from the test were adjusted for well loss and the effects of partial penetration effects using an equation by Kozeny (Driscoll, 1986), such that:

$$T = \frac{1500 \cdot \frac{Q}{s}}{X \cdot E}$$

$$X = L \cdot \left[1 + 7 \cdot \sqrt{\frac{r}{2 \cdot b \cdot L}} \cdot \cos\left(\frac{\pi \cdot L}{2}\right) \right]$$

Where: r = well redlus, in feet

b = outfer thickness, feet

L Well screen length as a fraction of aquifer thickness and E = efficiency, obtained from analysis of the step test

The Kozeny equation to adjust for partial penetration is based on the assumption that the adjust is homogeneous and isotropic. Because the adjuster materials have a fining upward character at the sites tested, the partial penetration adjustment could result in an overestimate of the transmissivity and hydraulic conductivity values. For the transmissivity estimates, only the coarser deposits of sand to sandy gravel were considered in determining the saturated thickness of the alluvial adjuster at the sites.

The hydraulic interval testing results are presented in the following discussion and summarized in Table 3, with the water level data being included in Appendix C. Semi-logarithmic plots showing the timedrawdown relationships during the individual hydraulic interval tests are depicted in Figures 4 through 12.

Following the drilling of TB2017-1, a temporary well screen (0.020-inch slot openings) was set between depths of 90 and 100 feet for hydraulic interval testing. The TB2017-1 temporary well was pumped at rates of 40, 55, 70 and 88 gpm, with the observed drawdown at the end of the 4th step being 6.44 feet

Collector Well Feasibility Investigation

EWSU

equating to a specific capacity of 14 gallons per minute per foot of drawdown (gpm/ft). The transmissivity of the aquifer materials at TB2017-1 was estimated to be 116,000 gallons per day per foot (gpd/ft) and the hydraulic conductivity was estimated to be 1,400 gpd/ft², based upon an unconfined aquifer thickness of 81 feet. Following testing, the boring was converted to a 2-inch PVC observation well with a 10-slot milled PVC screen set from 90 to 100 feet. The observation well was completed with a flush-mount protective cover.

For TB2017-2, the temporary well screen (0.020-inch slot openings) was also set between depths of 90 and 100 feet for hydraulic interval testing. The temporary well was pumped at rates of 44, 60, 74 and 91 gpm, with the observed drawdown at the end of the 4th step being 8.67 feet equating to a specific capacity of 11 gpm/ft. The transmissivity of the aquifer materials at TB2017-2 was estimated to be 113,000 gpd/ft and the hydraulic conductivity was estimated to be 1,600 gpd/ft²; based upon an aquifer thickness of 71 feet. TB2017-2 was abandoned with bentonite following testing.

With the consistent results from the first two tests, a zone of coarser deposits located in the middle of the aquifer was selected for testing at TB2017-3. The temporary well screen (0.040-inch slot openings) was set from 69 to 76 feet at TB2017-3. The temporary well was pumped at rates of 37, 61, 72 and 92 gpm, with the observed drawdown at the end of the 4th step being 12.24 feet equating to a specific capacity of 8 gpm/ft. The transmissivity of the aquifer materials at TB2017-3 was estimated to be 94,000 gpd/ft and the hydraulic conductivity was estimated to be 1,400 gpd/ft², based upon an aquifer thickness of 67 feet. TB2017-3 was abandoned with bentonite following testing.

For TB2017-4, the temporary well screen (0.060-inch slot openings) was also set between depths of 65 and 75 feet for hydraulic interval testing. The temporary well was pumped at rates of 36, 61, 75 and 93 gpm, with the observed drawdown as the end of the 4th step being 7.21 feet equating to a specific capacity of 13 gpm/ft. The transmissivity of the aquifer materials at TB2017-4 was estimated to be 101,000 gpd/ft and the hydraulic conductivity was estimated to be 1,900 gpd/ft², based upon an aquifer thickness of 54 feet. Following testing, TB2017-4 was converted to a 2-inch PVC observation well with a 10-slot milled PVC screen set from 65 to 75 feet.

At TB2017-5, the temporary well screen (0.060-lnch slot openings) was set from 90 to 100 feet in a coarse zone of sandy gravel. The well was pumped at rates of 38, 61, 75 and 93 gpm, with the observed drawdown at the end of the 4th step being 2.10 feet equating to a specific capacity of 44 gpm/ft. The transmissivity of the aquifer materials at TB2017-5 was estimated to be 241,000 gpd/ft and the hydraulic conductivity was estimated to be 3,800 gpd/ft², based upon an aquifer thickness of 63 feet. Following testing, the boring was converted to a 2-inch PVC observation well with a 10-slot milled PVC screen set from 90 to 100 feet.

For TB2017-6, the temporary well screen (0.060-inch slot openings) was set between depths of 75 and 85 feet for hydraulic interval testing. The temporary well was pumped at rates of 42, 62, 77 and 94 gpm, with the observed drawdown at the end of the 4th step being 4.67 feet equating to a specific capacity of 20 gpm/ft. The transmissivity of the aquifer materials at TB2017-6 was estimated to be 143,000 gpd/ft

[44768] August 3, 2018 Ranney Collector Wells

and the hydraulic conductivity was estimated to be 3,000 gpd/ft², based upon an aquifer thickness of 48 feet. After testing was completed, TB2017-6 was converted to a 2-inch PVC observation well with a 10slot milled PVC screen set from 75 to 85 feet.

For TB2018-7, the temporary well screen (0.020-inch slot openings) was set between depths of 85 and 95 feet for hydraulic interval testing. Prior to testing, the well was flowing under artesian conditions at about 1 to 2 gpm. The temporary well was pumped at rates of 40, 60, 82 and 99 gpm, with the observed drawdown at the end of the 4th step being 27.17 feet equating to a specific capacity of 4 gpm/ft. The transmissivity of the aquifer materials at TB2018-7 was estimated to be 34,000 gpd/ft and the hydraulic conductivity was estimated to be 500 gpd/ft², based upon an aquifer thickness of 66 feet. After testing was completed, TB2017-6 was abandoned with bentonite.

At TB2018-8, the Interval selected for hydraulic testing was from 50 to 70 feet (0.040-inch slot openings). The temporary well was pumped at rates of 48, 66, 86 and 105 gpm, with the observed drawdown at the end of the 4th step being 7.52 feet equating to a specific capacity of 14 gpm/ft. The transmissivity of the aquifer materials at TB2018-8 was estimated to be 90,000 gpd/ft and the hydraulic conductivity was estimated to be 2,000 gpd/ft², based upon an aquifer thickness of 45 feet. After testing was completed, TB2017-8 was converted to a 2-inch PVC observation well with a 10-slot milled PVC screen set from 60 to 70 feet.

For TB2018-9, the temporary well screen (0.040-inch slot openings) was set between depths of 80 and 90 feet for hydraulic interval testing. The temporary well was pumped at rates of 37, 60, 77 and 103 gpm, with the observed drawdown at the end of the 4th step being 7.80 feet equating to a specific capacity of 13 gpm/ft. The transmissivity of the aquifer materials at TB2018-9 was estimated to be 113,000 gpd/ft and the hydraulic conductivity was estimated to be 1,600 gpd/ft², based upon an aquifer thickness of 69 feet. After testing was completed, TB2018-9 was converted to a 2-inch PVC observation well with a 10-slot milled PVC screen set from 80 to 90 feet.

Hydraulic interval testing was not conducted at TB2018-10 due the shallow depth to bedrock and limited thickness of sand and gravel deposits. This boring was abandoned immediately following drilling.

3.4 FIELD WATER QUALITY RESULTS

Field testing of the water discharged from the temporary wells was conducted. The discharge water was tested for temperature, pH, specific conductance, Iron and total hardness. The field water quality results are presented in Table 4.

Specific conductance is a useful indicator of the total dissolved solids concentration of water because it is proportional to the dissolved ion concentrations. The specific conductance values from the discharge ranged from a low of 617 microslemens per centimeter (μ S/cm) for the average of samples from TB2018-8 to a high of 1,088 μ S/cm for the samples from TB2017-5. In general, the deeper the sampled interval the higher the specific conductance value. The average pH values ranged from 6.9 to 7.4

- 9 --

[44768] August 3, 2018 Ranney Collector Wells

standard units (SU). The average temperature of the water discharged from the wells ranged from 54.7 to 61.7° F.

The average of field test results for iron ranged from 0.3 to 7.6 milligrams per liter (mg/l). The high value of 7.6 mg/l (TB2017-5) exceeded the range of the test kit. In order to estimate the iron content from TB2017-5 a 50% solution of distilled water was used and the result doubled to estimate the iron content. This method could have introduced some error into the field iron result for TB2017-5. The field hardness values varied from 360 mg/l to over 400 mg/l, which exceeded the range of the field kit. Overall these concentrations are reflective of groundwater quality in alluvial aquifers along the Ohio River.

3.5 LABORATORY WATER QUALITY RESULTS

Water samples were collected from the temporary wells and submitted to NTL for laboratory analysis of selected parameters. The laboratory results confirmed the field quality analyses, indicating that the groundwater is relatively hard and high in iron, manganese and total dissolved solids (TDS). The total hardness values ranged from 310 mg/l at TB2017-3 to 590 mg/l TB2017-5. The concentrations in the samples from each of the borings exceeded the USEPA secondary maximum contaminant levels (SMCLs) for iron (SMCL = 0.3 milligrams per liter (mg/l)), with the exception of TB2018-8 (0.12 mg/l). The samples from each boring exceeded SMCL of 0.05 mg/l) for manganese. The samples from TB2017-5, TB2018-7 and TB2018-9 exceeded the SMCL for TDS (SMCL = 500 mg/l). None of the VOCs or any pesticides/herbicides that were analyzed for were detected at or above the minimum reporting limits;

For quick comparison of the water quality differences between the samples, a summary table of selected general groundwater quality parameters is presented below. A complete listing of all the parameters analyzed for is presented in Table 5 with the laboratory reports included in Appendix D.

_										<u> </u>
	1000	TB2017-1	TB2017-2	TB2017-3	TB2017-4	T82017-5	TB2017-6	TB2018-7	TB2018-8	TB2018-9
Constituent	Units	90-100 ft	90-100 ft	70-76 ft	65-75 ft	90-100 ft	75-85 ft	85-95 feet	60-70 ft	80-90 ft
Arsenic	mg/l	0.009	0.008	ND	ND	0,008	0,005	0.016	<u>. N</u> D	N
Iron	.mg/l	3,63	3.38	1.75	1,70	4.46	1,49	3.83	0.12	5.1
Manganese	mg/i	0.276	0.398	2,260	3.390	0.359	1.950	0.478	2.720	2,44
Hardness	mg/l	410	420	.360	.310	. 590	350	540	320	54
рӉ	5,U,	6.9	6.8	6,8	6.6	6,9	6.8	Ġ,8	6.7	б.
TDS	mg/l	480	480	430	.380	700	390	650	370	58
Chloride.	mg/l	15	17	21	23	. 43	36	.33	23	9.
Nitrate as N	mg/l	ND	ND	ŃD	ŃĎ	ND	ND	ND	: ND	N
Nitrite as N	mg/l	ND	ND	ND	ND	ND	ND	ND	ŇD	. N
Sulfate	mg/l	· 100	120	86	71	200	30	120	48	11

Laboratory Water Quality Results

EWSÜ

Collector Well Feasibility Investigation

OUCC Attachment JTP-3 Cause No. 45545 Page 66 of 80

DRAFT

[44768] August 3, 2018

Ranney Collector Wells

As shown, the overall water quality from the lower intervals tested was poorer than the shallower. Intervals tested. The only exception was for the manganese levels, which were generally higher in the shallower interval tests.

The water quality results represent the groundwater quality in the aquifer under the ambient conditions. Given the distances of the sites from the Ohio River, the overall water quality is unlikely to change significantly if collector wells were to be installed at these locations. If collector wells were installed adjacent to the river and pumped continuously at sufficient rates, the quality of water produced from the wells should improve due to the recharge from induced infiltration from the river; whose quality is lower in most dissolved parameters:

- 11 -

EWSU

Collector Well Feasibility Investigation

4 COLLECTOR WELL YIELD ESTIMATES

The results of the drilling and hydraulic interval testing allow the estimation of potential collector well yield under conditions that vary from those observed during testing. The theoretical drawdown under steady-state pumping conditions in a collector well near a stream can be calculated using the following equation developed by Hantush and Papadopulos (1962):

$$s_{er} \geq \left(\frac{Q}{2\pi Kb}\right) \operatorname{Ln}\left(\frac{\Gamma^{r}}{\varepsilon^{\epsilon}} \left(\frac{\left(\frac{b}{\pi r_{w}}\right)^{2}}{2\left(1 - \cos\frac{\pi}{b}\left(2z_{T} + r_{w}\right)\right)}\right)^{\frac{b}{4}}\right)$$

w	h	er	е	:	
---	---	----	---	---	--

Sás

ф К

b

Г

à

Ł

rc

É

- = Drawdown in collector well, ft
- = Yield of collector, gal/day
- = Hydraulic Conductivity, gal/day/ft²
- = Saturated thickness of aquifer, ft
- = (2 (a rc))/l
- = Effective distance to a line of recharge, ft
- = Average length of laterals, ft

= Radius of collector calsson, ft

= (2a - rc - I)/I

rw = Effective radius of each lateral, ft

 z_1 = Depth of lateral below static water level, ft

For the purposes of estimating the potential collector well yields, the effective "a" distance to the recharge boundary represented by the Ohio River was set to the physical distance of the test sites to the river bank. The static water level was conservatively set to the normal pool elevation of 342 feet for this stretch of the Ohio River. The centerline of the collector well laterals was assumed to be in the lower portion of the Intervals hydraulically tested at each boring. The average lateral length was assumed to be 200 feet and the available drawdown was set to maintain at least 20 feet of water above the laterals.

Table 6 summaries the preliminary collector well yields estimated using the above equation and sitespecific information collected during the recent test drilling program. As listed the individual yields for collector wells installed at the test boring locations are estimated to range from 1.6 to 11 MGD.

The test borings are located distances of 2,000 to 7,300 feet from the Ohio River (recharge source). These distances from the river would likely result in wells that pump largely groundwater from storage within the floodplain area. Collector wells constructed closer to the river would be expected to develop a significant percentage of water through induced (e.g. riverbank) inflitration which would be expected to support 30% to 50% higher individual well yields assuming similar aguifer deposits.

EWSU

Collector Well Feasibility Investigation

- 12 -

OUCĆ Attachment JTP-Cause No. 45545 Page 68 of 80

5 SUMMARY AND RECOMMENDATIONS

5.1 SUMMARY

Ranney Collector Wells, under subcontract to HNTB, recently completed a hydrogeological investigation along the Ohio River in the Green River Island area south of Evansville, Indiana. The objective of the project was to evaluate the feasibility of obtaining a groundwater supply of at least 40 MGD for the City of Evansville Water and Sewer Utility. The scope of work for Ranney's portion of the project consisted of the test borings, hydraulic interval testing and data analysis reporting.

The Phase 1 Investigation, which included the drilling and sampling of ten (10) test borings and conducting hydraulic tests in these test borings. The majority of test holes were located within the right-of-way for Waterworks Road, generally south and to the east of the City's water treatment plant. The exception to this was TB2017-7, which was located down a farm access lane 2,600 feet east of Waterworks Road.

The drilling results indicated that the alluvial aquifer along the Ohlo River at the test boring locations is comprised predominantly of a fining upward sequence comprised fine to medium-grained lithic sand, interbedded with lenses of clay, clayey slit, slit, coarse sand, and gravel. The lower portion of the alluvial materials is generally comprised of coarse-grained materials including sand and gravel with occasional cobbles. Occasional thin, layers of clay were encountered at the test drilling locations.

The total drilled depths of the ten (10) test borings varied from 64 to 116 feet. The depths at which the top of bedrock was encountered generate varied from 110 to 112 feet. The exception was TB2018-10, which encountered a bedrock high at a depth of 60 feet. Excluding TB2018-10, the bedrock elevation showed little variation ranging from about 254 to about 261 feet. Results of hydraulic interval tests indicated aquifer transmissivities ranged from 33,000 to 240,000 gpd/ft, with hydraulic conductivity values ranging from 500 to 3,800 gpd/ft². The water quality results indicated that the water is relatively hard with significant levels of from, mangapese and total dissolved solids.

The results of the test drilling and hydraulic interval testing program indicate that the materials present are of sufficient thickness and permeability to be considered for the development of collector wells. Preliminary collector well yields were estimated for each of the test boring locations. The individual yields for collector wells installed at the test boring locations are estimated to range from 1.6 to 11 MGD.

EWSU: Collector Well Feasibility Investigation [44768] August 3, 2018 Ranney Collector Wells

DRAF

5.2 RECOMMENDATIONS

Based upon the preliminary testing completed in Phase 1 to date, it will require multiple collector wells to develop a firm capacity of 40 MGD, or more. If EWSU desires to move forward with the potential development of a water supply utilizing RBF with collector well technology it is recommended that additional sites located adjacent to the Ohlo River be evaluated. Collector wells located within 300 feet of the river would be expected to develop a significant portion of water through RBF and would be expected to support 30% to 50% higher individual well yields than those sites tested so far, along with water guality improvements. It is recommended that the area to the south of Evansville Waterworks along the Ohio River be evaluated (Figure 12). Existing information indicates that the bedrock surface elevation in this area ranges from approximately 240 to 260 feet (IGS, 1986 & USGS 2009). This indicates that there would be over 100 feet on unconsolidated materials at these locations, with the potential of up to 80 feet of saturated sand and gravel deposits.

It is also recommended that the site of the 1951 Investigation of the Evansville Waterworks be evaluated to confirm their findings. A review of the available data from the 1951 Investigation indicated an aquifer transmissivity in the range of 150,000 to 180,000 gpd/ft for the Waterworks site. Based upon this information and the close proximity to the Ohio River (recharge), it is estimated that a collector well could yield up to 15 MGD at this location. Water produced from the collector well at the Waterworks location could be used to augment the existing supply or blend with the existing surface water supply to possibly simplify treatment. Water produced from a collector well would be significantly lower in suspended solids than the existing surface water supply. Additionally, the water produced by a collector well would have a lower range of seasonal temperature fluctuations. The seasonal temperature range for a collector well at the Waterworks location would be expected to range from about 50° F to 65° F, which could be blended with the existing surface water supply.

EWSU Collector Well Feasibility Investigation

- 14 -

[44768] August 3, 2018 Ranney Collector Wells

OUCC Attachment JTP-3 Cause No. 45545 Page 70 of 80

REFERENCES

6

Bruin, J. and H. E. Hudson, Jr., 1955. Selected Methods for Pump Test Analysis, Illinois State Water Survey, Report of Investigations, No. 25.

Driscoll, F. G., 1986. Groundwater and Wells, 2nd Edition. Johnson Division, St. Paul, MN.

Hantush, M. S. and I. S. Papadopulos, 1962. Flow of Ground Water to Collector Wells, Proceedings of the American Society of Civil Engineering, Hydraulics Division Journal, pages 221-244.

Indiana Geological Survey (IGS), 1986. Alluviation of the Ohio River Valley near Evansville, Indiana, and Its Effect on the Distribution of Sand and Gravel in the Area. IGS Special Report 36.

Mikels, F.C., 1951. Report on a Pumping Test of Evansville, Indiana, U.S. Geological Survey in Cooperation with the Indiana Department of Conservation – Division of Water Resources, September 1951.

- Rorabaugh, M. J., 1956. Ground Water In Louisville and Northeastern Kentucky with Reference to Induced Infiltration, U.S. Geological Survey Water Supply Paper 1360-B.
- US Geological Survey (USGS), 2009. Surficial Geologic Map of the Evansville, Indiana, and Henderson, Kentucky, Area. USGS Scientific Investigations Map 3069.

US Geological Survey (USGS), 2011. Probabilistic Selsmic Hazard Assessment Including Site Effects for Evansville, Indiana, and the Surrounding Region Kentucky, Area: USGS Open-File Report 2011-1231.

US Geological Survey (USGS), 2012, hternet Web Page: USGS 03322000 OHIO RIVER AT EVANSVILLE, IN. https://waterdata.usgs.gov/in/nwis/uv/?site_no=03322000&agency_cd=USGS Accessed: 8/25/2017.

Vuković, M. and A. Soro; 1992. Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition, Translated by D. Miladinov, Water Resources Publications, Littleton; Colorado.

Wenzel, L.K., 1942. Methods for determining permeability of water-bearing materials with special reference to discharging-well methods, USGS Water Supply Paper 887, US Gov. Printing Office, Washington, D.C.

EWSU Collector Well Feasibility Investigation

- 15 -

[44768] August 3, 2018 Ranney Collector Wells

DRAFT

Vanderburgh Co

LLOYD WINNECKE MAYOR

EVANSVILLE WATER & SEWER UTILITY

ALLEN MOUNTS DIRECTOR

1 NW Martin Luther King Blvd. Room 104 · Evansville, Indiana 47708 P O Box 19, Evansville, Indiana 47740-0001 (812) 436-7846 · FAX (812) 436-7863 · TDD (812) 436-7864

June 28, 2019

Attn: Branch Chief Indiana Department of Environmental Management Office of Water Quality Compliance Evaluation Section 100 North Senate Avenue Indianapolis, Indiana 46204 RECEIVED JUL 2 2019 IDEM/OWQ

Subject: Evansville Water and Sewer Utility (EWSU) – Water Treatment Plant Vanderburgh County, Indiana - NPDES Permit No. IN0043117

The following information is provided in regards to the above referenced subject and pursuant to the SCHEDULE OF COMPLIANCE in Part I D.1: that states "This schedule of compliance shall not commence until a final determination on the mercury variance submittal is made by the Commissioner. Until a final determination on the variance request is made, the permittee shall continue to evaluate whether additional control technologies or pollution prevention measures exist to comply with the final effluent limitations or reduce the level of those pollutants currently being discharged by the plant. This evaluation shall be submitted to IDEM, OWQ, Compliance Evaluation Section every nine (9) months from the effective date of the permit. Monitoring and reporting of influent and effluent is required during the interim period":

- 1) Update on control technologies/pollution prevention no further feasible treatment or control technologies have been identified beyond those evaluated as part of the submitted *APPLICATION FOR A VARIANCE FROM INDIANA WATER QUALITY STANDARDS* (*MERCURY*) dated September 27, 2016.
- 2) Summary of influent and effluent mercury data except for the current month (June) which is pending and will be provided once available, the following table summarizes the mercury concentrations as reported on the Monthly Monitoring Reports (MMR's) and Discharge Monitoring Reports (DMR's) for the previous nine (9) month period:

Mercury ng/L							
Date							
(collection)		Effluent		Influent			
	Outfall 002	Outfall 004	Outfall 005	River			
10/2018	7.13	6.22	44.5	<5.00			
12/2018	<5.00	<5.00	<5.00	<5.00			
02/2019	<5.00	<5.00	<5.00	<5.00			
04/2019	262.00	16.3	7.40	6.89			
06/2019		-					

A summary of the influent (river) and effluent (outfalls 002, 004 & 005) flow data for the corresponding period is attached with this update.

3) Update on status of plant upgrades/source water transition (surface water to ground water) - As was mentioned in the last report (a copy of which is attached for ease of reference), an extensive investigation of an alternate water source has been ongoing. Twelve test borings have been performed and preliminary water quality and quantity data has been obtained. The draft briefing memorandum of that effort is also attached with this report.

Concurrent with that wellfield evaluation was the development of a Request for Proposals (RFP) for Advanced Facility Planning (AFP) which was issued in November 2018 and proposals were received in January of this year. Responders to the RFP were subsequently interviewed and a professional team headed by AECOM was recently selected. The scope of that agreement is being finalized and fees are being negotiated as of this writing. The formal agreement is expected to be executed at any time. For information and reference, a copy of that RFP is also attached to this report

A subsequent update will be provided when the review of that draft report is completed and the next steps are decided upon or within nine (9) months as outlined above. In the interim, please feel free to contact me or the individuals copied below with any questions or if any additional information is needed.

Sincerely,

an sikens

Patrick Keepes Water Superintendent

Cc: Richard Glover – EWSU Water Production Manager Timothy Hall – EWSU Water Quality Manager File

Attachments

2

	INFLUENT (RIVER) AND EFFICIENT ROUTINES AND APAR ANALYS AND ATA							
	Oct-18 Dec-18							
	Influent (MG)		Effluent (MG)		ibiQntAva545		Effluent (MG)	
	River (Low			Page	75 of 1.80 Service Meter			
	Service Meter			1 age	Service Meter		1	
Daily	Readings)	Outfall 002	Outfall 004	Outfall 005	Readings)	Outfall 002	Outfall 004	Outfall 005
Min.	19.58	1.2710	0,2730	0.6700	20.51	0.1273	0.0050	0.7980
Ave.	25.71	1.2918	0.7870	0.7999	24.27	1.2355	0.3148	0,8151
Max.	30,01	1.3010	1.8530	0.8780	29.88	1.2780	0.6710	0.8260
1st	27.12	1.2950	0.3170	0.8760	21.72	1.2780	0.0550	0.8210
2nd	27,33	1.2960	0.4200	0,8780	25.12	1.2780	0.0412	0.8230
3rd	28.99	1.2710	0.7680	0.7910	26.52	1.2770	0.0379	0.8210
4th	28.17	1.3010	0.4610	0.7500	26.11	1,2750	0.4340	0.8220
5th	27.06	1.3000	0.3260	0,7500	29.88	1.2750	0.5590	0.8200
6th	28.97	1.2960	0.5690	0.7500	22.38	1.2740	0.4220	0.8160
7ťh	28.66	1.2970	0.8580	0.7510	24.30	1.2740	0.5120	0.8190
8th	28.01	1.2970	1.1110	0.7510	25.65	1.2730	0.1020	0.8210
9th	28.95	1.2970	1.1640	0.7190	24.01	1.2740	0.0110	0.7980
10th	30.01	1.2970	0.9500	0.6970	25.66	1.2730	0.1510	0.8260
11th	25.70	1.2970	1.1290	0.6700	26.29	1,2740	0.3570	0.8250
12th	24.65	1.2960	0.6800	0.8190	26.68	0.1273	0.6660	0.8240
13th	23.55	1.2960	0.3750	0.8170	24.70	1.2740	0.5770	0,8240
14th	24.86	1.2960	0.2730	0.8180	25.11	1.2750	0.2480	0.8250
15th	24.46	1.2940	0.6440	0.8170	23.94	1.2730	0.3670	0.8240
16th	25.04	1.2910	0.6100	0.8160	22.81	1.2750	0.0920	0.8250
17th	28.79	1.2900	1.6630	D.8170	25.26	1.2730	0.1010	0.8210
18th	26.04	1.2900	1.6510	0.8190	24.64	1.2730	0.0670	0,8250
19th	23.70	1.2870	1.8530	0.8190	27.06	1.2700	0.0050	0.8200
20th	23.60	1.2880	0.7120	0.8190	25.38	1.2690	0,1540	0.8160
21st	23.31	. 1.2890	0.7740	0.8220	23.82	1.2680	0.5740	0.8120
22nd	25.36	1.2860	1.6670	0.8220	21.87	1.2680	0.3060	0,8070
23rd	26.72	1.2880	0.8800	0,8220	22.98	1.2690	0.2030	0.8070
24th	27.13	1.2880	0.6760	0.8220	23.83	1.2690	0.5460	0.8060
25th	25.09	1.2880	0.4740	0.8220	21.88	1.2700	0.5050	0.8070
26th	23.19	1.2890	0.5180	0.8230	23.73	1.2700	0.5750	0.8060
27th	21.98	1.2890	0,4890	0.8240	23.72	1.2700	0.4310	0.8030
28th	19.58	1,2890	0.3470	0.8240	20.51	1.2720	0.3810	0.8040
29th	23.89	1.2890	0.6850	0,8240	22.45	1.2700	0.3810	0.8010
30th	24.13	1.2890	0.7050	0.8240	21.32	1.2700	0.2260	0.8020
31st	22.82	1,2890	0,649	0.8240	23.10	1.2700	0.6710	0,7980

	Feb-19					Apr-19			
	Influent (MG)	-	Effluent (MG)		Influent (MG)	nfluent (MG) Effluent (MG)			
	River (Low		T		River (Low		1		
	Service Meter				Service Meter				
Daily	Readings)	Outfall 002	Outfall 004	Outfall 005	Readings)	Outfall 002	Outfall 004	Outfall 005	
Min.	21.09	1.1040	0.0016	0.6030	11.95	1.2171	0.0843	0.5007	
Ave.	24.37	1,2003	0.2949	0.6787	23.86	1.2938	0.3081	0.6207	
Max.	28.03	1.2700	1,0770	0,8246	28.12	1.2997	0.6654	0.7251	
1 st	21.17	1.2700	0,5180	0.7042	25.06	1.2934	0.3429	0.6524	
2nd	28.03	1,2690	0,6790	0.7058	25.40	1.2938	0.4358	0.7251	
3rd	24.72	1.2660	0.0337	0.7069	26.85	1.2935	0.3709	0.6712	
4th	25,90	1,2630	0.1044	0.7076	22.92	1.2946	0.1625	0.6359	
5th	27.08	1.2640	0,2697	0.6579	24.67	1.2948	0.3222	0.6126	
6th	27.50	1.2640	0.2510	0,6400	24.00	1.2952	0.1566	0.6110	
7th	26.25	1.2630	0.0435	0.6417	11.95	1.2937	0.0953	0.6142	
8th	23,87	1.2630	0.0560	0.6390	16.27	1.2951	0.3922	0.6136	
9th	25,40	1.2600	0.4590	0.6210	26.54	1.2946	0.4398	0.6153	
10th	25.30	1.2590	0.3110	0.6030	16.21	1.2956	0.3441	0,6403	
11th	26.26	1.2580	0.3961	0.6466	25.95	1.2967	0.2074	0.7185	
12th	26.87	1.2340	0.3397	0.6596	26.63	1.2969	0.2032	0.7126	
13th	26.71	1.1830	0,2546	0.6585	24.19	1.2971	0,1610	0.7094	
14th	23.80	1.1450	0,2537	0.6567	22.97	1.2966	0.0965	0,7063	
15th	21.77	1.1250	0.2718	0,6589	26.23	1.2964	0.3944	0.6965	
16th	22,66	1,1150	0.2106	0.7098	26,50	1,2983	0.3907	0.6549	
17th	21.38	1.1180	0.1336	0.7155	28.12	1.2997	0.4006	0.5519	
18th	22.68	1.1280	0.3076	0.7177	26.04	1.2995	0.2322	0.5967	
19th	22.37	1.1470	0.1982	0,7176	21.84	1,2981	0.2453	0.5947	
20th	26.00	1.1650	0.2535	0.7198	23.41	1,2969	0.0843	0.5660	
21st	23,26	1.1890	0,3163	0.7191	23,25	1.2963	0.1105	0.5472	
22nd	21.09	1,2020	1.0770	0.8246	23.96	1.2960	0.6654	0,5007	
23rd	23.46	1.1990	0.4992	0,6393	26.32	1.2964	0.5538	0.5756	
24th	23.34	1,1880	0.0016	0,7217	27.00	1,2971	0,5060	0.5813	
25th	24.19	1.1720	0.2858	0.6860	22.87	1.2973	0.1763	0.5866	
26th	23.54	1,1040	0.2013	0.6393	25.16	1,2972	0.2611	0.5859	
27th	22.61	1.1400	0.2490	0,6425	23,46	1,2978	0.3840	0.5866	
28th	25.21	1.1550	0,2816	0.6431	24.16	1.2984	0.0864	0.5859	
29th					23.66	1,2996	0.4092	0.5855	
30th					24.09	1.2171	0.6137	0.5855	
31st		a an	2000 (Contraction of the contraction of the contrac		Same and				

OUCC Attachment JTP-3 Cause No. 45545 Page 74 of 80

GROUNDWATER INVESTIGATION AND TEST DRILLING BRIEFING MEMORANDUM MARCH 2019 UPDATE

DRAFT

INTRODUCTION

Over the last 20 months, HNTB and the Ranney Collector Wells (Ranney) division of Layne Christensen (Layne), completed a test drilling program to explore the possibility of replacing the current surface water supply with groundwater. This effort included the installation of 12 test borings along Waterworks Road from the north side of the Water Treatment Plant (WTP) to the point where the road intersects the Ohio River as can be seen on Figure 1. Figure 2 provides a closer look at the locations of the most recent borings 11 and 12.

The goal of this phase of the test drilling program was to identify potential locations with a sufficient aquifer to produce 15 million gallons per day (MGD) each from three or four collector wells to provide a total of 45 to 60 MGD groundwater. Test drilling consisted of completing borings to bedroek while taking continuous formation samples. If a promising zone was found, a 4-inch diameter casing and screen were installed, the temporary well was developed and a pumping test was completed to measure the specific capacity and estimate the aquifer transmissivity and hydraulic conductivity. These values are then utilized to predict the capacity of a collector well installed at the location of the test boring.

RESULTS TO DATE

Boring	Screened	Transmissivity	Hydraulic	Specific	Potential Yield		
#	Internal	GPD/FT	Conductivity	Capacity	MGD		
			GPD/FT	GPM/FT			
1	90'-100'	116,000	1,400	14	5.0		
2	90'-100'	113,000	1,600	11	6.0		
3	69'-76'	94,000	1,400	8	3.4		
4	65'-75'	102,000	1,900	13	3.2		
5	90'-100'	240,000	3,800	44	11.0		
6	75'-80'	143,000	3,000	20	5.3		
7	85'-95'	33,000	500	4	1.6		
8	60'-70'	90,000	2,000	14	2.2		
9	80'-90'	113,000	1,600	13	6.2		
10	No pump test due to shallow depth to bedrock						
11	90°-100°	110,000	1,400	10	8.5		
12	80'-90'	111,000	1,500	10	8.7		

Table No. 1 - Boring Results

The following table summarizes the results of the test boring program to date:

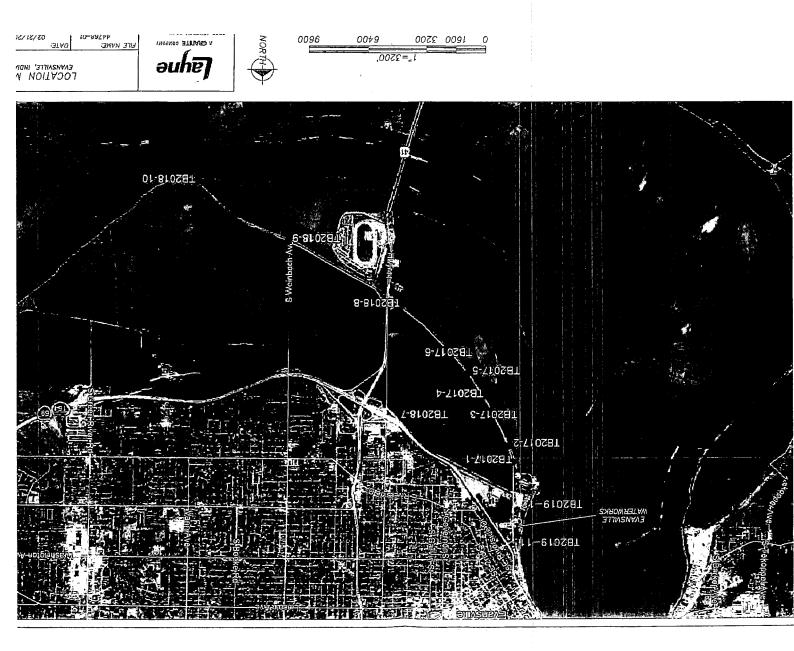
Prepared by HNTB Corporation

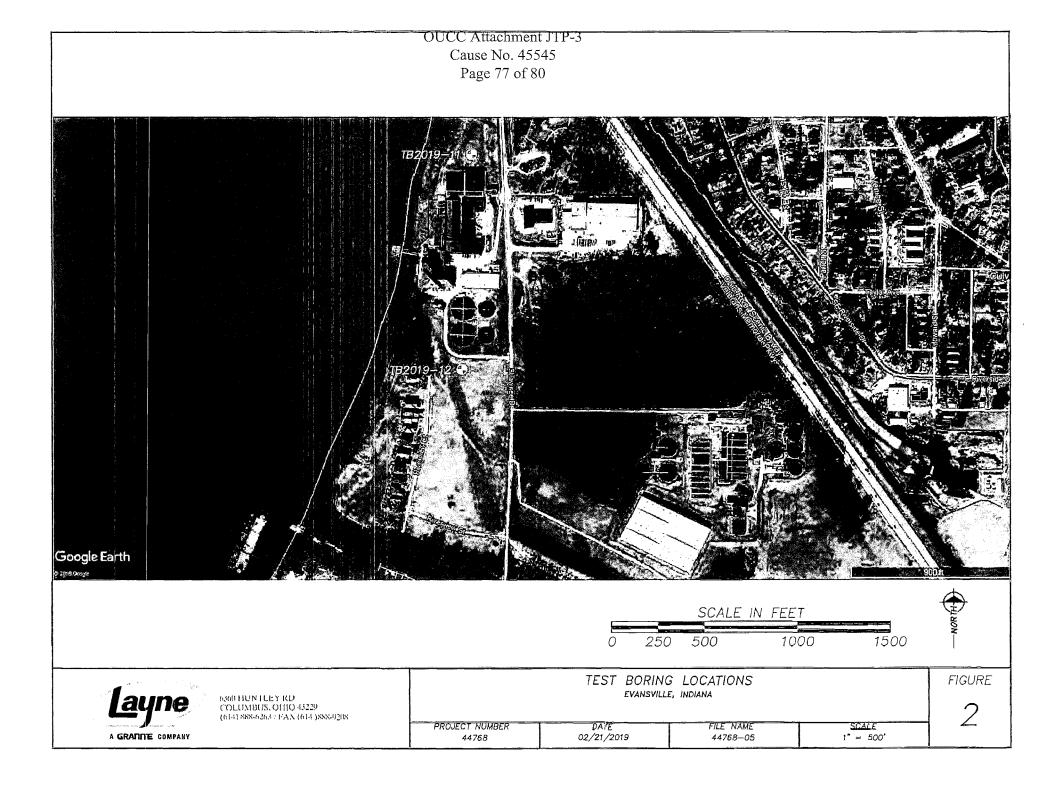
HNTB

OUCC Attachment JTP-3 Cause No. 45545 Page 75 of 80

As can be seen in Table No. 1, the potential yield of collector wells installed in the sample area ranged from 1.6 MGD to 11.0 MGD, with borings #11 and #12 producing a combined total of an estimated 17 MGD. While less than the original stated goal, the boring results from #11 and #12 are promising and could be a good choice for a blending option at the plant replacing 70% of the average daily demand.

RECOMMENDED NEXT STEPS


To confirm the potential capacity of the area along the river in the area of borings #11 and #12, it is recommended that the test drilling program be continued to the next phase including completing a test production well located near the WTP and additional borings south of the marina in Kentucky. Earlier this year, approval was given by the EWSU to investigate completing additional borings along the Ohio River in Kentucky. As part of this effort, HNTB was tasked with and obtained access to the Staub property immediately south of the marina to allow the installation of additional test borings and possibly a test production well. With the extensive flooding along the river this winter, access to the Staub property was not possible at the time #11 and #12 were completed. It is recommended additional test borings located within the Staub property be completed during the test production well installation near the WTP.


HNTB still has \$136,000 remaining in the original test drilling budget. To complete the additional borings, the test production well and their analysis, Layne's estimated total cost is \$175,000. In addition to Layne's cost, HNTB expects to expend some time to plan and oversee their efforts and allowing for contingency, the EWSU should budget \$200,000 to finalize the drilling program. Given that there is still \$136,000 remaining in the original test drilling budget, an amendment of \$64,000 will be required to complete the remainder of the program.

OUCC Attachment JTP-3 Cause No. 45545 Page 76 of 80

OUCC Attachment JTP-3 Cause No. 45545 Page 78 of 80

LLOYD WINNECKE MAYOR

EVANSVILLE WATER &

SEWER UTILITY

ALLEN R. MOUNTS DIRECTOR

1 NW Martin Luther King Blvd. Room 104 • Evansville, Indiana 47708 P O Box 19, Evansville, Indiana 47740-0001 (812) 436-7846 • FAX (812) 436-7863

November 29, 2018

Re:

RFP 2018-11 Advanced Facility Planning Water Filtration Plant

The Evansville Water and Sewer Utility (EWSU) is seeking proposals for professional engineering services to perform Advanced Facility Planning for its Water Filtration Plant at 1301 Waterworks Road.

Your firm had previously expressed interest in EWSU Anticipated Service Needs in Filtration Plant Component Design, Task 2.42. As part of the continuing water supply management program, EWSU is seeking advanced facility planning services that will consist of:

- Evaluation of Master Plan, existing asset inventory, existing Plant processes and capability, planned short term improvements (based on existing asset inventory results), groundwater study results, and potential operational cost savings related to needed plant upgrades to ensure water quality and resilience
- Development of treatment alternatives ranging from use of all surface water to blended surface and groundwater to all groundwater
- Treatment alternatives to address maintaining water production through sequencing, decommissioning, and constructability during development of alternatives
- Examination and presentation of alternatives to provide information to allow the Utility management to select a preferred alternative, including opportunity for public input, evaluation by Plant Operations and engineering evaluation
- Survey
- Geotechnical Investigation
- Preparation of preliminary engineering report, opinion of probable cost and 20 percent level construction set for selected alternative
- Coordination of Permitting and Land Use with following potential agencies:
 - o City of Evansville Transportation and Service Department
 - o City of Evansville Engineering Department

OUCC Attachment JTP-3 Cause No. 45545 Page 79 of 80

RFP 2018-11 Page 2 of 3

- o Evansville-Vanderburgh County Levee Authority
- o US Army Corps of Engineers (USACE)
- o Indiana Department of Environmental Management
- o Indiana Department of Natural Resources
- o Kentucky Energy and Environment Cabinet
- Identification of additional property needs as indicated by selected option.

Please submit your firm's proposal, identifying your project team qualifications for this type of work. Proposals will be evaluated with the following criteria:

- 1. Relevant Experience
- 2. Staff Resumes
- 3. Project Approach
- 4. Anticipated Project Schedule

All projects identified under Relevant Experience shall be projects that were completed within the last 5 years, and include contact names and direct phone numbers of client references. Please do not include any EWSU projects under Relevant Experience. The quality of service and value of service from your team to the EWSU on past projects will be evaluated internally by the selection committee. Please only show staff resumes of team members that you anticipate will have billable hours on this project.

Additional items that may be taken into consideration during the evaluation process include:

- 1. Typical Percent of work completed in Evansville
- 2. Typical Percent of work completed in Indiana
- 3. Typical Percent of work to WBE and MBE team members

Please be aware that there is a 7 percent WBE and 12 percent MBE goal established by the City of Evansville Purchasing Department, and the EWSU is eager to meet or exceed these goals whenever possible.

Proposals shall not exceed forty single-sided pages, including appendices. Proposals should include four separate sections, as identified under the evaluation criteria. Please include the three additional items for consideration, listed above, in a summary box within the proposal. Please include the office location(s) where the work will be completed, company history, team history, or any other information that you feel would be beneficial to the selection committee.

All firms submitting a proposal are welcome to interview and discuss proposal contents with Utility staff prior to the submission date. Once submission is complete, all proposing firms shall observe a "black out" period of communication with members of the selection committee for this proposal until a final selection is made. RFP 2018-11 Page 3 of 3

Please submit one electronic version of your proposal to:

J. Cris Cottom, P.E. Water Capital Projects Manager 1931 Allens Lane Evansville, 1N 47720

jeottom@ewsu.com

All digital proposals are due no later than 3 P.M. Thursday, January 10, 2019. It is the submitter's responsibility to ensure electronic delivery of the proposal in a timely manner. Digital proposals will not be accepted if received after the time and date specified above, even if a delivery problem existed within a Sharepoint, FTP, or Dropbox delivery method. The EWSU will send a confirmation email to the submitter once the proposal is downloaded into the EWSU system. If the proposal is delivered by email, please note the maximum attachment size is 10 MB. Proposal copy delivered by hand are due no later than 3 P.M. Friday, January 11, 2019.

The EWSU selection process will be used to select the successful professional service providers. All companies that submit a proposal will receive notification of the results upon completion of the selection process. It is expected that a shortlist will be created and proposal team interviews will be scheduled at a later date. If you have any questions, please feel free to contact J. Cris Cottom at 812-421-2120, Ext: 2203.

Sincerely,

Michael D. Labitzke, P.E. Deputy Director of Utilities, Program Management Office

	Primary Characteristic		Secondary Characteristic						
ESTIMATE CLASS	LEVEL OF PROJECT DEFINITION Expressed as % of complete definition	END USAGE Typical purpose of estimate	METHODOLOGY Typical estimating method	EXPECTED ACCURACY RANGE Typical variation in low and high ranges [a]	PREPARATION EFFORT Lypical degree of effort relative to least cost index of 1 [b]				
Class 5	0% to 2%	Concept Screening	Capacity Factored, Parametric Models, Judgment, or Analogy	L − 20% to - 50% H1 +30% to +100%	1				
Class 4	1% to 15%	Sturfy or Feasibility	Equipment Factured or Parametric Models	L: -15% to -30% H: +20% to +50%	2 tr. 4				
Class 3	10% to 40%	Budget Authorization, or Control	Semi-Detailed Unit Cosis with Assembly Level Line Items	L = 10% to -28% H: +10% to +30%	3 to 10				
Class 2	30% to 70%	Control or Bid ^y Tender	Detailed Unit Cost with Forced Detailed Take-Off	L = 5% to= 15% H: +5% to +20%	4 to 20				
Class 1	50% to 100%	Check Estimate or Bio/Tender	Detailed Unit Cast with Detailed Take Off	L -3% to -10% H +3% to +15%	5 lu 100				

Note: From the AACE (Association for Advancement of Cost Estimating) International Recommended Practice No. 18R-97

FILED
September 3, 2021
INDIANA UTILITY
REGULATORY COMMISSION

OUCC DR 17-6

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:

For Evansville's preferred new water treatment plant Alternate 2B, please provide cost support documentation for each major component lump sum cost listed in Table 9-9 Plant Alternative 2B Total Estimated Construction Cost on pages 126 and 127 of the Advanced Facility Plan (Attachment <u>SMB-1</u> to Mr. Breese's case-in-chief testimony in this cause). Please provide copies of the Excel worksheets detailing quantities, unit costs, equipment costs, other data used to establish costs, and all assumptions and cost allowances. Please also provide copies of budgetary cost proposals provided by equipment vendors and material suppliers.

Information Provided:

The spreadsheet is attached as OUCC DR 17-6 - Alt 2B.xlsm. Also attached is OUCC DR 17-6 Timberline Output.pdf (developed in Timberline Cost estimating software) which presents further detail for cost estimates performed early in the development of the alternatives report. All equipment proposals are attached as "Budgetary Quotes.pdf".

Attachments:

OUCC DR 17-6 Attachment 1.xlsm OUCC DR 17-6 Attachment 2.pdf OUCC DR 17-6 Attachment 3.pdf

OUCC Note: DR 17-6 Attachment 3.pdf (budgetary quotes) is not included here due to its length (449 pages)

OUCC Attachment JTP-5 Cause No. 45545 Page 2 of 105

Cause No. 45545 OUCC DR 17-6 Attachment 1 **Evansville Water and Sewer Utility**

WTP Upgrade - Plant Alternative 2B (New Site) - Capital Cost

Component Description	Cost
Civil Site Work (Roads, Drainage, Fencing etc.)	\$2,853,000
Rehabilitate River Intake	\$6,752,000
Raw Water Piping, Metering Vault	\$1,610,000
New Conventional Pretreatment System	\$17,377,000
New Ozone Facility (Generation, Basin, LOX)	\$19,630,000
New Biologically Active Filters & Building	\$33,912,000
New Chemical Facilities (all)	\$6,612,000
New Clearwell	\$8,804,000
New High Service Pump Station	\$11,130,000
Residual Pump Station Forcemain	\$1,575,000
Filter Washwater Tank	\$950,000
New Administration Building	\$1,810,000
New Maintenance Building	\$1,040,000
Interconnecting Site Utility / Electrical Work	\$3,500,000
New Electric service entrance	\$1,000,000
New Generator (2,000 KW)	\$1,500,000
Subtotal	\$120,055,000
Additional Construction Contingencies (3%)	\$3,602,000
Other Misc. Plant-Wide Improvements (1%)	\$1,201,000
Allowances	\$500,000
Maintenance Building Relocation	\$13,691,000
Startup and Commissioning	\$1,000,000
ic Total Estimated Construction Cost	see
Construction Adminstration and Bidding (2.5%)	\$3,501,000
Inspection and Materials Testing (2%)	\$2,801,000
Interest Incurred through Financing (2.25%)	\$3,151,000
Permitting Fees and Legal Expenses (1%)	\$1,400,000
Total Project Cost	\$150,902,000

Notes:

1. New site assumed to be ready for construction through other City projects

2. Provide cost of WTP demolition and relocation of levee building and maintenance garage as sepa

OUCC Attachment JTP-5 Cause No. 45545 Page 4 of 105

Original Costs from Estimator

2 • · ·	Estimated Base Cost	Estimated Loaded Cost	Multiplier from
Description	(from estimate)	(from estimate)	Estimate
Demolition Work	\$49,600	\$75,000	1.512
Roof Repair / Replacement	\$7,000	\$10,500	1.500
Doors & Hardware Rehab	\$13,000	\$19,700	1.515
Building Finishes & Specialties	\$34,200	\$50,500	1.477
Structure and Walkway Rehabilitation	\$50,000	\$75,500	1.510
Process Piping and Accessories	\$209,000	\$317,800	1.521
Pump Replacement	\$1,335,500	\$2,020,400	1.513
Screen Replacement	\$666,000	\$1,019,100	1.530
Potassium Permanganate System	\$249,000	\$366,000	1.470
HVAC Replacement	\$115,000	\$172,000	1.496
Electrical Systems	\$200,000	\$302,000	1.510
Instrumentation	\$84,000	\$126,900	1.511
Totals	\$3,012,300	\$4,555,400	

Adjusted for Report

Table B1.1 - River Intake Rehabilitation, Low Service PS

Description		Estimated Cost	Cost Adjust Comments
Demolition Work	·	\$75,000	
Roof Repair / Replacement (3,000 sf)		\$60,000	X - City noted a whole new roof
Doors & Hardware Rehab		\$13,000	
Building Finishes & Specialties		\$35,000	
Structure and Walkway Rehabilitation		\$50,000	
Process Piping and Accessories		\$209,000	
Pump Replacement (6 units)		\$1,336,000]
Intake Screens (3 units)		\$1,300,000	X - quote of \$750k for 3 screens - estimate seems to be pneumatic screens so updated
Potassium Permanganate System (1 unit)		\$400,000	X - estimate seemed low - need to run piping over, hopper, storage, etc.
HVAC Replacement (3,000 sf)		\$115,000	
Misc. Electrical (MCC Upgrades are Underway)		\$150,000	X - MCC's are getting some upgrades
Instrumentation		\$100,000	
Subtotal		\$3,843,000	
8 - 8 - 7	30%	\$1,152,900	
Escalation to Midpoint	3%	\$115,290	
Construction Subtotal]	\$5,111,190	
Contractor General Conditions 10%		\$511,119	
Contractor Overhead and Profit	12%	\$613,343	1
Construction Contingencies	5%	\$255,560	1
Allowance: Dredge River		\$260,000	1
Grand Total Cost		\$6,752,000e i	

OUCC Attachment JTP-5 Cause No. 45545 Page 6 of 105

Original Costs from Estimator

	Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
Building & Structure	\$2,445,033	\$3,782,475	1.547
Dewatering	\$194,067	\$305,891	1.576
Foundation and Earthwork	\$1,922,075	\$2,955,862	1.538
Baffle Walls	\$529,091	\$809,914	1.531
Process Piping, Valves, Meters, I	\$269,608	\$411,340	1.526
Flocculators & Mixers	\$1,160,771	\$1,769,373	1.524
Settlement Equipment	\$3,389,594	\$5,158,378	1.522
Slide Gate w/ Operator	\$117,632	\$178,380	1.516
Electrical	\$315,783	\$477,528	1.512
Instrumentation & Controls	\$94,735	\$143,258	1.512
Grand Total Capital Constructio	\$10,438,389	\$15,992,399	

OUCC Attachment JTP-5 Cause No. 45545 Page 7 of 105

Adjusted for Report

Table B2.2 - New Plate Settler Pretreatment

Description	Estimated Cost	
Building & Structure		\$2,446,000
Site Dewatering		\$195,000
Foundation and Earthwork		\$1,923,000
Baffle Walls (530 lf)		\$530,000
Process Piping, Valves, Meters, Etc.		\$500,000
Flocculators & Mixers w/VFD (36 units)		\$1,300,000
Plate Settlers & Sludge Collection		\$3,390,000
Slide Gate w/ Operator (4 units)	\$118,000	
Electrical (10% Equip Cost)	\$481,000	
Instrumentation & Controls (5% Equip Cost)	\$241,000	
Subtotal		\$11,124,000
Estimating Contingency	20%	\$2,225,000
Escalation to Midpoint	3%	\$334,000
Construction Subtotal		\$13,683,000
Contractor General Conditions	10%	\$1,368,000
Contractor Overhead and Profit	\$1,642,000	
Construction Contingencies	\$684,000	
Allowances:		
Grand Total Cost		\$17,377,000 j

Cost Adjust

Comments

Increased Increased

X - Use 10% of equipment cost

X - Use 5% of equipment cost

OUCC Attachment JTP-5 Cause No. 45545 Page 8 of 105

Original Costs from Estimator

Description		Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
	Ozone Facility w/ Contact Basins			
31.01 Dewatering	Dewatering	\$212,734	\$334,118	1.571
	Contact Basins	\$2,523,808	\$3,901,587	1.546
	Foundation and Earthwork	\$1,501,212	\$2,304,234	1.535
	Building Structure	\$496,909	\$762,532	1.535
	Process Piping	\$301,560	\$463,000	1.535
40.02 Valves, Meters, Etc.	Valves, Meters, Etc.	\$12,895	\$19,571	1.518
43.10 Ozone Equipment	Ozone Equipment	\$3,497,647	\$5,295,271	1.514
22.00 Plumbing	Plumbing	\$55,865	\$84,370	1.510
23.00 HVAC	HVAC	\$352,530	\$532,404	1.510
	Electrical	\$257,000	\$388,130	1.510
26.02 Instrumentation & Controls	Instrumentation & Controls	\$33,000	\$49,838	1.510
	LOX Equipment			
	Slab, Pads, Curbs, Fences/Gates	\$23,462	\$36,190	1.542
32.01 Fencing & Gates	Fencing & Gates	\$5,142	\$7,776	1.512
	Process Piping	\$31,588	\$48,964	1.550
40.02 Valves, Meters, Etc.	Valves, Meters, Etc.	\$20,611	\$31,273	1.517
43.17 LOX Equipment	LOX Vaporizor, Tank, Station	\$890,881	\$1,347,884	1.513
26.01 Above Ground Electrical	Electrical	\$43,160	\$65,267	1.512
26.02 Instrumentation & Controls	Instrumentation & Controls	\$12,948	\$19,580	1.512
Grand Total Capital Construction Cost	Grand Total Capital Construction	\$10,272,952	\$15,691,989	

I:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\JTP-9\DR 17-6 Attachment 1 Alt 2B Intake.xlsm\Ozone

Adjusted for Report Table B3.4 - Ozonation in New Basins, New BAF

- Dr. - B. - 1

9 1

Description		Estimated Cost	Cost Adjust Comments
Ozone Facility w/ Contact Basins			
Site Dewatering		\$213,000	1
Ozone Contact Basins		\$2,524,000	1
Access Hatches (8 units)		\$120,000	X - Added item
Foundation and Earthwork		\$1,502,000	7
Building Structure (7,834 sf)		\$497,000	7
Process Piping		\$377,000	X - Low, increase to match rehab option
Sampling System (pumps, piping, An	nalyzers)	\$100,000	X - Added this item
Valves, Meters, etc.		\$133,000	X - assume 35 valves (9 pumps)+10K for small valves
Ozone System, quench, destruct (2 ι	units)	\$4,498,000	X - Add 30% (1 Mill) for install
Plumbing (9,309 sf)		\$56,000	
HVAC (7,834 sf)		\$353,000	
Electrical (7,834 sf)	· · · · · · · · · ·	\$900,000	X - 150K for Bldg and 750K for Ozone
Instrumentation & Controls (1 % Equ	uip Cost)	\$225,000	X - Ozone I&C would be higher; use higher
LOX Equipment			
Building Structure (1,462 sf)		\$35,000	X - Make 35K based on 12" slab and \$600/cy
Fencing & Gates	· · · · · •	\$9,000	X - Use \$60/ft
Process Piping		\$32,000	
Valves, Meters, Etc.		\$42,000	X - Double estimator number
LOX Vaporizer, Tank, Station (2 units	s)	\$891,000	
Electrical (5% Equip Cost)		\$45,000	7
Instrumentation & Controls (1.5% Ed	quip Cost)	\$14,000	7
Subtotal		\$12,566,000	
Estimating Contingency	20%	\$2,513,200	
Escalation to Midpoint	3%	\$376,980	
Construction Subtotal		\$15,456,180	7
Contractor General Conditions	10%	\$1,545,618	
Contractor Overhead and Profit	12%	\$1,854,742	
Construction Contingencies	5%	\$772,809]
Allowances:]
Grand Total Cost		\$19,630,000	

Original Costs from Estimator

Description		Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
	Building Structure	\$5,154,603	\$7,954,116	1.543
31.01 Dewatering	Dewatering	\$212,734	\$334,535	1.573
	Foundation and Earthwork	\$2,080,983	\$3,201,747	1.539
	Process Piping	\$2,449,864	\$3,744,641	1.529
40.02 Valves, Meters, Etc.	Valves, Meters, Etc.	\$1,665,261	\$2,522,303	1.515
41.22 Hoists & Cranes	Hoists & Cranes	\$146,529	\$221,680	1.513
43.05 Filtration Equipmen	t Filtration Equipment	\$4,318,188	\$6,667,928	1.544
22.00 Plumbing	Plumbing	\$101,220	\$153,065	1.512
23.00 HVAC	HVAC	\$1,138,500	\$1,721,642	1.512
	Electrical	\$571,901	\$864,830	1.512
26.02 Instrumentation & (C Instrumentation & Controls	\$21,944	\$33,184	1.512
Grand Total Capital Const	tr Grand Total Capital Construct	\$17,861,727	\$27,419,671	

Deeper filters for BAF Total Filter Area = 8,681 sq.ft. Number of filters = 10 Area each filter = 965 sq.ft. Length each Filter = 50.0 ft Width each Filter = 20.0 ft Perimeter each Filter = 140 ft Additional Conc (3-ft taller) = 233 cu.ft. Concrete Adder = \$233,333 Media Adder = \$500,000

OUCC Attachment JTP-5 Cause No. 45545 Page 11 of 105

Adjusted for Report

Table X.X - New GAC Biologically Active Filters

Description		Estimated Cost	Cost Adjust Comments
		¢5 405 000	X - added additional 3-ft tall walls concrete and media J.Krinks email
Filter Building and Structure (25,300 sf)		\$5,405,000	7/16/20
Site Dewatering		\$213,000	
Foundation and Earthwork		\$2,081,000	
Process Piping		\$2,800,000	
Valves, Meters, Etc.		\$1,666,000	
Hoists & Cranes		\$147,000	
Filtration Equipment		\$5,320,000	X - Additional Media cost is added to conv. Filters
Plumbing (25,300 sf)		\$911,000	
HVAC (25,300 sf)		\$911,000	
Air Scour Blowers		\$850,000	
Electrical		\$925,000	X - Electrical would probably be higher; use 1.5X estimator number
Instrumentation & Controls		\$480,000	X - Filter I&C would be much higher
Subtotal		\$21,709,000	
Estimating Contingency	20%	\$4,341,800	
Escalation to Midpoint	3%	\$651,270	
			is filter system cost that Leopold quoted \$8.2 million for
Construction Subtotal		\$26,702,070	\$8,316,000 this equip
Contractor General Conditions	10%	\$2,670,207	1
Contractor Overhead and Profit	12%	\$3,204,248	1
Construction Contingencies	5%	\$1,335,104	1
Allowances:		· · · · · · · · · · · · · · · · · · ·	1
Grand Total Cost		Ś33.912.000	

OUCC Attachment JTP-5 Cause No. 45545 Page 12 of 105

Original Costs from Estimator - for a 6 MG clearwell (using smaller so use 75% quantities)

4

	Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
Structural Components	\$3,507,453	\$5,415,382	1.544
Dewatering	\$109,646	\$167,526	1.528
Piles	\$1,133,796	\$1,727,195	1.523
Excavation	\$1,734,001	\$2,658,794	1.533
Soil and Backfill	\$523,109	\$828,067	1.583

Grand Total Capital Construction Cost

\$7,008,005

\$10,796,964

Adjusted for Report

Table B5.1a - Large Clearwell (4 MG) Option

. .

Description		Estimated Cost			
Structure	<u></u>	\$2,631,000			
			Keeping this the same (quantity is same fo		
Dewatering (2 pumps, 4 mo)		\$110,000	either)		
Piles (26,975 vf)		\$851,000			
Excavation, Shoring		\$1,301,000	7		
Soil and Backfill		\$393,000	7		
Misc. Clearwell accessories and instrum	ients	\$300,000	7		
Misc Site Restoration		\$50,000	7		
Subtotal		\$5,636,000			
Estimating Contingency	20%	\$1,127,200			
Escalation to Midpoint	3%	\$169,080	7		
Construction Subtotal		\$6,932,280			
Contractor General Conditions	10%	\$693,228	1		
Contractor Overhead and Profit	12%	\$831,874	1		
Construction Contingencies	5%	\$346,614	1		
Allowances:			1		
- Grand Total Cost	ener a Romania energia energia	*\$ 8,804,000			

OUCC Attachment JTP-5 Cause No. 45545 Page 14 of 105

Original Costs from Estimator

	Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
Building Structure	\$855,407	\$1,318,619	1.542
Dewatering	\$70,384	\$107,754	1.531
Foundation and Earthwork	\$317,103	\$486,388	1.534
Process Piping	\$157,812	\$242,437	1.536
Valves, Meters, Etc.	\$166,356	\$252,319	1.517
Pumps	\$682,455	\$1,033,923	1.515
Swift Water Chemical Injection	\$52,570	\$79,566	1.514
Air Compressor	\$36,696	\$55,602	1.515
Plumbing	\$30,606	\$46,283	1.512
HVAC	\$127,525	\$192,844	1.512
Electrical	\$234,647	\$354,833	1.512
Instrumentation & Controls	\$264,180	\$399,494	1.512
Grand Total Capital Construc	\$2,995,741	\$4,570,062	

I:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\JTP-9\DR 17-6 Attachment 1 Alt 2B Intake.xlsm\High Serv

Adjusted for Report

Table B6.2 - New High Service Pumps Option

Description		Estimated Cost	Cost Adjust
		+=+0.000	Comments
Pump Building (5,100 sf)		\$513,600	Reduce to 3,000 SF
Dewatering			No dewatering - build on top of clearwe
Foundation and Earthwork		\$159,000	Reduced - built on top of clearwell
Process Piping		\$158,000	
Valves, Meters, etc.		\$167,000	7
Vertical Turbine Pumps (4 units at 800ea	a)	\$3,200,000	7
			X - Not to be included
			X - Not to be included
Plumbing (5,100 sf)		\$18,600	1
HVAC (5,100 sf)		\$76,800	Reduce to 3000 SF
Electrical (15% equipment)		\$480,000	
Instrumentation & Controls		\$265,000	-
Subtotal		\$5,038,000	
Estimating Contingency	20%	\$1,007,600	-
Escalation to Midpoint	3%	\$151,140	7
Construction Subtotal		\$6,196,740	
Contractor General Conditions	10%	\$619,674	-
Contractor Overhead and Profit	12%	\$743,609	-
Construction Contingencies	5%	\$309,837	1
Allowances:			7
Grand Total Cost		\$7,870,000	

Cost to use for alt 2B

\$11,130,000.00 Original Estiamte was for effectiveltly replacing high service #2

I:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\JTP-9\DR 17-6 Attachment 1 Alt 2B Intake.xlsm\High Serv

OUCC Attachment JTP-5 Cause No. 45545 Page 16 of 105

Chemicals include 1) sodium hypochlorite, 2) sodium hydoxide, 3) sodium bisfulfite, 4) fluoride, 5) coagulant, 6) PAC, 7) ammonia

· · · · · · ·

	UNIT	Quanity	Unit Cost	Total Cost	Notes
Building Area	SF	6,400	\$180	\$1,152,000	
HVAC	SF	6,400	\$60	\$384,000	
Plumbing	SF	6,400	\$10	\$64,000	
Fire Protection - Wet pipe	SF	6,400	\$13	\$83,200	
Gratings and handrail	SF	40,000	\$15	\$600,000	Use 40' long x 5' wide (200 SF per room in 5 room (not PAC or ammonia)
Bulk tanks & level transmitter	EA	10	\$20,000	\$200,000	
PAC supersac feeder	LS	1	\$300,000	\$300,000	Unit is about \$200 k
Ammonia system	LS	1	\$250,000	\$250,000	Located ouside
Day tanks, scale, equip	EA	5	\$6,500	\$32,500	
Chemical Pump Skids	EA	10	\$20,000	\$200,000	2 for hypo, 1 for NaOH, 2 for bisulfite, 1 for fluoirde, 4 for coag,
Motive Water Pump Systems	EA	.4	\$20,000	\$80,000	1 set for hypo, 1 for bisulfite, 1 for PAC, 1 for ammonia
Water Softeners	EA	1	\$15,000	\$15,000	1 set for hypo
Vent piping	LF	200	\$150	\$30,000	Assume 40' for each system besides ammonia and PAC
Fill Piping	LF	300	\$150	\$45,000	Assume 60' for each system besides ammonia and PAC
Vent and fill piping accessories	LS	1	\$10,000	\$10,000	
Transfer Pumps	EA	10	\$7,500	\$75,000	2 for each system besides ammonia and PAC
Feed Piping	LS	1	\$300,000	\$300,000	
Misc. Chem & Building Accessories	LS	1	\$100,000	\$100,000	
Electrical & Instrumentation	% proc	30%	\$345,750	\$345,750	% of process equip
Subtotal				\$4,266,450	
Estimating Contingency	25%			\$1,066,613	
Escalation	1%			\$42,665	
Construction Subtotal				\$5,375,727	
Contractor General Conditions	10%			\$537,572.70	
Contractor Overhead and Profit	12%			\$645,087.24	
Construction Contingencies	1%			\$53,757.27	
Total Cost				\$6,612,144	

OUCC Attachment JTP-5 Cause No. 45545 Page 17 of 105

Note: The individual components (pretreat, ozone, filters, clearwell, etc.) all include dewatering and CIVIL

	UNIT	Quanity	Unit Cost	Total Cost	Notes
Pavement	SY	9,800	\$40	\$392,000	
Fencing	LF	1,500	\$65	\$97,500	
Gate / Card Access	EA	3	\$30,000	\$90,000	
8-inch storm piping	LF	1,500	\$100	\$150,000	
Larger Storm Piping & MHs/CBs	LS	1	\$150,000	\$150,000	
Additional Excavation / Hauling	CY	5,600	\$60	\$336,000	
Additional Dewatering	LS	1	\$300,000	\$300,000	
Site Grading & Seeding	LS	1	\$120,000	\$120,000	
Landscaping Allowance	LS	1	\$250,000	\$250,000	
Subtotal				\$1,885,500	
Estimating Contingency	20%			\$377,100	
Escalation	3%			\$56,565	
Construction Subtotal				\$2,319,165	
Contractor General Conditions	10%			\$231,916.50	
Contractor Overhead and Profit	12%			\$278,299.80	
Construction Contingencies	1%			\$23,191.65	
Total Cost				\$2,853,000	
Raw water piping					
	UNIT	Quanity	Unit Cost	Total Cost	
Raw water piping	LF	1,205	\$580	\$698,900	
Road crossing	LS	1	\$45,000	\$45,000	
Utility Re-routing	LS	1	\$190,000	\$190,000	
Misc. Site Grading/restoration	LS	1	\$50,000	\$50,000	
Misc. Fittings & Pipe Accessories	LS	1	\$80,000	\$80,000	
Subtotal				\$1,063,900	
Estimating Contingency	20%			\$212,780	
Escalation	3%			\$31,917	
Construction Subtotal				\$1,308,597	
Contractor General Conditions	10%			\$130,859.70	
Contractor Overhead and Profit	12%			\$157,031.64	
Construction Contingencies	1%			\$13,085.97	
Total Cost				\$1,610,000	

OUCC Attachment JTP-5 Cause No. 45545 Page 18 of 105

Cost Component	Unit	Quantity	Unit Cost	Project Cost
Cast in place concrete	CY	225	\$800	\$180,000
Residuals Pump Station - Pumps	EA	3	\$55,000	\$165,000
Valves	EA	8	\$4,000	\$32,000
Elec & Controls	LS	1	\$340,000	\$340,000
Forcemain & Discharge Piping	LF	1370	\$200	\$274,000
Extension into Ohio River	LF	50	\$500	\$25,000
Misc. Restoration / Grading	LS	1	\$25,000	\$25,000
Subtotal				\$1,041,000
Estimating Contingency	20%			\$208,200
Escalation	3%			\$31,230
Construction Subtotal				\$1,280,430
Contractor General Conditions	10%			\$128,043.00
Contractor Overhead and Profit	12%			\$153,651.60
Construction Contingencies	1%			\$12,804.30
Total Cost				\$1,575,000

a v i Ì

I:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\JTP-9\DR 17-6 Attachment 1 Alt 2B Intake.xlsm\Residual

OUCC Attachment JTP-5 Cause No. 45545 Page 19 of 105

Original Costs from Estimator

	Estimated Base Cost	Estimated Loaded Cost	Multiplier from
	(from estimate)	(from estimate)	Estimate
Building and Structure	\$5,213,525	\$8,046,664	1.543
Dewatering	\$212,734	\$334,535	1.573
Foundation and Earthwork	\$2,080,983	\$3,201,747	1.539
Process Piping	\$2,449,864	\$3,744,641	1.529
Valves, Meters, Etc.	\$1,665,261	\$2,522,303	1.515
Hoists & Cranes	\$146,529	\$221,680	1.513
Filtration Equipment	\$4,318,188	\$6,667,928	1.544
Plumbing	\$101,220	\$153,065	1.512
HVAC	\$1,138,500	\$1,721,642	1.512
Electrical	\$615,800	\$931,214	1.512
Instrumentation & Controls	\$34 <i>,</i> 830	\$52,670	1.512
Grand Total Capital Construct	\$17,977,434	\$27,598,089	

Adjusted for Report

Description		Estimate d Cast	Cost Adjust		
Description		Estimated Cost	Comments		
Filter Building and Structure (25,300 sf)		\$5,214,000			
Site Dewatering		\$213,000			
Foundation and Earthwork		\$2,081,000			
Process Piping		\$2,800,000	X adding 350k for	air scour pipi	ng
Valves, Meters, Etc.		\$1,666,000			
Hoists & Cranes		\$147,000			
					/erything (inc. blowers, I&C, valves, troughs,
					it) - those are included in cost as separate line
Filtration Equipment (12 units)		\$4,820,000	items - adding 10%	for install after	r those - taking out \$500k for not having GAC
Plumbing		\$102,000			
HVAC		\$911,000	X - seems high, u	se 80%	
Air Scour Blowers		\$850,000			
Electrical		\$925,000	<u>s</u> ·		higher; use 1.5X estimator number
Instrumentation & Controls		\$480,000	X - Filter I&C wou	ld be higher	
Subtotal		\$20,209,000			
Estimating Contingency	20%	\$4,041,800			
Escalation to Midpoint	3%	\$606,270			
Construction Subtotal		\$24,857,070			
Contractor General Conditions	10%	\$2,485,707			
Contractor Overhead and Profit	12%	\$2,982,848			
Construction Contingencies	5%	\$1,242,854			
Grand Total Cost		∽\$31,569,000 ≁			-
Washwater Tank			··· · · ·		
ltem	Unit	Quantity	Unit Cost	Total Cost	
Fluted column tank	GAL	400,000	\$2		Estimate per discussion w/ caldwell for low
Tank Bollards	EA	10	. ,	•	height tank, do not add contingecies
Piping Extension to Filters	LF	150		\$75,000	
Misc Site Resoration, Grading	LS	1		\$20,000	
Electrical Service	LS	1	\$35,000	\$35,000	
Total				\$950,000	

OUCC Attachment JTP-5 Cause No. 45545 Page 21 of 105

Adminstration Building					
	Unit	Quantity	ι	Jnit Cost	Total
Building Size	SF		7500	\$180	\$1,350,000
Laboratory Equipment	LS		1	\$300,000	\$300,000
Workstations / Printers	LS		1	\$50,000	\$60,000
Networks/Security	LS		1	\$100,000	\$100,000
Total					\$1,810,000
Maintenance Building					
Building Size	SF		5000	\$110	\$550,000
Specialized HVAC Adder	LS		1	\$90,000	\$90,000
Compressed air system	LS		1	\$50,000	\$50,000
Tools / Hardware	LS		1	\$350,000	\$350,000
					\$1,040,000
Misc Electrical (Note electrical	is included	in most of the	e other	individual est	iamtes)
Service	LF		200	\$5,000	\$1,000,000
Generator	LS		1	\$1,500,000	\$1,500,000

OUCC Attachment JTP-5 Cause No. 45545 Page 22 of 105

CONSTANTS - INPUTS

- Estimating Contingency (Rehab) 30%
 - Estimating Contingency (New) 20%
 - Escalation to Midpoint 3%
- Contractor General Conditions 10%
- Contractor Overhead and Profit 12%
 - Permitting 0.0%
 - Construction Contingencies 5%

Effective Multiplier Used (Rehab) 1.69

Effective Multiplier Used (New) 1.56

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 CAttachment JTP-5 Cause No. 45545 Page 23 of 105 Cause No. 45545 Page 1 of 54 Cause No. 45545 Page 1 of 54

	Page 23 of 105
Evansville Water and S	nt Plant- Advanced Faolility Plan Jewer Villify Bepartment, Indiana 20M Estimate Level 4, 6/12/20
Project name	EVSU Value Treatment Plant-Advanced Facility Plan Svanovile IN USA
	EWSJ Evanovije N
Engineer	AECOM
Estimator	Bruce Pietliewicz
Labor rate table	I AECOM RATES 20
Equipment rate table	Equip-ACM 20id with
Duration	6 mg
Production Office Printed Party Estimating Office Contact 1 0 1 Printed of Estimat PY Estimate Estimate Number Notes	Water Water Colorso, Oho John Kriss Gaserbai Gaserbai Gaserbai Hermiter John Schwarz Hermiter John Schwarz John Schwarz John Schwarz John Schwarz John Schwarz John Schwarz Hermiter John Schwarz Hermiter John Schwarz John Schwarz Hermiter John Schwarz John Schwarz Hermiter John Schwarz John Schwarz Hermiter John Schwarz John Schwarz Hermiter John Schwarz John John John John John John John John
Report format	e similes AECOM is not responsible for any variance from this assimiles or activation and any and any Soned by WBS LM INMSS LM 3/WBS LM 3/WBS LM 4/ "Data" summary Paginate
Cost Index	SC, Oreenville (Labor only)
ARmates	014, 018, 028, 020, 030, 038, 030, 030, 030, 030, 037, 054, 048, 040, 054, 058, 050, 068, 073, 084, 094, 104, 24 28, 20, 34, 38, 30, 35, 37, 44, 48, 40, 54, 58, 50, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Dage 24 of 105 Cause No. 45545 Page 2 of 54 Cause No. 45545 Cause No. 45545 Page 2 of 54

Page 24 of 105

S WES WES I LVI2 LVI3	WBS LvI4	Description	Takeoff Quantity	abor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Tota Amount
1 1A		River Intake & Low Service Pump Station River Intake & LSPS Rehab															
02		Modify Existing Structure & Services															
	02.01	Demolition Work Non-Hazardous Waste Transport and Disposal	1 10							500,00	500					500	
		Demo Entrance Sidewalk & Handrall	6 cy	0.300 ch/cy	4	88.76 /ch	160					12.69	76			236	
		Demo Single Door & Frams Demo Double Door & Frams	3 ea 2 ea	1,000 ch/ea 1.333 ch/ea	9 8	117,52 /ch 117,52 /ch	353 313					28.26 37.68	85 75			437 389	
		Demo HVAC System (Includes Exhaust Fans, Heaters, Louvers & Ductwork) Demo Electrical System (Includes I&C System & Lights)	3,000 sf			/st	-	-	-	10,00 6,00	30,080 18,080		-			30,000 18,000	45 27
		02.01 Demolition Work	1 Is		21		526			48,500,00	48,500	236.28	236			49,562	75
		Intake Pipe Rehab Temporary support ev, 42° pipe discharge	3 ea	3,000 ch/ea	45	194,58 /ch	1,751	-	-	··· -		839.05	2,517	· .		4,268	
		Demo Conc Flg/Pier Nacprened Pad	3 ea 3 ea	1.000 cd/ea 2,500 mh/ea	48 8	679.61 /cd 45.62 /mh	2,039	-	180		:	2,149.16	6,447			8,486 522	1:
		CIP Fooling - Sixx 2/wx 2/d CIP Fior - Sixx 2/wx 2/d	3 cy 5 cy		-	-			•	1,500,00	4,500	-	-		· "-	4,500	
		Gasket/Nuts/Bott Kit 42"	9 es	1,000 mh/ea	9	45,62 /mh	411	425,00	3,825	1,500.00			:		:	4,236	
		Carbon Steel Flange Thurst Assemblies - 42" interior 02.10 Intake Pipe Rehab	9 ea 3 ea	6,000 mh/ea	54 164	45.62 /mih	2,464	500.00 2,835,00	4,500 8,505	4,000,00	12,000	2,988,21	8,965		• •	6,954 36,476	
	07.01	Roofing										-,					
		Inspect & Patch Roof System (Patchwork Volds Warranty) Patch Aluminum Cownsports	3,300 st 40 lf			/sf /it				1.50 18.00	4,950 720					4,950 720	
		Patch Aluminum Cording @ Rool Parapet 12" vide 07.01 Roofing	257 # 3,300 sf			IN				5.00 2.11	1,285 6,955					1,285 6,955	
		Doors, Frames & Hardware	3,300 \$1							2.11	6,655						
		HM Single Frames- 16 ga 3'x7' HM Door (.eafs-3'x7' 20 ga, half glass	5 es 7 es	1.000 mh/ea 1.500 ea/mh	5	39,18 /m/n 39,18 /m/n	196 183	180.04 450.09	900 3,151		:		:			1,095 3,333	
		Finish Hardware by Leaf- Allowance	7 ea	8,002 mh/ea	56	39.18 /m/h	2,194	900.18	6,301	-	:	-				8,495	
		08.00 Doots, Frames & Hardware Finishes	7 ea		66		2,573	1,478.87	10,352							12,925	
		Paint HM Door Frames - primer (2) coats	5 ea			lea		-	-	100.02 140.03	500	-	-		·	500	
		Paint HM Doors - primer (2) coals Paint CMU Block - block filler & (2) coat	7 ea 6,300 sf			/ea -	- 11		:	1.35	980 8,505	-				8,505	
		Upgrade Architectural Finishes Paint 2" Pipe	1 ls 505 ll	0.140 mh/M	71	27.53 /mh	1,947	0.69	350	4,000.00	4,000	4.24	2,141			4,000 4,437	
		Paint 18" Pipe	85 ¥	0,200 mh/¥ 0,350 mh/¥	17	27,53 /mh 27,53 /mh	468	2.05	177	-	-	6.06 7.07	515		· •	1,159	
		Paint 24" Pipe Paint 30" Pipe	54 II	0.438 min/#	2 24	27.53 /mh	650	3,46	187	-	-	4.12	223			1,060	
		Paint 36" Pipe Paint 42" Pipe	34 ¥ 223 ¥	0.525 mml/f 0.525 mml/f	18	27.53 Imh 27.53 Imh	491 3,223	4.15 4.85	141 1,081		-	4.95	168 1,103			801 5,407	
		09.00 Finishes	3,300 is		249		6,848	0,59	1,955	4.24	13,985	1.27	4,19B			26,986	
		Spe⊂ialty Items Signs - Butking ID	1 ea			/ea				3,000.60	3,001					3,001	
		Signs - Doors Fire Extinguisher CO2, 10 lbs	5 ea 4 ea			lea lea				30.01 225.05	150 900	-	-		• •	150	
		10.00 Specialty Items	3,300 (s							1.23	4,051					4,051	
	23.00	HVAC Replace HVAC System (Includes Exhaust Fans, Heaters, Louvers & Ductwork)	3,000 sł			/st		- "		25,01	75,015		-			75,015	· .
		Replace Arcellary Building Systems 23.00 HVAC	3,000 sł 3,300 sł			/st		-	•	13.00 34,55	39,000 114,015		-		· ·	39,000 114,015	
		Dredging															
		Hydraulic Dredging- Allowance 31,00 Dredging	1 ts 1 Is				-	-		250,000,00 250,000,00	250,000 250,000	-	-		· •	250,000	:
		Site Improvements															
		Reptace Entrance Sidewalts & Handrall 32.00 Site Improvements	1 (s 1 1s			/is				1,200.00	1,200					1,200 1,200	
		02 Modify Existing Structure & Services	1 15		499		17,253	20,811.62	20,812	450,706.22	450,706		13,399			502,170	
26		Electrical & Instrumentation Above Ground Electrical															
	26.01	Electricai Work For New Pumps & Lights	1 ls			As				200,000,00	200,000					200,000	
		26.01 Above Ground Electrical	1 ls							200,000.00	200,000					200,000	
		Instrumentation & Controls Controls & Instrumentation Work For New Pumps	i la			/Is				84,000.00	84,000					84,000	
		26.02 Instrumentation & Controls 26 Electrical & Instrumentation	1 ls 3,300 ls							84,000.00 86,06	84,000 284,000					84,000 284,000	
40		Process Piping	3,300 19							50,00	264,000					264,000	
	40.01	Above Ground Process Piping Replace Water Supply, PCC, Chlorina Solution and Polassium Permanganate Piping	600 #	0.900 mh/1/	540	45.62 /mh	24,635	47,39	28,432							53,068	÷
		40.01 Above Ground Process Piping	600 F	0,900 mm//	540	45,62 /mm	24,636	47.39	28,432				•			53,069	
	40.02	Valves, Meters, Etc.	1 ea	12.170 min/ea	12	45.62 /mh	555	5,000.00	5.000							5.555	
		Backflow Preventer Fig 6* Magnetic Flow Meter, Inline - 30* w/ transmitter	2 ea	38,000 mh/ea	76	43.67 /mh	3,319	19,000,00	35,000		:		:			41,319	
		Resurface All Large Discharge Valves & Reptace Actualors 24" Resurface All Large Discharge Valves & Reptace Actualors 36"	5 ea 1 ea	10.000, mml/ea 14.000 mml/ea	50 14	30.57 /min 30.57 /min	1,834 428	7,800.00	46,800 11,700	:	:		:			48,634	
		Resurface All Large Discharge Valves & Replace Actuators 42"	3 еә	17,000 mh/ea	51	30,57 /mh	1,559	14,950,00	44,850	-	-	-	-			46,409	
		40.02 Valves, Meters, Etc. 40 Process Piping	600 11		213 753		7,695	291,30	146,350 174,782							154,845 207,113	
43		Process Equipment															
	43.00	Pumps Pump Inspection	6 na	24.000 mh/ea	144	42.40 /mh	6,105			2,200.00	13,200		· · ·			19,305	
		Freight On Pumps To Jobsile	6 ea			/ea				1,100,00			-	1,500.00	9,000	9,000	
		Verified Performance Test Vendor Verified Performance Test	6 day 6 ea	8,000 ch/day	48	29.43 /ch /ea	1,413			-'	-	-	-	1,500,0	000,8 0	9,000	
		Vendor Witnessed, Verified Performance Test System Diskrifection	6 na 1 day	8.000 ch/day		/ea 29,43 /ch	235	750.00	750					1,500,00	9,000	9,000	
		Equipment University of the second se	r day	4.000 ch/ea	472	182.62 /ch	4 383	500.00	3 000		_	381.61	2.290			9,673	

Report Date: 6/11/2020 1:19 PM

(1) (1) (4) (4) (6)

Page 2

<File name>

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

Attachment JTP-5 Cause No. 45545 Page 25 of 105 Cause No. 45545 Page 3 of 54

Page 25 of 105

WBS WBS WBS	4 Description	Takeoff Quantit	/ Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
43.00	Pumps Equipment Rigging / Rough Sel - Pumps Equipment - Final Satting Group Base - Pumps Vanabé Frequency Drives 150 HP Reades Vender Utarbia Can Leve Sarvice Pumps 150 HP	585 666 686 688	4.000 ch/ea 4.000 ch/ea 40.000 mh/ea	144 72 240	195,85 /ch 103,33 /ch 28,14 /mh	4,700 2,480 6,753	500,00 50,00 31,995,00	3,000 305 191,970	····· - ······ -		401.59 346.16	2,410 2,077			- 10,110 - 4,857 - 198,723	7 7,6 3 302,0
	Damo Existing Low Service Pumps 150 hp Add Large Sump Pump To Lower Level 43.00 Pumps	6 68 6 63 1 93 1 Is	30,000 mh/ea 32,000 mh/ea	180 32 1,000	/ea 34,45 /mh 34,45 /mh	6,200 1,102 33,372	- 199,020.0D	- 199,020	13,200.00	- 13,200	6,776,18	\$,776	165,000,00 45,090,00 1,071,000,00	45,000	6,200 46,102	0 9; 2 70,
43.08	In take Screens 3-Man Dive Team - (1) Diver, (1) Tender, (1) Standby Diver Rabuld Intake Screens 43.08 In take Screens	180 ch 3 ca 3 ca	60,000 mh/ea	180 180	32.90 /mh	5,923 5,923	:	:	560.00 - 33,500,00	100,800	555,56 6,657,60 39,990,93	19,973	47,875.00			1 259
43.09	Polassium Permanganake System Purchase Chemicals: Potassium Permangnate By Owner) Automated Potassium Permanganate of Maing Tank By Caus Corp) 43.08 Potassium Permanganate System	1 is 1 is	50,000 m/n/1/as	50 50	45.62 /mh	2,281	•	•	•		-	-	10,000.00		-	1 11
в	43 Process Equipment 43 Process Equipment 1A River Intake & LSPS Rehab New River Intake & LSPS	1 is 1 is		1,230 2,482		41,578 91,159	199,020.00 394,613,41	199,020 394,613	114,000.00 848,706.22	114,000 848,705	126,748.98 140,149.13			1,224,625	5 1,705,970	0 2,601
00 03.00	Building & Structure Construction															
	Kayaya (5° Mai Faundalon Edge Form 34° Mai Faundalon Edge Form 30° Waterfolg 6°Fht Ship & O I Mai Found, Form Relaw - Foundation Mai (100 #(v))	850 H 366 sf 510 sf 650 H 876 sf 13 to 13 to	0.050 mh/Y 0.350 mh/s/ 0.350 mh/s/ 0.110 mh/s/ 0.005 mh/s/ 28,006 mh/th	33 128 179 72 4 368	39.49 /mh 39.49 /mh 39.49 /mh 39.18 /mh 39.17 /mh 43.53 /mh	1,284 5,058 7,050 2,802 172 16,030	0.67 1.31 1.31 2.10 0.03 997.70	437 480 570 1,365 26 13,120	-			-			- 1,721 - 5,540 - 7,720 - 4,167 - 198 - 29,150	0 8 D 12 7 8 0 45
	Rebais Support - bries; (-12/8) Finish- Hord Trovel Pump Phace Mat Foundation 24" Pump Phace Mat Foundation 30" 4000 ppi Councelle	368 et 3,070 st 83 cy 180 cy 263 cy	0,002 mmh/ea 0.023 mmh/sf 0,500 mmh/cy 0,500 mmh/cy	1 71 42 90	43,53 /mh 39,17 /mh 41,39 /mh 41,39 /mh /cy	52 2,766 1,718 3,725	0.26 - - 142.00	97 - - 37,346		-	4.59 4.59				- 129 - 2,766 - 2,098 - 4,551 - 37,346	6 4 8 3 1 7
03.03	Liqu'é Curing Compounds 6 Mil Vapor Barrier 03.00 Foundation Mat Columns	3,946 st 4,400 st	0.003 mh/sf 0.002 mh/sf	12 9 1,007	39,17 /mh 43,53 /mh	454 383 41,484	0.06 0.05	232 231 54,004	····- <u>-</u>	:		1,207		: ;	- 696 - 814 96,694	6 1 4
	Form Restangle Columns 14' 8 25:33' h Charler Strip & Ol Column Form Superplassicions (§ Columns Column Rebett (10 8/fr/)	1,525 sf 1,144 ll 1,525 sf 19 cy	0,165 mh/sf 0,015 mh/sf 0.005 mh/sf 20,004 mh/sf	252 17 8 23	39,49 (mh 39,49 (mh 39,17 (mh /cy 43,53 (mh	9,936 678 295 593	1.60 0.57 0.03 8,40	2,434 649 46 160		-		-			12,371 1,326 - 344 - 160	6 : 4 0
	Frigin Flots (Comm) Prince Flots (Comm) Prince Colomis 16 ee 4000 pt Controls GrindPlate Comms Red Columns Legisla Cump Compounds	1 tn 69 st 19 cy 19 cy 1,525 sf 1,525 sf 1,525 sf	20,004 min/mi 0,017 mih/sf 1.600 mih/sy 0,013 mih/sf 0,065 mih/sf 9,003 mih/sf	23 1 30 20 89	43,53 mm 39,17 mm 41,39 mm /cy 39,17 mm 39,17 mm 39,17 mm	993 46 1,258 777 3,882 179	997.70 - 142.00 0.03 0.06 0.06	1,137 - 2,598 45 92	-	-	7.60	142		 	- 2,130 - 45 - 1,401 - 2,698 - 822 - 3,974 - 269	5 1 5 8 4 2 -
03.04	03,03 Columns Walls			454		18,048	0.00	7,351				142			25,541	
	Brick Ledya Forms Koyway 6° Vertical Walk Keyway 6° Panal Form System 12-16'	257 8 1,004 8 272 8 2,250 sf	0.300 mh / ¥ 0.050 mh / ¥ 0.110 mh / ¥ 0.170 mh / sf	77 50 30 383	39,49 /mh 39,49 /mh 39,49 /mh 39,49 /mh	3,045 1,983 1,182 15,104	2.21 0,67 0.67 1.84	567 575 183 4,134	-	-	-	-	-		- 3,612 - 2,657 - 1,365 - 19,239	7 5 3
	Panel form System > 16 h Waterdog 6 ⁺ Eht Strap & Ol Wall Forms Storefastioner (8) Walls Rebar Walls (1/25 Birg)	12,695 sf 1,276 if 14,495 sf 553 cy 35 to 2,008 sf	0,190 mh/s/ 0,110 mh/¥ 0,005 mh/s/ 15,003 mh/tn	2,413 140 72 525	39,49 /mh 39,18 /mh 39,17 /mh /cy 43,53 /mh 39,17 /mh	95,266 5,500 2,839 22,855 \$29	1.84 2.10 0.03 8.40 997,70	23,332 2,580 435 4,646 34,920	-	-		-			- 118,598 - 8,180 - 3,274 - 4,646 - 57,776	0 1 4 5 6 8
	Finish-Topof Wall Pung-Piace Walls 24 Pung-Piace Brick Lodge 4000 cal Concritei	2,008 ST 553 cy 14 cy 567 cv	0.008 mh/st 1.150 mh/cy 2,001 mh/cy	16 636 28	41.39 /mh 41.39 /mh 41.39 /mh	26,327 1,159	142.00	80,514	·	-	6.65 14.42	3,677 202			- 629 - 30,004 - 1,361 - 80,514	4 4 1
	GrindPatch Walls Rub Walis Llegid Guing Compounds 03.04 Walls	14,495 sf 7,473 sf 15,303 sf	0.013 mi/s/ 0.058 mi/s/ 0.002 mi/s/	188 433 31 5,023	39.17 /mh 39.17 /mh 39.17 /mh	7,382 16,975 1,199 201,447	0.03 0.06 0.08	435 448 900 153,868	-	-	-	3,879		-	- 7,817 - 17,425 - 2,099 359,195	7 1. 5 2. 9 :
03.05	Slab Edga Form 28"	249 st	0,350 mh/s/	. 87	39,49 /mh	3,442	1.31	327				· ·			- 3,769	9
	Rebar-SCG (125 #(cy) Mesh Support - bricks (: 12/sf) Finith-Hart Trowal Pump Place Slab on Grade 8° @ Excitical Room	2 th 75 ea 624 sf 16 cy	14.003 mh /tn 0.002 mh /ea 0.015 mh /sf 0.500 mh /cy	22 0 9 8	43.53 /mh 43.53 /mh 39.17 /mh 41.39 /mh	951 7 367 331	997.70 0.26	1,556 20 -		-	3,67				- 2,507 - 26 - 367 - 390	6 7 0
	Purup Place Thickened Sub 28" x 20" 4000 parl Cancrols Saw Cut S-O-G (/08%/) Luplad Curing Compounds	10 cy 26 cy 50 lf 873 sf	0,500 mh/cy 0,030 mh/if 0,002 mh/sf	5 2 2	41,39 /mh /cy 39,17 /mh 39,17 /mh	207 59 \$8	142.00 0.17 0.06	- 3,692 9 51		-	3.67	· •			- 244 - 3,692 - 115 - 120	2 5 0
	Seal Floors 6 ME, Vapor Barrier Gravel Fill Linder Stab 4" 03,05 Slab On Grade	624 sf 700 sf 8 cy	0,002 mh/sf 0,002 mh/sf 0,004 ed/ey	1 1 1 138	39.17 /mh 43,53 /mh 1,412,15 /cd	49 61 43 5,584	0.09 0.05 29.26	58 37 234 5,983	-	:	3.84	31 174			- 107 - 98 - 308 11,741	8
03.06	Suspended Flat Slab Form Suspended Slab Bollom Slab Edge Form 12* Suite S Gli suspended Slab Forms	2,312 sf 207 sf 2,519 sf	0.180 mi/sf 0.250 mi/sf 0.005 mi/sf	415 52 13	39.49 /m/n 39.49 /m/n 39.17 /m/n	15,437 2,044 493	2.18 5,17 0.04	5,050 1,070 103							- 21,487 - 3,114 - 597	7 3
	Supportsituations Rebox-Supportations Ribox-Supported State (25 #/cy) Filish-Hard Towel Pumo Pales Supported State 12*	57 cy 6 ln 2,312 sf 57 cv	20.004 mh/th 0.030 mh/sf 1.800 mh/cy	128 69 103	43,53 /mh 39,17 /mh 41,39 /mh	5,581 2,717 4,247	8,40 997.70	479 6,395		-	6.65	373			- 479 - 13,977 - 2,717 - 4.627	9 7 18 7 4

Page 3

<File name>

5,904 Report Date: 5/11/2020 1:19 PM

1 1 8

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 OUCC DR 17-6 Attachment 2^{Page 4} Page 26 of 105 Page 4 of 54

WTP Rehabilitation 6-1	220						ny ran							No. 45545 26 of 105		Page 4
WBS WBS Lvl 3 Lvl 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Materiai Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Tota Amount
	03.06 Suspended Flat Slab			795		32,087		24,490				379	·			
03.07	Suspended Beams Beam Side Forms	2,173 sł	0.210 mh/sf	456	39.49 /mh	18,023	2.21	4,792	···· . •						22,815	3
	Beam Botiom Forms Chamler	778 st 1,170 li	0.210 mh/st 0.015 mh/bt	163 18	39,49 /mh 39,49 /mh	6,453 693	2.21 0.57	1,716 664	-			:			8,169	
	Strip & Oil Beam Forms Supergrasticizers @ Beams	2,951 st 54 cy	0,005 mh/sf	15	39.17 /mh /cy	578	0.03	89 454		:	-	:			667	
	Reber- Bearrs (250 #/cy) Finish- Top of Beam	7 th	15,003 mh/tn 0,008 mh/sf		43,53 /mh 39,17 /mh	4,408 244	997.70	6,734		•		-			11,142 244	
	Pump Place Beams @ Roof	54 cy	2,001 mh/cy	108	41.39 /mh	4,472					14.42	779		: :	5,251	
	4000 psi Concrete Grind/Patch Beams	54 cy 2,951 sf	0.013 mh/sl	38	/cy 39,17 /mh	1,503	142,00 0,03	7,668 89						1	7,668	
	Rub Beams	2,951 sf 3,729 sf	0.085 mh/s/ 0.002 mh/s/	251 7	39.17 lmh 39.17 lmh	9,824 292	0.06 0.06	177 219		:		:		: :	10,002 511	
	03.07 Suspended Beams			1,164		46,491		22,601				779			\$9,871	
	Pads & Curbs Pad Form	1.267 st	0.120 mh/sf	152	39.49 /mh	6,005	1.37	1.730	-	-					7,734	
	Charrier Skrip & Oli Equipment Pad Forms	447 lf 1,267 st	0,015 mh/ð 0,005 mh/sf	7	39,49 lmh 39,17 lmh	265 248	0.57	254 38	-	-	-	.		·	51B 286	
	Rebar-Pads (100 #/cy)	2 tn .	18,003 mh/te	33	43,53 /mh	1,450	997.70	1,846				:		: :	3,295	
	Finish-Fibat Pump Pince Pads	1,444 st 37 cy	0.017 mh/s/ 1,601 mh/cy		39.17 /mh 41,39 /mh	961 2,451				-	7,49	- 277		: :	961	
	4000 psi Contrele Liquid Curing Compounds	37 cy 2,711 sf	0,003 mh/sf	. 8	/cy 39,17 /mh	319	142,00 0,06	5,254 159		-					5,254 478	
	03.08 Pads & Curbs		-,	290		11,699	-	9,280				277			21,256	:
03,20	Precast Planks Precast Hollow Core Roof Planks 4' wide x 10"	3.109 st	0.020 mh/sf	62	42.24 imh	2,627	8.80	27.365			0,35	1.094			31,086	
	03.20 Precast Planks	1 sf	0.020 1107 0	62	44.44 104	2,627	27,364.65	27,365	-	-	1,094.10				31,086	
04.00	Masonry 12° CMU + Rigid Insulation Backup To Brick, 22' h	5,478 st			/51				24.00	131,472					131,472	15
	12" CMU Interior Partition 20' h	660 sf			/sf				20.00	13,200		-		: :	13,200	1
	Brick Veneer 04.00 Masonry	5,976 st 1 st				-	-	•	9.00 198,466.74	53,795 198,467	-	-		· •	- 63,795 198,467	3
05.01	Misc Metals								150,400.14	(20,40)						
	Floor Grating Structural Support (13 #/sf) Floor Grating Edge Angle Support (5 #/sf)	9 tn 3 tn	8.002 ch/ln 2.000 ch/bn	355 34	214.54 /ch 214.54 /ch	15,242 1,468	1,200,24	10,657 4,105		:	829.17 207.29			: :	33,261	
	Metal Checkered Pipta Stair Landings 4' x 8' Metal Checkered Pipta Statos	6 na	4.000 mh/ea 1.000 mh/rs	24 94	42.08 /mh 42.08 /mh	1,010 3,956	1,200,00	7,200	-	-	-	-			8,210	
	Alum Stair Wall Handrail	94 rs 10 K	0,150 mh/#	2	42.08 /mh	63	16,80	168				:		: :	38,501	
	Auminum Handrait @ Stair Landing Aluminum Handrait @ Stairs	96 M 188 M	0.234 mh/# 0.234 mh/#	22 44	42.08 /mh 42.08 /mh	946 1,852	44,11 44,11	4,234 8,292	-	-	-				- 5,180 - 10,144	
	Alum Grate Cover .75" @ 4'x4' Sump Alum Platform Gratico 1"	1 ea 1.367 st	0.600 mh/ea 0.035 mh/sf	1	42.08 /mh 42.08 /mh	25 2.014	185.04	185 16,941	-	-	-	-		· •	210	
	Alum Grating Banding	42 1			AL CONTRACTOR OF A		23,70	935	-	-	-	-			995	
	Aluminum Rool Hatch 6,33' x 6,33' 05,01 Misc Metals	1 eə 1 is	8.002 mh/ea	8 632	39,18 /mh	313 26,889	5,001.00 92,323,61	5,001 \$2,324	-	•	- B,071,10	8,071		-	5,314 127,283	1
	Wood											-,,				
	Misc Mailers & Blocking 05.00 Wood	3,400 s/ 1 Js	0.010 mh/sf	34 34	39.67 Imh	1,349 1,349	0,40 1,364.53	1,365 1,365	-	-	-	-			. 2,714 2,714	
07.00	Moisture Protection															
	Cauliding @ Masonry Waii Joints- Exterior (.09 Illist) Cauliding @ Masonry Wali Joints- Interior	537 ₩ 537 ₩			n N				4.00	2,148 2,148	-				2,148	
	07.00 Moisture Protection	t is							4,296.86	4,297					4,297	
07.01	Roofing Membrane Roofing- 50 mil EPDM Mechanically Attached w/ 3* Insulation	3,400 sf			/51				3,00	10,202					10,202	
	Akminum Downspouts, 6 ea x 20' each Aluminum Coping @ Roof Parapet 20" wide	120 vf 260 li			M				18.00 25.01	2,160					2,160	
	Roof Hatch 4'0" x 4'0"	1 ea			/ea				2,500,50	2,501					2,501	
	Translucent Panel Skylight Frame & Panels 7" x 7", 6 ea 07,01 Roofing	216 s/ 1 sf			/sl				38.01 29,573.90	8,210 29,574					8,210 29,574	
08,00	Doors, Frames & Hardware															
	HM Single Frames- 16 ga 3'x?" HM Double Frames- 16 ga. 6'x?"	2 ea 3 es	1,000 mh/ea 1,500 mh/ea	2 5	39,18 /mh 39,18 /mh		180.03 210.04	350 530	1	:	-			1	438 806	
	HM Door Leafs-3'x7' 20 ga, haji glass Overhead Ocors-10'x10' 24 ga steel manual 1'' insuation 26 ga back-up panel	6 ea 1 ea	1,500 ea/mh	5	39,18 /mmh	209	450,09	3,601	2,255.00	2,255	-				. 3,810 2,255	
	Finish Hardware by Leaf- Alowance	8 na	8,002 mh /ea	64	39,18 /mh	2,598	900.18	7,201		-	-	-			\$,709	
09.00	08.00 Doors, Frames & Hardware Finishes	1 ea		76		2,971	11,792.35	11,792	2,255.00	2,255					17,019	
00100	Paint HM Door Frames - primer (2) costs	5 ea			/ea		· -	-	100.02	500	-				500	
	Paint HM Doors - primer (2) coats Paint CMU Block - block filler & (2) coat	8 ea 6,300 sf			/ea -	-		:	140,03 1,35	1,120 8,505					- 1,120 8,505	
	Misc Architectural Finishes Paint 6" Pice	1 1s 505 M	0.140 mh/b	71	27.53 /mh	1.947	- 0.69	350	6,000,00	5,000	4.24	2,141		: :	. 5,000 4,437	
	Paint 18" Pipe	85 II	0.200 mh/# 0.350 mh/#	17	27,53 /mh 27,53 /mh	468	2.08	177		-	6,06	515			1,159 136	
	Paint 24" Pipe Paint 30" Pipe	54 B	0.438 mh/if	2 24	27.53 /mh	\$50	3.46	187	-	:	7.07	223			1,060	
	Paint 36" Fipe Paint 42" Fipe	34 li 223 li	0.525 mh/lí 0.525 mh/lí	18 117	27,53 /mh 27,53 /mh	491 3,223	4.15 4.85	141	:	:	4.95 4.95			1	801	
	09.00 Finishes	1 Is		249		6,848	1,954.56	1,955	16,125.32	16,125	4,198.25				29,126	
10.00	Specialty Items Signs - Building ID	1 ea			/ea				3,000.60	3,001					3,001	
	Signs - Doors				/ea				30,01	150	-	-		· •	- 150	
	Fire Extinguisher CO2 10 lbs	4 ea 1 1s			/ea				225.05 4,050,82	900 4,051					900 4,051	
	10,00 Specialty Items															
22.00	Plumbing															
22.00		6,000 sr 1]s			/sf				6,00 36,007,19	36,007 36,007					36,007 36,007	5

Page 4

<File name>

o, 45545 hment 2*Page 5* e 5 of 54

e WTP Rehabiltation 6-	12-20			EWSU Wa	ter Treatment Plan	t- Advanced Faci	lity Plan					OUCO	Cause	nent JTP-5 No. 45545 e 27 of 105	Ca OUCC DR 17-	ause No. 4 1-6 Attachn Page 5
WBS WBS Lvi3 Lvi4		Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand To Amoun
31.00	23,00 HVAC Dredging	1 sf							150,029.95	150,030					150,030	2:
	Hydraulio Dradging-Allowance 31.00 Dredging	1 is 1 1s			-	-	-	-	250,000.00 250,000,00	250,000					250,000	3
31.01	Dewatering Dewatering & Building Excevation	1 ea	240,000 ch/ea		159.35 /ch	38,244	7,500.00	7,500			33,592,77	33,693			79,336	
	Devalening @ Cofferdams For Intake Construction 31.01 Dewatering	3 na 1 Is	120,000 ch/ea	1,440 2,400	159.35 /ch	57,365 95,609	7,500.00 30,000.00	22,500 30,000	•		16,795,52 83,982,33	50,390 83,982		· ·	130,255 208,591	
31.02	Piles Augered Piles CIP 18"x @ 25 ft depth, 10' oc ≈ 32 e8 (1 per 64 sf)	tv 006	0.002 cd/vf	90	2.146.97 /cd	3,436	35.16	28,125			2.58	2,054			33,625	
31.03	31.02 Piles Excavation Shoring	32 ea		90		3,436	878.91	28,125			64,51	2,084			33,625	
51,05	Sharlog System Dasign Engineer Structure Sharting (246' x 60' deep)	1 K 14,750 st	0.001 cd/sf	728	2.465,38 /cd	28,001	-	236,207	15,003.0D	15,003	0.75	11,098		: :	15,003 275,335	
	Tie Backs (1 per 60 st of Sheeting, 246' x 45= 11,070 st) 31,03 Excavation Shoring	138 ea 12,300 sf		728	-	28,031	19.20	236,207	2,377,47 27,89	328,091 343,094	0.90	-		- •	328,091 618,430	
31.10	Structure Excavation Exo Clay-Backhoe/Truck	6,345 cy	499.900 cy/cd	457	1,410.06 /cd	17,897			· .		6.58	41.776			59,673	
31.12	31.10 Structure Excavation Structure Backfil	6,345 cy		457		17,897					6.58	41,775			59,673	
31.12	Sudecure Backfill Backfill Earth-Backfiller(Truck 31,12 Structure Backfill	2,722 cy 2,722 cy	0.002 cd/cy	176 176	1,327.72 /cd	7,300			-	-	4.69	12,757 12,757			20,058 20,058	
31.13	Soil Disposal	3.623 cv	0.003 day/cv	326	1.410.06 /dav	12,774					8.23	29.819			42,593	
	31.13 Soil Disposal	3,623 cy 3,623 cy	0.003 bay rey	326	1,470,06 70ay	12,774	-				8.23				42,593	
31.20	Structure Stone Base Structure Subbase Stone-Loaders/Truck - 3.070 sf x 4"	38 cy	0.003 cd/cy	5	1,609,56 /cd	185	28.28	1,075			10.02	381		. .	1,641	
32.00	31.20 Structure Stone Base Site Improvements	38 cy		5		185	28.28	1,075			10.02	381			1,641	
	Misc Site Improvement ALLOWANCE 32,00 Site Improvements	tils 1.Ls			/b				10,000.00 10,000.00	10,000 10,000					10,000 10,000	
26	00 Building & Structure Construction Electrical & Instrumentation	5,000 gsf		14,106		562,756	117.96	707,785	173.98	1,043,900	33.6B	202,077			2,516,618	
26.00	UG Efectrical ExtFixures - Elec - dustbenk Conduit/Cable/Wire	100 ff	0.250 mh/lf	25	45.63 /mh	1,138	2.72	272			5.00	500			1,910	
	Buiking Electrical System 26.00 UG Electrical	6,000 sf 1 is		25	/s/	1,138	272.00	272	16,00 96,019,16	96,019 96,019	500.00	500			96,019 97,929	
26.01	Above Ground Electrical Building Electrical System	6 000 sf			/sf				6.00	45.010					48,010	
	Process Electrical System Ext Light Pole (sti), Base and Finture, high pressure socium 400w, 30° high	6,000 sf 4 ea	44.000 m/h/ea	176	/sf 45,53 /mh	8,013	2,300.00	9,200	30.01	180,038		-			180,036 17,213	
25.02	26.01 Above Ground Electrical Instrumentation & Controls	1 ls		176		8,013	9,200.00	9,200	228,045,52	228,045					246,259	
	Controls & Instrumentation 26.02 Instrumentation & Controls	1 ks 1 ls			/is				310,800,00 310,800,00	310,800 310,800					310,800 310,800	
40	26 Electrical & Instrumentation Process Ploing	6,000 is		201		9,151	1,58	9,472	105.61	634,855	0.08	500			653,988	
40.00	Under Ground Process Piping Trench Excar & Lay Pipe 0-4'	783 #	600.000 lf/cd	73	2,539,31 /ed	3,314					1.88	1,475			4,789	
	Trans Excave & Lay Pipe U - 4 Stone Pipe Bedding DJ Pipe Pugh - Class 52 6	58 cy 505 li	200.000 cy/cd 0.229 mh/t	21 111	2,896,43 /ed 24,05 /mh	840 2,672	23.29 22.53	1,351 11,379			1.05	1,415		1 1	2,191	
	Di Pipe Push - Class 52 8 Di Pipe Push - Class 52 12	D M 0 M	0.253 m/h/b 0.310 m/h/b/	0 0	51.34 /mh 51,34 /mh	0 0	32.00 52.00	D 1		:		·		: :	0 1	
	DI Pipe Push - Class 52 30 DI Pipe Push - Class 52 36	54 M 0 M	0.440 mh/¥ 0.500 mh/¥	24 0	51,34 /mh 51.34 /mh	1,220	167.28 225.03	9,033 2	· · · · · · · · · · · · · · · · · · ·	:	···	:		: .:	10,253	
	DJ Pipe Push - Class 52 42 DJ Pipe Push - Class 52 48	224 H 0 H	0.570 mh/lf 0.640 mh/lf	128 0	51.34 imh 51.34 imh	6,555	290,93 365.00	65,169 4	-	:		-			71,724	
	Hydrostatik Cesting Chlorination 42° DI Sibo Thintois 24° long	763 U 783 V	0,021 ch/W 3.500 ch/ea	66 42	182.49 /ch /¥ 182.49 /ch	3,001	0,16 0.10 1,800.00	125 78 5,400	-	-	842.80	2,528		: :	3,126 78 9,845	
	42° Di Sebe i numbe 24° tong Di 80 ell 42° 40,00 Under Ground Process Piping	3 ea 6 ea 783 lf	23,120 mh/ea	42 139 603	30,57 /mh	4,240	4,949.10	29,695	-	:	5.11	-		: :	33,935 149,999	
40,01	Above Ground Process Piping			803		23,735	108,11	122,238				4,003			850	
	Stendi Exposed Piping <20" Stendi Exposed Piping >20"	85 1/ 260 1/ 18 ea	4.001 m/hea	72	45.62 /mh	3,285	250,05	4,501	10,00 25.01	850 6,501	:				6,501 7,786	
	Pipe Supports Plydrostalic TextIng Collouring	18 68 345 M 345 M	4,001 mm/ea 0,021 ch/k/	. 29	45.62 /mm 182,49 /ch	1,322	200,05 D.16 D.10	4,501 55 35	-	-	<u>.</u>	÷		-	1,377	
	Cristination Cross Filling 6" Dreser Couplings 16"	345 # 1 ea 5 ea	2,400 ch/ea 10,352 ch/ea	10 207	182,49 /ch 153,14 /ch	438 8.444	170,00	170		-		-		-	608 10,994	
	Dresser Couplings 74" Dresser Couplings 74" Dresser Couplings 42"	6 ea 2 ea	13,803 ch/ea	331	182,49 /ch 40,79 /mh	15,113 1,958	684.14 3.500.00	4,105	-		-	2		: .:	19,218 8,958	
	14" DI Sibi Trinibe 12" long 30" DI Wali Thimbe 24" long	0 ea 2 ea	24.000 m/r/ea 1.501 ch/ea 2.500 ch/ea	0	182.49 /ch 182,49 /ch	3 912	325.00 1,286.26	3	:		351.00 602.00	4 1,204			10 4,689	
	Gaskallhulusfögh Kit 18" Gaskallhulsfögh Kit 24"	32 ea 7 ea	1,000 mh/ea 2,501 mh/ea	32	45.62 /mh 45.62 /mh	1,450 799	37.54 175.03	1,201 1,225 1,575			· · · ·			: :	2,661 2,024	
	Gasket/Nuts/Boit Kit 36" Gasket/Nuts/Boit Kit 42"	9 ea 11 ea	2,600 mh/ea 1,000 mh/ea	23 11	45.62 /mh 32,89 /mh	1,068 362	175.04 350.00	1,575 3,850	:		:	2		: i	2,643 4,212	
	Di Flanged Joint Pipe 6" Di Flanged Joint Pipe 6"	0 K 0 K	0.900 mh/if 0,900 mh/if	0	45.62 /mh 30.57 /mh	0 0	50.00 50.00	1	-	-	· .	:		: :	1	
	Di Flanged Joint Pipe 18" Di Flanged Joint Pipe 24"	85 K 7 K	2,270 mh/ř 2,670 mh/ř	193 19	30.57 /mh 30.57 /mh	5,898 571	183,93 267.83	15,834 1,875	-	-		;		: .;	21,532 2,445 18,109	
	Di Flanged Joint Pipe 36" Di Flanged 90 eli 5"	34 H 14 ea	3.470 mh/f 4.830 mh/ea	153 68	30.57 /mth 45.62 /mth	3,606 3,085	426.54 105.30	14,502 1,474		-	-	-		: :	18,109 4,559	
	CI Flanged 90 ell 18".	18 ea	13.250 mh /ea	239	30.57 /mh	7,290	729.00	13,122	-	-	-				20,412	

Page 5

<File name>

Report Date: 6/11/2020 1:19 PM

											A			Process			
S WBS W 2 Lvl3 L	WBS Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Equíp Cost/Unit	Process Equip Amount	Total Amount	Grand To Amoun
40		Above Ground Process Piping										······································			· · · · · · ·		
		PAC Piping & Accessories 3 ea- ALLOWANCE	600 LF 300 LF	0.240 mh/LF	144 72	45,62 /mh	6,571	55.01	33,007		-	-	•	-	÷	39,577	
		Chlorine Piping & Accessorins 3 ea- ALLOWANCE 40.01 Above Ground Process Piping	1.026 If	0.240 mh/LF	2,061	45.62 /mh	3,285 76,799	55.01 139.27	16,503 142,895	7.17	7,351	1,18	1.208	-	-	19,789 231,253	
40		Valves, Meters, Etc.	1,020 11		2,001		10,100	100.27	142,650	6-17	1,001	1.10	1,208			231,203	4
40		Backflow Preventer Flo 6"	1 ea	12,170 mh/ea	12	45.62 /mh	555	5.000.00	5,000		-				-	5,555	5
		Magnetic Flow Meter - Inlino - 30" w/ transmitter	2 63	30,000 mh/ea	60	48,85 /mh	2,931	15,000,00	30,000	_						32,931	
		Swing Check Valve 6"	3 ea	4,669 mh/ea		45,62 /mh	639	1,100.00	3,300		-	-				3,939	
		Swing Check Valve 18"	6 ea	13,713 mh/ea	82	90,71 /mh	2,527	10,800.00	64,800	-	-	-	-	-		67,327	
		6* Butterfly Valve, 125 lb class, Ci Body, Fig. w/ EIM elec actuator NEMA 4 24* Butterfly Valve, 125 lb class, Ci Body, Fig. w/ EIM elec actuator NEMA 4	. 4 ea 5 aa	6,200 mh/ea 19,204 mh/ea	25	30,57 /mh 45,52 /mh	758	2,850,00	11,400 75.015		-					12,158 80,272	
		36" Butterity Valve, 75 lb class, CI Body, Fig. w EliM elec actuator NEMA 4	1 ea	28,800 mh/ea	29	30.57 /mh	880	19,781.00	19,7B1						-	20,661	
		42" Bullarity Valve, 75 ib class, CI Body, Fig, w/ EIM elec actuator NEMA 4	3 ea	33,600 mh/ea	101	30,57 /mh	3,081	23,078,00	65,234	-	-	-	-	-	-	72,315	
		40.02 Valves, Meters, Etc.	1 ls		438		15,628	278,529,97	278,530							295,158	4
40	0.04	Hydropneumatic Piping System															1
		Hydropneumatic Piping, Fitting & Valve Allowance	1 15	mh/bs		45,62 /mh				15,000.00	15,000					15,000	
		40.04 Hydropneumatic Piping System	1 ls							15,000.00	15,800					15,900	1
		40 Process Piping	1,809 lf		3,102		120,186	300,53	543,662	12.36	22,351	2.88	6,211			691,410	<u>el</u>
43		Process Equipment															
43		Pumps															
		Purp Inspection	6 ea	24,000 mh/ea	144	42,40 /mh	6,105	-	-	2,200,00	13,200		-			19,305	
		Freight On Pumps To Jobsite	6 ea	8.000 ch/day	48	/ea								1,500.00		9,000	
		Verified Performance Test Vendor Verified Performance Test	6 day 6 na	5.000 ch/day	40	29.43 /ch	1,413			-	-	-	•	1,500.00		10,413 9,800	
		Vendor Witnessed, Venified Performance Test	6 ez			lea								1,500,00			
		System Disinfection	1 day	8.000 ch/day	8	29,43 /ch	235	750,00	759							985	5
		Equipment Unbading	6 ea	4.000 ch/ea	132	182.62 /ch	4,383	500.00	3,000		•	381.61	2,290	-		9,673	
		Equipment Rigging / Rough Set - Pumps Equipment - Final Setting Grout Base - Pumps	6 na 6 ta	4.000 ch/ea 4.000 ch/ea	144 72	195.85 /ch 103.33 /ch	4,700 2,480	500.00 50,00	3,000		•	401.59 346.16		-		10,110 4,857	
		Variable Frequency Orlives 150 HP	6 ea	40.000 mh/ea	240	28.14 /mh	6,753	31,995,00	191,970	-		340.10	z , 9(1)		-	198,723	
		Vertical Turbine Can Low Service Pumps 150 HP	6 ea			/ea	-,							165,000,00	990,000		
		Large Sump Pump To Lower Lavel	1 ea	32,000 mh/ea	32	34,45 /mh	1,102	-	-	-	-	-		45,000.00	45,000	46,102	1
		43.00 Pumps	1 ls		820		27,172	199,020.00	199,020	13,200,00	13,200	6,776.18	6,776	1,071,000.00	1,071,000	1,317,168	1
43		Intake Screens															
		Cofferdam Shoring System Design Engineer	1 is 12,300 sf	0.001 cd/sl		2.465.38 /cd		18.00		15,003.00	15,003				:	15,003	
		Structure Sheeting From Barge (246' x 50' deep) Installation Team Working From Barge	12,300 st 90 ch	0.001 20/5	1,102	2,465.38 /cd	42,454	18.00	196,839	560.00	50,400	1.63	20,038 100,000	-		259,331 150,400	
		River Intake Screen 54" OO x 19' long, 35 mgd/ Screen (Pneumatically Cleaned)	3 69	60,000 mh/ea	180	32,90 /mh	5,923		~ 7	360.00	50,400	6,657.60		70,958.00	212,874		
		43.08 Intake Screens	1 ea		1,282		48,377	195,839,24	196,839	65,403,00	65,403	140,011.08		212,874,00			
43		Hydroburst System															1.000
		Field Service For Startup	1 b				· · · · ·	- 1	•					4,500,00	4,500	4,500	5
		Johnson Hydroburst System	1 is							-				114,952.00	114,952		
		Install Package Air Compressor 20 hp	2 ea	40,000 mh/ea	80	30.57 /mh 30.57 /mh	2,445					900,00				4,245	
		install Air Dryer Install Korizonial Air Receiver Tenk 19.33' x 5' djamater, 2500 gallon	1 ea 1 ea	35,000 mh/ea 20,000 mh/ea	35 20	30,57 /mh 30,57 /mh	1,070					200.00				1,270 4,361	
		Misc tems	1 ea	40.000 mh/ea	40	30,57 /mh	1,223	4,000,00	4,000			3,100,00	3,730			5,223	
		43.19 Hydroburst System	1 ls		175		5,349	4,000.00	4,000			5,750.00	5,750	119,452.00	119,452		
		43 Process Equipment	1 15		2,277		80,898	399,859.24	399,859	78,603.00	78,603	162,537.26		1,403,326.00		2,115,223	
		18 New River Intake & LSPS	50 mg		19,686		772,991	33,215,55	1,650,778	35,594,39	1,779,719	7,205,51	360,326	28,066,52			
		· · · · · · · · · · · · · · · · · · ·	d d						.,,			.,				-,,,,,,,,	9

Page 6

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Cause No. 45545 Dage 28 of 105 Cause No. 45545 OUCC DR 17-6 Attachment 2^{Page 6} Page 6 of 54

AECOM 20-018 Evansville WTP Rehabilitation 6-12-20

<Fila name>

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

Page 29 of 105

Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2 Page 7 Page 7 of 54

Process WBS WBS WBS WBS Man Labor Material Material Const Faula Const Equin Subcontract Subcontract Process Grand Total Description Takeoff Quantity Labor Productivity Labor Price Equip Total Amount Lvi1 Lvi2 Lvi3 Lvi4 Hours Amount Cost/Unit Cost/Unit Cost/Unit Amount Amount Amount Equip Amount Amount Cost/Unit 02 Pretreatment 2A Pretreament - Retrofit North w/ Plate Settlers 02 Modify Existing Structure & Services Non-Y Existing of the sector of and Disposal Demo Cincore Wals 12⁻⁻ Cat Opp In Existing Cone Wall 12⁻20⁻21⁻² h & Basin Wall Demo Apple Desisting Cone Wall 12⁺20⁻²1⁻² h & Basin Wall Demo Exchanal System @ Basins 02.01 6,000 1,768 2,684 5,468 2,000 38,767 20,196 1 15 5,000.00 6,000 9,106 2,810 50 cy 24 ea 1 ls 1 ls 0.100 ch/cy 1,000 ch/ea 84.95 /ch 84,95 /ch 10 48 128 425 2,039 5,365 26.87 1,343 645 103 26,87 4,253 8,655 3.035 32,000 ch/ls 167.56 /ch 103.03 -2.000.00 2,000 Pressure Wash Basin Walls 31 626 s 150.000 sf/ch 422 201 53.11 /cl 11,198 5.327 0.35 11.069 0.52 16,500 7,849 60,783 31,578 Pressure Washing Basin Slab 20.059 st 200.000 sf/ct 53.11 /ch 7.021 02.01 Demolition Work 808 t ls 18,090 24,353 18,089.75 8,000.00 8,000 25,440.44 26,440 76,883 120,221 03.03 Columns 69,686 6,564 1,946 969 13,305 91 8,874 15,379 Form Rectangle Columns 19' h 5,472 sf 0.165 m/s 0.015 m//¥ 903 39.49 /mh 35,653 8,735 44,388 4,232 1,236 638 8,595 57 5,604 10,792 2,951 14,259 965 3,650 il 5,472 sf 0,57 2,070 Chamler Strip & Oil Column Form 55 27 39,49 /mh 2,152 0,005 mh/sf 39,17 /mh 0.03 164 638 Superplasticizers @ Columns Column Rebar (120 #/cy) 76 cy 5 tri 8,40 /cy 43,53 /mh 20.004 mh/tr 92 4,005 997,70 4,589 5 th 86 sf 76 cy 76 cy 5,472 sf 5,472 sf 39,17 /mh 41,39 /mh Finish-Float 0.017 mh/sf 57 5,034 Pump Place Columos 48 ea 1,600 mh/cv 122 7,50 570 Pump Place Columns 48 e 4000 psi Concrete Grind/Patch Columns Rub Columns Liquid Cuting Compounds 142.00 10,792 0.013 mh/sf 0.065 mh/sf 39.17 /mh 39.17 /mh 2,787 13,931 643 71 356 16 0.03 154 328 322 4,660 0,06 0,06 22,547 0.003 mh/sf 5,472 st 39.17 /mh 1,506 03.03 Columns 76 cy 1,643 65,344 365,83 27,803 7,50 570 93,717 145,525 03.04 Walls 4,547 3,276 107,819 265,605 15,199 9,560 17,617 7,122 5,156 168,988 416,981 1,165 439 25,528 52,252 4,980 1,270 Keyway 6* 1,718 ¥ 653 ¥ 0.050 mh/8 86 39.49 /mh 3.393 0.67 0.100 mh/8 0.100 mh/8 0.150 mh/s/ 0.199 mh/s/ 0.110 mh/8 0.005 mh/s/ 2,837 82,291 213,352 10,219 8,290 0.67 1.84 1.84 2.10 0.03 Vertical Wall Keyway 6* 39,49 /mh 39,49 /mh 39,49 /mh Ventical Wall Keyway 5" Panel Form System 8-12' Panel Form System > 16' h Waterstop 6'' Flat Strip & Oit Wall Forms 553 it 13,893 sf 28,431 sf 2,371 it 42,324 sf /2 2,084 5,403 261 212 39.18 /mh 23,733 15,048 39.17 /mh 15,048 26,737 333,761 1,887 180,197 451,935 36,042 155,027 9,838 Superplasticizers @ Walls Rebar-Walls (125 #icy) 2,097 cy 131 tn 8.40 997,70 17.617 /cy 43.53 /mh 17,617 216,246 1,193 113,776 297,774 22,824 98,686 6,327 1,965 15.003 mh / tr 85,548 130,699 Finish- Top of Wal 3,805 st 0,008 mh/sf 1,150 mh/cy 30 2,412 39.17 /mh 1,193 Finish- Top of Wall Pump Place Walls 4000 psi Concrete Grind/Patch Walls Rub Walls Liquid Curing Compounds 2,097 cy 2,097 cy 42,324 sf 42,324 sf 46,129 sf 41.39 /mh 6.65 13,944 41.39 /mh /cy 39.17 /mh 39.17 /mh 39.17 /mh 142.00 0.03 0.06 0.06 297.776 0.013 mh/sf 0,058 mh/sf 0,002 mh/sf 550 2,455 21,564 95,147 3,614 1,270 2,539 2,713 92 03.04 Walls 2,097 cy 15,622 628,270 256,67 538,236 6,65 13,944 1,180,450 1,833,454 03.05 Slab On Grade 68 și 1,146 523 S.O.G. Edge Form < 1" 0.240 mh/sf 16 39,49 Imh 644 139 1.22 83 727 339 0.240 min/si 16.000 min/isi 0.002 min/ea 0.025 min/si 0.500 min/cy 43.53 /mh 43.53 /mh 43.53 /mh 39.17 /mh 41.39 /mh Rabat- SOG (125 tiley) 0 in 997 70 200 Réber SOG (125 #/cy) Mesh Support – bricks (.12/st) Finish-Hard Trowei Pump Place Slab on Grade 6° @ Sludge Control Vault 4000 psi Concrete 0 in 15 ea 126 sf 3 cy 194 sf 126 sf 0,26 8 195 115 647 123 52 123 73 426 3.67 11 142.00 428 /cy 39,17 /mb 0,002 mh/sf 15 41 33 27 118 Liquid Curing Corpounds 0.06 11 27 0.002 mh/sf 0.002 mh/sf Seal Floors 39.17 /mh 12 22 6 MIL Vapor Barrier 126 st 43.53 /m ÷ 0.05 Gravel Fill Linder Stab 4" 2 0 0.004 ed/c 1.412.15 /ed 11 20.26 50 3.84 a 03.05 Slab On Grade 6.23 3 cy 1,017 266,83 800 25 1,836 2,855 19 03.06 Suspended Flat Slab Form Suspended Form 8" & 12" Slab Edge Form 8" & 12" Strip & Oil Suspended Slab Forms 2,041 sf 841 sf 2,882 sf 0.220 mh/sf 0.250 mh/sf 0.005 mh/sf 449 210 14 39.49 *Imh* 39.49 *Imh* 39.17 *Im*h 17,731 8,304 555 2.18 5.17 0.04 4,458 4,349 118 22,189 12,653 34,830 19,743 - 1 12,853 583 3,092 77,352 2,798 35,348 52,256 3,939 1,073 4,692 Superplasticizers Rebar- Suspended Slab (225 #/cy) 368 cy 41 tr 8.40 3,092 4,002 119,742 4,428 55,967 79,310 6,016 20.004 mh/tn 0.035 mh/sf 828 71 43.53 /mh 36,049 997,70 41,305 2.041 st Finish-Hard Trowel 39.17 /mh Pump Place Suspended Slab 4000 psi Concrete 368 cy 368 cy 4,923 st 795 2.160 mh/cy 41.39 /mh 32,899 6.65 2,449 142.00 52 256 Liquid Curing Compounds la/dm 600.0 15 39,17 /mh 579 3,361 6,65 03,06 Suspended Flat Slab 368 cv 2,383 98,923 296,03 108,938 2,449 210.310 325,801 03,11 Topping Slab 75 ea Mesh Support (.12/sl) 0.002 mh/ea 43,53 Imh 0,28 20 25 40 WWM 4X4- W 2.9 Flats 20,059 sf 0.014 mh/sf 281 301 836 43.53 /mh 12.224 0.50 10,057 22.281 34,610 20,059 sf 20,059 sf 1,114 cy 1,114 cy 20,059 sf 624 sf 34,610 18,555 48,903 240,084 4,278 165 39,17 /mh 28,06 /mh Einish- Hard Trowel 0,015 mh/sl 0,750 mh/cy 51 787 11 787 Pinsh- Hard Trowel Pump Place Topping Slab 4000 psi Concrete Liquid Curing Compounds Seal Floors 11,787 30,857 158,188 2,751 107 23,446 6.65 7,411 158,188 1,180 58 142.00 39.17 *lmb* 39.17 *lmb* 0.002 mh/si 0.002 mh/si 40 1,572 0,0 03.11 Topping Slab 1,114 cy 1,459 49.063 152.16 169.502 6.65 7.411 225,897 346,736 03.30 Patch Cracks and Resurface Concrete 2,120 sf 10,000 sf/ch 424 251 127 102 904 Patch Cracks & Resurface Walks 53,11 /ch 11,259 0.11 231 11,490 18,171 10,634 14,474 11,065 Patch Cracks & Resurface Slab 848 st 6.764 sl/cb 53.11 /ch 6.659 0.07 63 6,725 9,147 6,981 Pressure Washing Walls Pressure Washing Basin Slab 2,120 st 848 sf 33,333 st/ct 3,378 0.35 742 2.37 4.70 3,04 5,028 3,982 16.667 st/ct 53.11 /ch 03,30 Patch Cracks and Resurface Concrete 2,968 sf 23,998 0,45 1,332 9,010 34,340 54,343 05,01 Misc Metals Auminum 2 Line Rail @ Basin Walkway 2,908 1 0.200 mh/1 0.200 mh/1 0.035 mh/sf 582 38.76 /mh 38.76 /mh 22,541 93,638 116,179 177,792 32,20 Replace Alum Handrail @ Existing Influent Channe 106 if 848 sf 21 30 822 1,249 470 32,20 3,413 4,235 11,758 5,870 6,481 17,927 Replace Alum Platform Grating 1" @ Existing Influent Channe 42.06 /mh 12,39 10,505 1 Alum Hatch Cover & Frame 2,5's 2.5' @ Sludge Valve Vault 6 93 2.000 mh/ea 12 39.16 /mh 900.00 5.400 8.940 05.01 Mise Metals 644 25,082 112,960 138,042 211,539 1 ls 02 Modify Existing Structure & Services 23,489 916.071 977,662,64 977,663 8.000.00 8,000 59 842.38 59,842 1,961,576 3,041,075 Electrical & Instrumentation 26 26.01 Above Ground Electrical Electrical Work For Equipment (5% Equipment Cost). 315,783 1 5 315,783.00 315,783

<Flie name>

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

Page 30 of 105

Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-8 Attachment 2^{Page 8} Page 30 of 105 Page 8 of 54

20-018 Evansville WTP Rehabilitation 6-12-20

AECOM

WBS WE Lviz Lvi			Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Tol Amount
	l	26.01 Above Ground Electrical	1 ls		L					315,783.00	315,783		-			315,783	47
	26.02	instrumentation & Controls Controls & Instrumentation Work ForNew Equipment (1.5% Equipment Cost)	1 15			As				94,735,00	94,735					\$4,735	14
		26.02 Instrumentation & Controls	1 ls							94,735.00	94,735					94,735	14
	40	26 Electrical & Instrumentation Process Piping	1 15							410,518.00	410,518					410,518	62
	40.01	Above Ground Process Piping	1 Is	40.000 mh/ls	40	45,62 /mh	1,825	2,000.00	2,000							3,825	
		Misc Pipe Work- ALLOWANCE 40.01 Above Ground Process: Piping	1 IS 1 If	40.000 ma/is	40	45,62 /ma	1,825	2,000,00	2,000	-	-	-	-		-	3,825	
	40.04	Hydropneumatic Piping System	1 is	ma≀ls		45.62 /mh				15,000,00	15,000					15,000	
		Hydropneumatic Piping, Eitting & Valve Albovence 40.04 Hydropneumatic Piping System	1 Is	167.5		45.62 ///				15,000.00	15,000					15,000	
	43	40 Process Plping	1 11		40		1,825	2,000,00	2,000	15,000.00	15,000					18,825	
	43 43.01	Process Equipment Flocculators & Mixers					····· ·										
		Freight On Mixers & Floculators To Jobsite Equipment Unloading	24 ea 24 ea	4.000 ch/ea	528	/ea 182.62 /ch	17,532	500.00	12,000		<u>.</u>	381.61	9,159	1,500.00	36,000	36,000 38,691	
		Equipment Rigging / Rough Set	24 ea	6.000 ch/ea	864	195,85 /ch	28,202	500,00	12,000		-	401.59	9,638	-	-	49,840	
		Variable Frequency Drives (Included) Rapid Mixer wi7.33' Shafi & Duai 2.33' Blades, 2 HP	24 ea 6 ea	45,000 mh/ea	270	/ear 42.40 /min	11,447	100.02	600					13,700,00	82,200	94,247	
		Flocolator w/19' Shaft & 9' Blades, 3 HP	18 ea 1 Is	60,000 mh/ea	1,080 2,742	42.40 /mh	45,787 102,967	100,00 26,400.12	1,800 26,400	-	-	- 18,796.90	18,797	35,400,00 755,400,00		684,787 903,564	1, 1,
	43.02	43.01 Flocculators & Mixers Settlement Equipment	1 15		2,142		102,367	26,400.12	20,400			10,700.50	10,131	703,400,00	733,400	303,004	,
		Freight On Sedimentation System To Jobsite Verified Parlomance Test (2 days per System x 6 ea)	6 ma 12 day	8,000 ch/day	96	/ea 29,43 /ch	2,825				_			1,500,00	9,000 18,000	9,000 20,826	
		Vendor Venfied Performance Test	6 ez	0.000 cm day	50	/ea	2,010							1,500,00	9,000	9,000	
		Vendor Witnessed, Verified Performance Test Equipment Unbading	6 ea 6 ea	16.000 ch/ea	528	/ea 182.62 /ch	17,532	500,00	3,000			381.61	2,290	1,500,00	÷,000	22,822	
		Equipment Rigging / Rough Set Equipment - Final Setting	6 ea 6 ea	96.000 ch/ea 369.000 ch/ea	3,456 6,480	195.85 /ch 103.33 /ch	112,807 223,202	500,00 50,00	3,000 300	:	:	401.59 346.16	2,41D 2,077	-		118,216 225,579	
		Inclined Plate Settlers will Flow Control Dack 55' x 86' x 8,2' 43,02 Settlement Equipment	6 ea 1 Is		10,560	lea	356,367	6,300,00	6,309			6,776.18	6,775	474,375.00 2,891,250.00		2,846,250 3,260,693	4
	43.03	Baffle Walls						3,555,65	0,000								
		Flow Control Diffuser Wall SS 304/304L SS 19'h, 12 ea, 5,840 sf 43,03 Baffle Walls	360 ⊮ 6,840 sf	6,000 mh/ž	2,160	30.57 /mh	66,024 66,024					28.00 1.47	10,080 10,080	680,55 35,82		321,104 321,104	
	43.13	Chemical System Equipment			2,100								10,000	00,01			
		Totes Chemical Feed Package Units	6 ea 6 ea	1,000 mh/ea 24,000 mh/ea	6 144	45,62 /m/n 42,40 /m/n	274			:	·		5	75,000,00	450,000	274 456,105	
		Activation Units Batch Tank	6 ma 2 sa	10,002 m/n/ea 10,002 m/n/ea	50 20	42.40 /mh 42.40 /mh	2,544 848				-	:	-	25,004.99 15,002,89	150,030	152,574	
		43.13 Chemical System Equipment	1 is	10.002 1111160	230	42.45 111	9,771				-	-	-	630,035,93			
	43.20	Slide Gate w/ Operator Slide Gates 36" x 36" w/ 16' Operators @ Influent Chamber	6 ea	30,006 mh/ea	180	47.77 /mh	8,601	500,00	3,000					20,000,00	120,000	131,601	
		43.20 Slide Gate w/ Operator	1 Is	00,000 1111 00	180		8,601	3,000.00	3,000					120,000.00	120,009	131,501	
		43 Process Equipment	1 ls		15,872 39,401		543,730 1,461,525	35,700.12 1,015,362,76	35,700 1,015,383	433.518.00	433,518	35,653.08 95,495.46	35,653 95,495	4,641,685,93 4,641,585,93		5,256,769 7,647,688	8 11
		2A Preireament - Retrofit North w/ Plate Settlers Pretreament - Retrofit North w/ Ballasted Flocculation	1.15		33,401		1,401,020	1,015,302,76	2,012,262	435,518.00	433,518	50,403,40	55,495	4,041,000,00	4,041,000	1,047,000	
	00	Building & Structure Construction															
	03.03	Columns Form Rectangle Columns 12 h	960 st	0,165 mh/s/	158	39,49 /mh	6,255	1,60	1,532	-	· · · · · · · ·			-		7,787	
		Chamfer Skip & Ol Colume Form	720 II 950 sf	0.015 m/// 0.005 m//sf	11 5	39.49 /mh 39.17 /mh	427 188	0.57 0,03	408		:	-	:		-	B35 217	
		Superplasticizers @ Columns	12 cy	20.004 mh/tn	14	43.53 /mh	\$27	8.40	101 718		-			-		101 1,345	
		Column Rebar (120 #/cy) Finish- Float	1 th 27 sf	0,017 mh/sf	D	39.17 /mh	18	997.70	- 18				:	-		18	
		Pump Place Columns 15 ea 4000 pši Concreta	12 cy 12 cy	1.600 min / cy	19	41.39 /mh /cy	795	142,00	1,704	:	:	7.50	90			885 1,704	
		Grind/Patch Columns Rub Columns	950 st 950 st	0.013 mh/sf 0.065 mh/sf	12 62	39.17 /m/h 39.17 /m/h	489 2,444	0.03	29 58	:			1			518 2,502	
						39,17 /mh	113	0,05	56	-	-		-	-	-	169 16.080	
		Liquid Curing Compounds	960 st	0,003 mh/sf	3	00.11		0.00								16,080	
	03.07	03,03 Columns	960 sf	0,003 mh/sf	286	00.11 110	11,355	0,08	4,636				90				
	03,07	03.03 Columns Suspended Beans Bean Side Foms	1,780 st	0,210 mh/sf	286	39,49 /mh	11,355	2.21	3,926			-	- 30	··· -		18,689	
	03.07	03,03 Columns Suspended Beams Beam Side Forms Deam Boffson Forms Churder	1,780 st 592 st 890 lf	0,210 m//sf 0,210 m//sf 0,015 m///f	286 374 124 13	39,49 /mh 39,49 /mh 39,49 /mh	11,355 14,764 4,910 527	2.21 2.21 0.57	3,926 1,306 505	:			-	· · · · · · · · · · · · · · · · · · ·		6,216 1,032	
	03.07	03.03 Columns Suspendard Beans Bean Side Form Deant Beans Forms Claurde Claurde	1,780 sf 592 sf 890 lf 2,372 sf	0,210 mh/sf 0,210 mh/sf	286 374 124	39,49 /mh 39,49 /mh	11,355 14,754 4,910 527 465	2.21 2.21 0.57 0.03 8.40	3,926 1,305	-		· · · · · ·	90 - - - -			6,219 1,032 536 370	
	03,07	03.03 Columns Stuppendar Baans Basn Sider Forms Deann Sider Forms Chanter Site A Consumers Site A Columns Site A Columns Forms Site A Columns Forms Site A Columns Forms	1,780 s1 582 s1 890 lí 2,372 s1 44 cy 6 la	0,210 mh/sf 0,210 mh/sf 0,015 mh/ff 0,005 mh/ff 15,003 mh/tn	286 374 124 13	39,49 /m/n 39.49 /m/n 39.49 /m/n 39.17 /m/n /ey 43.53 /m/n	11,355 14,764 4,910 527 465 3,592	2.21 2.21 0.67 0.03	3,926 1,306 505 71	- - 	• • •					6,216 1,032 536 370 9,079	
	03,07	0.0.0 Columns Suspendad Baans Dean Didios Forms Dean Didios Forms Churtos Silpe Oil Beam Forms Silpe Oil Beam Forms Silper Silations (§ Beam Petatar Beam (G 100 Hor) Frield-Togot Beam	1,780 st 592 st 899 tr 2,372 st 44 cy 6 ta 592 st 44 cy	0,210 mh/sf 0,210 mh/sf 0,015 mh/f 0,005 mh/sf	286 374 124 13 12 83	39,49 /mh 39,49 /mh 39,49 /mh 39,17 /mh /ey 43,53 /mh 39,17 /mh 41,39 /mh	11,355 14,754 4,910 527 465	2.21 2.21 0.57 0.03 8.40 \$97.70	3,926 1,306 505 71 370 5,487	- - - - - - - - - - - - - - - - - - -			535			6,218 1,032 536 370 9,079 185 4,279	
	03,07	0.0.0 Column's Stuppended Beams Beam Side Forms Deam Side Forms SuperSide Strems SuperSide Strems SuperSide Strems SuperSide Strems SuperSide Strems Fiside Topo of Beam Prints Topo of Beam A000 on Concrete Side Strems Side	1,780 s1 592 s1 890 li 2,372 s1 44 cy 6 la 592 s1 44 cy 44 cy 2,372 s1	0.210 mh/sf 0.210 mh/sf 0.015 mh/f 0.005 mh/sf 15.003 mh/tr 0.008 mh/sf 2.001 mh/sf	286 374 124 13 12 83 5 88 38	39,49 /mh 39,49 /mh 39,49 /mh 39,17 /mh 43,53 /mh 39,17 /mh 41,39 /mh 41,39 /mh	11,355 14,764 4,910 \$27 465 3,692 186 3,844 1,208	2.21 2.21 0.57 0.03 8.40 997.70 142.00 6.03	3,926 1,305 505 71 370 5,487 5,248 5,248 71	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	90 			6,216 1,032 336 9,079 185 4,279 6,248 1,279	
	03,07	03.03 Columnis Stuppendel Beans Bean Bäck Forms Deans Bächsnorms Charter Stipe Joil Bean Forms Stipe Joil Bean Forms Stupe Joil Bean Forms Stupe Joil Bean Forms Forms These Beans & Boost Adob Face Forms & Boost Adob Face Beans & Boost	1,760 s1 692 s1 2,772 s1 44 cy 6 ka 62 s1 62 s1 44 cy 44 cy	0.210 mh/sf 0.210 mh/sf 0.015 mh/f 0.005 mh/sf 15.003 mh/in 0.008 mh/sf 2.001 mh/cy	286 374 124 13 	39,49 /mh 39.49 /mh 39.49 /mh 39.47 /mh 29.17 /mh 43.53 /mh 39.17 /mh 41.39 /mh	11,355 14,754 4,910 877 485 3,592 185 3,844 1,208 7,897 485	2.21 2.21 0.57 0.03 8.40 997.70	3,928 1,306 505 71 370 5,487 6,248 71 142 140	- - - - - - - - - - - - - - - - - - -			:			6,216 1,032 536 9,079 186 4,279 6,248 1,279 8,039 325	
		0.2.0 Column's Suspendar Beans Bean Side Form Dean Defains Form Charder Sing A Charden Sing A Ch	1,760 s1 592 s1 2,777 s1 44 cy 652 s1 64 cy 44 cy 2,772 s1 2,772 s1	0.210 mh/sf 0.210 mh/sf 0.015 mh/sf 0.005 mh/sf 15,003 mh/in 0.008 mh/sf 2.001 mh/sf 0.085 mh/sf	286 374 124 13 52 83 5 88 31 202	39,49 /mh 39.49 /mh 39.49 /mh 39.17 /mh /cy 43.53 /mh 39.17 /mh 41.39 /mh /cy 39.17 /mh 39.17 /mh	11,355 14,764 4,910 527 465 3,692 186 3,844 1,208 7,897	2.21 2.21 0.57 0.03 8.40 997.70 142.00 0.03 0.05	3,828 1,306 505 71 370 5,487 6,248 71 142	- - - - - - - - - - - - - - - - - - -	··· · · · · · · · · · · · · · · · · ·		90 			6,216 1,032 536 9,079 186 4,279 6,248 1,279 8,039	
	03.07	0.0.0 Column's Stappended Beams Beam Risk Forms Country Stappended Steams Country Stappended Steams Stapped Steams Stapped Steams Frains Stapped Steams Frains Frai	1,760 s1 592 s1 2,777 s1 44 cy 652 s1 64 cy 44 cy 2,772 s1 2,772 s1	0.210 mh/sf 0.210 mh/sf 0.015 mh/sf 0.005 mh/sf 15,003 mh/in 0.008 mh/sf 2.001 mh/sf 0.085 mh/sf	286 374 124 13 52 83 5 88 38 31 262 5 936 66	39,49 /mh 39.49 /mh 39.49 /mh 39.17 /mh /cy 43.53 /mh 39.17 /mh 41.39 /mh /cy 39.17 /mh 39.17 /mh	11,355 14,764 4,910 527 465 3,642 1,857 1,857 1,857 1,857 1,857 3,544 1,278 2,774	2.21 0.57 0.03 8.400 897.70 142.00 0.03 0.06 0.05	3,926 1,306 505 71 370 5,487 6,248 71 142 140 18,265 28,895	- - - - - - - - - - - - - - - - - - -		- - - 0.35	535			6,258 1,032 536 370 9,079 185 4,279 6,248 1,279 8,039 325 56,277 32,826	
	03.20	03.03 Columns Suspendar Baans Bann Sider Forms Deam District Forms Churden Silpe Churden Forms Silpe Churden Forms Silpe Churden Silper Churden Friekt-Togor Baans Primo Pisce Beans Primo Pisce Beans Churde Silper Beans Rub Beans Lugid Campi Compounds Lugid Campi Compounds Lugid Campi Compounds David Deams Preast Planks Come Rod Plants 4 wide x 10" 9.20 Precast Planks	1,780 st 502 st 503 st 2,372 st 44 cy 552 st 44 cy 2,372 st 2,372 st 2,372 st	0.210 mh / sf 0.210 mh / sf 0.015 mh / sf 0.005 mh / sf 15,003 mh / sf 2.001 mh / sf 0.033 mh / sf 0.033 mh / sf 0.035 mh / sf	286 374 124 13 	39,49 /mh 39,49 /mh 39,49 /mh 39,17 /mh 30,17 /mh 41,39 /mh 41,39 /mh 30,17 /mh 30,17 /mh	11,355 14,764 4,910 527 465 3,542 188 3,664 1,208 7,897 188 37,378	2.21 2.21 0.57 0.03 8.40 987.70 0.03 0.03 0.03 0.05	3,926 1,306 505 71 370 5,487 6,248 142 142 140 18,265	- 		-	635			6,216 1,032 336 9,079 185 4,279 6,248 1,279 8,039 325 56,277	
		0.3.0 Column's Strappendel Beama Beam Bilds Forms Chantfer Ships & Oliksom Forms Chantfer Ships & Dilksom Forms Ships & Dilksom Forms Feature Beam (B) Boord Adolphan (B) Beams Feature Beams (B) Boord Adolphan (B) Beams Feature Beams (B) Boord Adolphan (B) Beams Feature Beams Or and Faith Beams Feature Beams F	1,760 st 502 st 800 lt 	0.210 mh / sf 0.210 mh / sf 0.015 mh / sf 0.005 mh / sf 15,003 mh / sf 2.001 mh / sf 0.033 mh / sf 0.033 mh / sf 0.035 mh / sf	286 374 124 13 52 83 5 88 38 31 262 5 936 66	39,49 /mh 39,49 /mh 39,49 /mh 39,17 /mh 30,17 /mh 41,39 /mh 41,39 /mh 30,17 /mh 30,17 /mh	11,355 14,764 4,910 527 465 3,642 1,857 1,857 1,857 1,857 1,857 3,544 1,278 2,774	2.21 2.21 0.57 0.03 8.40 987.70 1.42,00 0.03 0.05 0.05 0.05 5.800 23,896.18	3,926 1,306 505 71 370 5,487 6,248 71 142 140 18,265 28,895		127,584	- - - 0.35	535			6,216 1,032 536 370 9,079 1485 4,278 6,248 1,279 8,039 3255 56,277 32,826 34,856 34,856 34,856 34,856 34,856	
	03.20	0.2.0 Column's Suspenden Beans Beans Side Form Deans Defons Forme Chardre Chardre Chardre SilverShitclours (§ Beans Forms SilverShitclours (§ Beans Forms SilverShitclours (§ Beans Forms SilverShitclours (§ Beans Forms Friesh-Togor (S Bean Forms Friesh-Togor (S Bean Forms SilverShitclours Forms	1780 st 502 ti 800 li 2.372 st 6 li 3.6 li 3.6 li 2.372 st 2.372 st 2.372 st 2.372 st 2.372 st 3.283 st 1 st 5.316 st	0.210 mh / sf 0.210 mh / sf 0.015 mh / sf 0.005 mh / sf 15,003 mh / sf 2.001 mh / sf 0.033 mh / sf 0.033 mh / sf 0.035 mh / sf	286 374 124 13 52 83 5 88 38 31 262 5 936 66	39,48 /ml 39,48 /ml 39,49 /ml 43,53 /ml 43,53 /ml 39,17 /ml 39,17 /ml 39,17 /ml 39,17 /ml 39,17 /ml	11,355 14,764 4,910 527 465 3,642 1,857 1,857 1,857 1,857 1,857 3,544 1,278 2,774	2.21 0.57 0.03 8.400 897.70 142.00 0.03 0.06 0.05	3,926 1,306 505 71 370 5,487 6,248 71 142 140 18,265 28,895	9,00	47,854	- - - 0.35	535			6,219 1,022 536 370 9,079 165 4,279 6,264 9,079 165 162 162 162 162 162 162 162 162	
	03.20	0.3.0 Column's Suspendar Beams Beam Stafe Forms Charter Charter Charter Silver Shall Beam Forms Silver Shall Beam Forms Silver Shall Color Mey Friesh Togol Steam Friesh Togol Steam Adop gal Concess Adop gal Con	1/740 sf 592 sf 900 li 2.372 sf 6 li 564 cj 6 sf 6 sf 6 sf 6 sf 6 sf 6 sf 6 sf 6 sf	0.210 m/st 0.230 m/st 0.005 m/st 0.005 m/st 15,003 m/st 0.008 m/st 0.033 m/st 0.033 m/st 0.032 m/st	286 374 124 13 52 83 5 88 38 31 262 5 936 66	39,49 /mk 39,49 /mk 39,49 /mk 39,17 /mk /ky 4,353 /mk 4,353 /mk 4,353 /mk 39,17 /mk 39,17 /mk 39,17 /mk 39,17 /mk 39,17 /mk 42,24 /mk	11,355 14,764 4,610 527 465 3,652 465 3,654 1,205 7,205 7,205 7,205 7,205 7,205 7,205 7,205 7,205 7,205 4,205 2,774 2,774	2.21 2.21 0.57 0.03 840, 867,70 142,00 0.03 0.06 0.08 0.08 0.08 0.08 0.08	3,928 5,055 71 370 6,247 40 18,265 28,896 28,896			- - - 0.35	535			6,216 1,022 336 370 370 4,224 4,224 4,224 4,224 4,224 32,426 32,4	
	03.20 04.00	0.3.0 Column's Suspendial Beams Dean Bilds Forms Charter Ship & Collisson Forms Charter Ship & Collisson Forms Charter Ship & Collisson Forms Ship & Collisson Forms Frainch Top of Bison Frainch Top	1780 st 502 ti 800 li 2.372 st 6 li 3.6 li 3.6 li 2.372 st 2.372 st 2.372 st 2.372 st 2.372 st 3.283 st 1 st 5.316 st	0.210 mh / sf 0.210 mh / sf 0.015 mh / sf 0.005 mh / sf 15,003 mh / sf 2.001 mh / sf 0.033 mh / sf 0.033 mh / sf 0.035 mh / sf	286 374 124 13 52 83 5 88 38 31 262 5 936 66	39,48 /ml 39,48 /ml 39,49 /ml 43,53 /ml 43,53 /ml 39,17 /ml 39,17 /ml 39,17 /ml 39,17 /ml 39,17 /ml	11,355 14,764 4,910 527 465 3,642 1,857 1,857 1,857 1,857 1,857 3,544 1,278 2,774	2.21 2.21 0.57 0.03 8.40 987.70 1.42,00 0.03 0.05 0.05 0.05 5.800 23,896.18	3,926 1,306 505 71 370 5,487 6,248 71 142 140 18,265 28,895	9,00	47,854	- - - 0.35	535			6,219 1,022 536 370 9,079 165 4,279 6,264 9,079 165 162 162 162 162 162 162 162 162	

Report Date: 6/11/2020 1:19 PM

<File name>

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

Attachment JTP-5 Cause No. 45545 Dage 31 of 105 Cause No. 45545 Page 9 of 54 Cause No. 45545 Cause No. 45545 Cause No. 45545 Page 9 of 54

20-018 Evansville WT	P Rehabil	itation 6-1	2-20													No. 45545 e 31 of 105	OUCC DR 1.	Page 9 of 54
WBS WBS V Lvi1 Lvi2 1	-vi 3	WBS Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
	1	05.01	Misc Metals Aluminum Handrail @ Statrs	56 Ø	0.234 m////	13	42,08 /m/n	552	44.11	2,470							3,022	4,622
			Altum Grate Cover, 75" @ 4'x4' Sump Altuminum Roof Hotoh 6,33' x 6,33'	1 ea 1 ea	0,600 mh/ea 8.002 mh/ea	1 8	42,08 /m/n 39,18 /m/n	25 313	185.04 5,001.00	195 5,001				: :		1	210 5,314	321 B,086
1			05.01 Misc Metals Wood	1 is		57		2,373	19,284.90	19,285							21,658	33,025
		00.00	Misc Nailers & Blocking	3,623 st	0,010 mh/sf	36	39,67 /mh	1,438	0,40	1,454							2,892	
		07.01	06.09 Wood Resting	1 ls		35		1,438	1,454.02	1,454							2,892	4,482
and a second sec			Membrane Roofing- 60 mil EPDM Mechanically Attached w/ 3" Insulation Aluminum Downspouts, 6 ea x 20' each	3,623 sf 120 vf			ist Nf				3.00 18.00						10,871 2,150	16,499 3,279
			Aluminum Coping @ Roof Parapet 20" wide Roof Hatch 410" x 410"	272 1 1 sa			it Joa				25.01 2,500.50	5,801	- " · · ·				6,801 2,501	10,323 3,795
			Translucent Panel Skylight Frame & Panels 7' x 7', 4 ea 07.01 Roofing	196 st 1 sf			ist				38.01 29,782.95	7,449					7,449	11,306
			Doors, Frames & Hardware								25,182.95	29,783					29,783	
			HM Single Frames- 16 ga 3'x7' HM Door Leafs- 3'x7' 20 ga, half glass	2 ka 2 ea	1.000 mh/ea 1.500 ea/mh	2	39.18 /m/h 39.18 /m/h	78 52	180.03 450.09	360				: :		: :	438	
			Overhead Doors- 10'x10' 24 ga steel manual 1" Insuation 26 ga back-up panel Finish Hardware by Leaf- Allowance	1 ea 2 ea	8,002 mh/ea	16	39,18 /mh	627	900,18	1,800	2,255.00	2,255					2,255 2,427	3,422 3,725
		09,00	08.00 Doors, Frames & Hardware Finishes	1 ea		19		758	3,060,60	3,061	2,255.00	2,256					6,073	9,267
		09.00	Paint HM Door Frames - plimer (2) coats	2 ea			lea			-	100.02						200	304
			Paint HM Doors - primer (2) coats Paint CMU Block - block filler & (2) coat	2 #a 5,316 sf			/ea -	-	:	-	140.03	7,177		: :			280 7,177	425 10,882
			Mise Architectural Finishes Paint 8* Pipe	1 ls 214 H	0,140 mh/bi	30	27,53 /mh	B25	0.92	- 198		2,000	4.24	907			2,000 1,930	3,035 3,049
			Paint 10° Pipa 09.00 Finishes	295 H 1 İs	0.140 mh/¥	41 71		1,137 1,962	1.15 537,94	340 538		9,657	2.574.44				3,145 14,731	4,970
		10.00	Specialty Items				lea						•					1
			Signs - Building ID Signs - Doors Film Estimulisher CO2 10 lbs	1 ea 2 ea			iea lea lea				3,000.60	60					3,001 60	91
			10.00 Specialty Items	2 ea 1 [s			lea				225,05 3,510,70						450 3,511	
	:	22,00	Plumbing Plumbing Subcontract	3,623 sf			bf				6,00	21,742					21,742	
			22.00 Plumbing	1 is			15				21,742.34						21,742	
	:	23.00	HVAC Ventilation & Unit Heater System	3,623 st			/si			-	25.01	90,593					90,593	137,495
		31.20	23.00 HVAC Structure Stope Base	1 sf							90,693.08	90,592					90,593	
			Structure Subbase Stone-Loaders/Truck - 1,310 sf x 4"	20 cy	0.003 cd/cy	2		98	28.28	558			- 10.03				863	
	:		31,20 Structure Stone Base Site Improvements			2		98		566				200			B63	1,332
			Asphalt Pavement, 10" Subgrade, 6" Base, 1-1/2" Topping @ Access Drive Misc Site Improvement ALLOWANCE	236 sy 1 Is			- /Is	•		-	21,80	5,145					5,145 10,000	7,808 15,177
			32.00 Site Improvements 00 Building & Structure Construction	1 is 3,623 gsf		1,474			21.17		15,144.80	15,145					15,145	22,986
	02		Modify Existing Structure & Services	2,023 (35)		1,4/4		58,135	21.17	76,700	96.09	348,123	1.25	9 4,655			487,612	744,179
		02.01	Demolition Work Non-Hazardous Waste Transport and Discosal	1 Is							2.000.00	2,000					2.000	3.035
			Miss Demokion Demo All Piping & Equipment From North Plant Basins	1 ls 1 ls	8,000 ch/ls 16,000 ch/ls	16 64	84,95 /ch 167,66 /ch	580 2,683	:	:	2,000,000		26,86 103.03	3 27 3 103			706 2,785	1,118 4,410
			Demo Electrical System @ Basins Pressum Wash Basin Wals	1 is 31,626 st	150.000 sf/ch	472	lis	11,198	0.35	11.059	2,800,00	2,001	- 0.53				2,000	3,035
			Pressure Washing Basin Stab	10,000 sf	200.000 st/ch	100	53.11 /ch	2,655	0,35	3,600		~	0.35	3,913			10,069	15,743
			02.01 Demolition Work Walls	1 is		502		17,215	14,569.10			4,006	20,543.23	3 20,643			56,328	B8,125
			Keyway 6" Vertical Wall Keyway 6"	2,200 M 524 M	0.050 m///f 0.110 m///f	110 58	39.49 /mh 39.49 /mh	4,345	D.67 D,67	1,479						1	5,823 2,629	9,120 4,138
			Panel Form System 4-8' Panel Form System > 16' h	2,427 st 33,825 st	0,130 m/s/ 0,190 m/s/	316 6.428	39,49 /mh	12,459 253,830	1.64 1.84	4,460	-						16,918	26,487
			Waterstop 6' Fiat Strip & Cill Forms	2,724 lf 36,252 sf	0,110 mm/// 0.005 mm/sf	300 181	39,18 /m/n 39,17 /m/n	11,741 7,101	2.10 0.03	5,722 1,088	-					: :	17,462 8,189	
			Superplasticizens @ Walls Rebar-Walls (125 #/cy)	1,675 cy 105 ta	15.003 mh/to	1,575	/cy	68,569	8,40 997,70	14,072							14,072	21,357
			Finish-Top Of Wall Pump Place Wall	2,173 st 110 cy	0,008 mi/s/ 1,150 mi/cy	17 127	39.17 /mh	681 5,237	-	-			6,65	5 731		: :	681 5,968	1,078
			Pump Place Wells 24" Pump Place Wells 24" Pump Place Wells 20"	766 cy 85 cy	1,150 mh/cy 1,150 mh/cy 1,150 mh/cy	861	41.39 /mh	36,487 4.047					- 6.65	5 5,094			41,560	55,823
			Plinp Place Walls 36"	714 cy	1,150 min/cy	821	41,39 /mh	33,591	-				- 6.65 - 6,65	5 4,748			38,739	\$1,355
			4000 psi Concrete Grind/Patch Walls	1,675 cy 36,252 sf	0,013 mh/st	471	/cy 39,17 /mh	18,462	142.00 0,03	1,088				: :		: :	237,850 19,550	30,871 (
			Rub Walis Llquid Curing Compounds	36,252 st 38,425 st	0.058 mh/sf 0.002 mh/sf	2,103 77	39.17 /mh	82,353 3,011	0.06 0,06								84,528 5,270	8,195
		03.05	03.04 Walis Slab On Orade	1,675 cy		13,562		644,569	261.18	437,469			6,66	5 11,138			993,175	1,543,577
			Slab Edge Form 28" Slab Edge Form 28"	526 sf 526 sf	0.350 mh/sf 0.005 mh/sf	184	39.49 /mh 39.17 /mh	7,271	1.31	651 15							7,962	12,556 187
			Sunga Us roma Rebar-SOG (125 #/oy) Mesh Support - bricks (12/sf)	526 Sr 3 In 157 ea	14,003 mh/sr 0,002 mh/ea	42	43,53 /mh	1,829	997.70	76 2,993 41			•	. :		- 2	4,822	7,437
			Finish-Hard Trowel	1,310 st	0.015 mh/sf	20	39.17 /mh	. 770	0.26	. 41			·			: ;	770	1,218
			Pump Place Slab on Grade 8" @ Electrical Room Pump Place Thickened Slab 28" x 20"	32 cy 17 cy	0.500 mh/cy 0.500 mh/cy	16 \$	41.39 /mh 41.39 /mh	562 352	-				- 3.6				780 414	656
			4000 psi Contrete Saw Cut S-O-G (.06/sf)	49 cy 105 W	0,030 mh/∦	3	ícy 39.17 /mh	123	142,00 0.17	6,958 18			- 0.95	 5 100		: :	6,958 241	382
			Liquid Curing Compounds Seal Floors	1,836 si 1,310 si	0,002 m/h/s/ 0.002 m/h/s/	4	39,17 /m/n 39,17 /m/n	144 103	0.06 0.09	108				: ;		:	252	346
·			6, Mil. Vapor. Bartier.	1,310_s(0,002, mh/s(43.53, /mh		0.05			·	•					285_

Page 9

<Fila name≻

Report Date: 6/11/2020 1:19 PM

WBS WBS WBS Lvi2 Lvi3 Lvi4	Description	-	Labor Productivity	Man Hours	Labor Price	Labor Amount	Materiai Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount
03,05	Slab On Grade														
	Gravel Fill Under Slab 4"	39 cy	0.004 cd/cy	5	1,412,15 /cd	203	29.26	1,141	-		3.64			•	- 1,49
	03,05 Slab On Grade	49 cy		290		11,693	248.07	12,155			8,76	429			24,21
03.06	Suspended Flat Slab														
	Form Suspended Stab. Bottom	2,016 st	0,220 mh/sf	444	39,49 /mh	17,514	2,18	4,404				•			- 21,91
	Stab Edge Form 8" & 12" Strip & Cil Suspended Stab Forms	435 st 2,451 sf	0.250 m/s/ 0.005 m/s/	109	39.49 /m/n 39.17 /m/n	4,295	5.17 0.04	2,249			-	- T		-	- 6,54 - 58
	Strip & Cit Suspended Steb Forms Superplasticizers	2,451 si 67 cv	0,005 min / st	12	39,17 /m/n	460	0,04	563				-		•	- 51
	Rebar- Suspended Slab (225 #/cv)	8 tn	20,004 m/t/tn	151	43.53 <i>I</i> mh	6,556	997.70	7.513							- 14,0
	Finish- Hard Trowel	2,016 st	0.035 mh/sf	71	39,17 /mh	2,764								-	- 2,70
	Pump Place Suspended Stab	67 cv	2,160 m/h/cv	145	41.39 /m/h	5,990	· · · · · ·				6.65	446			- 6,4
	4000 psi Concrete	67 cy			-		142,00	9,514						-	- 9,5
	Liquid Curing Compounds	4,467 st	0,003 mh/sf	13	39,17 /m/h	525	0.68	3,049			-	-		-	- 3,52
	03,06 Suspended Flat Slab	67 cy		944		38,124	408,85	27,393			6,65	446			65,94
03.08	Pads & Curbs														
	Pad Form	68 sf	0,120 mh/sf	8	39,49 /mh	322	1.37	93							- 4
	Charter	136 //	0.015 mh/lf	2	39.49 /mh	81	0.57	77				-		-	- 1
	Strip & Oil Equipment Pad Forms	68 st	0.005 mh/st	G	39.17 /mh	13	0.03	2	-		• • • • • •			-	-
	Rebar- Pads (100 #/cy)	O la	18.003 mh/tn	2	43,53 /m/n	78	997,70	100							- 1
	Finish-Float	120 sf	0.017 m/sf	2	39.17 <i>I</i> mh	80	-	-	-			•		-	- 1
	Pump Place Pads	2 cy	1.601 mh/cy	3	41,39 <i>J</i> mh	132	-	-			7.49	15		-	- 1
	4000 psi Concrete	2 cy			loy		142,00	284		•	•	-		-	- 2
	Liquid Curing Compounds	187 sf	0.003 mh/sf	1	39.17 Imh	22	0,06	11	-		• •	•		•	-
	03.08 Pads & Curbs	2 cy		18		729	283,39	587			7.49	15			1,3
03.11	Topping Slab														
	Mesh Support (.12/sf)	1,199 ea	0,002 mh/ea	2	43.53 Imh	104	0.26	315	-					•	- 4
	WWM 4X4- W 2.9 Flats	9,994 sf	0.014 mh/sf	149	43.53 Imh	6,090	0.50	5,011	-		• •	•		· .	- 11,1
	Finish- Hard Trowe	9,994 st	0,015 mh/sf	150	39,17 /m/h	5,873	-	-	-					-	- 5,87
	Pump Place Topping Slab	556 cy	0.750 mih/oy	415	28.06 /mh	11,681			-		. 6.65	3,692		•	- 15,3
	4000 psi Concrete Liquid Curing Compounds	555 cy 9.994 st	0.002 mb/st	20	ley 39.17 /mh	783	142.00 0.06	78,810 588				•		•	- 78,8
	Seal Floors	9,994 st	0,032 mh/si	20	39.17 /m/n	783	0.06	324	-					-	- 1,3
	03.11 Topping Slab	555 cy	0,052 1017 51	748	35.17 1101	25,314	154.32	85,647			 6,65			-	114,6
	Patch Cracks and Resurface Concrete	555 CY		/40		20,314	104.32	00,647			0.00	3,692			114,0
03.30	Patch Gracks and Resurface Concrete Patch Cracks & Resurface Walk		10.000 sf/ch		53.11 /ch	11,259									
	Patch Cracks & Resurface Walls	2,120 si 848 si	6.764 si/ch	424 251	53.11 /ch	11,259	0.11	231 63	-						- 11,4: - \$,7:
	Pressure Wash Basin Walls	2.120 st	33.333 sf/ch	127	53.11 /ch	3,378	0,07	742			2.37				- 6,7: - 8,14
	Pressure Washing Basin Slab	848 51	16,667 sf/ch	102	53,11 /ch	2,702	0,35	297			4.70				- 6,9
	03.30 Patch Cracks and Resurface Concrete	2.968 sf		904	•••••	23,958	0.45	1.332			3.04				34,3
05.01	Misc Metals	2,000 51		204		20,000	0,40	1,002			0.04	5,510			54,5
00.01	Floor Grating Structural Support (4 #/sf)		8.002 ch/tn	228	214.54 /ch	9,765	1.200.24	5,841			829,17	4,725			- 21,3
	Auminum 2 Line Rall (8) Basin Walkways	6 ul 366 i/	0.200 mh/1/	73	214.54 /ch 38.76 /mh	2,837	32,20	11,785	-		629,17	4,726		-	- 23,3
	Replace Aum Handrall & Existing Influent Channel	106 8	0.200 mh/¥	21	38,76 /mh	822	32,20	3,413	-					-	- 4,2
	Replace Aum Platform Grating 1*	2,837 sf	0.035 mh/st	99	42.08 /mh	4,179	12.39	35,157	-					-	- 39,33
	AE Of Mine Metals	4 1-				47.000	57 107 21	F7 467			4 706 05	1 705			70.5

422

32 351 626

1,008

21

51

433

100 43

20 30 210

366

18.498

1,327.72 /cd 1,327.72 /cd 1,327.72 /cd

/b

2,270,14 /cd 2,898,43 /cd 24,05 /mh 51,34 /mh

51.34 /mh 51.34 /mh

51.34 min 51.34 min 51.34 min 51.34 min 51.34 min 51.34 min 182.49 min

/if 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh

45,52 /mm/h 182,49 /ch /đ

74 32.89 /m/h 32.89 /m/h 30,57 /m/h

0.003 cd/cy 0.003 cd/cy 0.003 cd/cy

405,000 #/ed 200,000 cy/ed 0,220 mh/# 0,250 mh/# 0,310 mh/# 0,440 mh/Y

0.500 mh/f 0.570 mh/f 0.640 mh/f 0.800 mh/f 0.960 mh/f 0.960 mh/f

25,710 mh /ea 32,420 mh /ea 40,000 mh /ea 25,710 mh /ea 32,420 mh /ea 32,420 mh /ea

4,001 mh/ea 0,021 ch/lf

1,003 m/hea 1,000 m/hea 0,980 m//¥

1.240 mh/ #

1 Is

335 сү 3,652 су 6,516 су

10,503 cy

1 ls

1 %

1 Is

1 is

1 Is 1 Is

152 H 23 cy 0 H 0 H 0 H 0 H 45 H 82 H 25 H 152 H

2 ea 1 ea 1 ea 2 ea 1 ea 2 ea 2 ea

152 11

509 If 25 aa 509 If 509 If 20 ea 30 aa 214 If

295_1

20-016 Evansville WTP Rehabilitation 6-12-20

Structure Backfill Engineered Fill 22.5° @ Coagulation Basins, 2ea Engineered Fill 19' @ Focculation Basins, 2 ea Engineered Fill 19' @ Sedimantation Basin, 1 ea

02 Modify Existing Structure & Services

Instrumentation & Controls Controls & Instrumentation Work For New Equipment

05.01 Misc Metals

31,12 Structure Backfill

Above Ground Electrical Electrical Work For Equipment

Process Piping

Hudses rund Process Pip Trench Exervice Lay Pipe 8-10 Shan Pime Boddig Di Pipe Push - Class 52 6 Di Pipe Push - Class 52 6 Di Pipe Push - Class 52 6 Di Pipe Push - Class 52 10 Di Pipe Push - Class 52 10 Di Pipe Push - Class 52 42 Di Pipe Push - Class 52 42 Di Pipe Push - Class 52 42 Di Pipe Push - Class 52 72 Hydrostatic Testing Chlorination Di Bio ell 46"

Di 90 ell 48" Di 90 ell 60" Di 90 ell 72" Di Tee 48" Di Tee 60" Di Tee 60" Di Con Red 60x48"

40.00 Under Ground Process Piping

Above Ground Process Piping

Stencil Exposed Piping <20"

Stencil Exposed Piping <2 Pipe Supports Hydrostatic Testing Chorination Gasket/Nuts/Bolt Kit 8* Gasket/Nuts/Bolt Kit 10* DI Flanged Joint Pipe 8*

DI Elanged Joint Pipe 10"

Electrical & Instrumentation

26,01 Above Ground Electrical

26.02 Instrumentation & Controls

26 Electrical & Instrumentation

Under Ground Process Pibing

31.12

26.02

40.00

40.01

26 26.01

40

AECOM

12.00 12.00 12,00

12.00

23,29 23,00 32,00 52,00

167,00 167,00 225,00 291,00 365,30 555,00 700,00 0,16 0,10

6,633.90 1.62 37,224.00 24,816.96 3.36 3,36

1,185.32

250.05

0,16 0,10 22,00 37,53 67,30

88.24

762,354,84

57,197

4,020 43,824 78,192

126,036

762.365

536

3 16,439 45,510 17,500 24 15

13,268

37,224 49,634

180,169

6.251

81

440 1,126 14,402

26,031

4,000,00

200,000.00

84,000,00

84.000.00

284,000.00

10,00

4,726.25

4.69 4.69 4.69

4 69

2.79

2.79

99.224.01

-

4,000

200,000

200,000

84,000

84.000

5,091

284,000

4,726

1,570 17,116 30,539

49,224

99.224

424

424

-

57,197.21

17,623

1,334 14,547 25,954

41,835

721.101

852 333 0

1,479 3,368 1,232 583

1,572 991 1,223 1,572 991 1,982

16,177

4.583

1,961

653 987 6,410

11,181

OUCC Attachment JTP-5 Cause No. 45545

Cause No. 45545 OUCC DR 17-6 Attachment 2ªge 10

79,547

6,924 75,486 134,685

217.096

200,000

200,800

84,000

84.000

1,276 889

17,917 48,878 18,732 607 15 14,840 993 38,447 51,206 994 1,589

196,771

5,091 10,814 2,032 51 1,098 2,113 20,813

37,213

.....

284,000

1.586.689

Page 10 of 54 Page 32 of 105

Grand Total

Amount

2,308

37,639

34,403 10,212 912 854

21,778 4,374 10,190 14,440 5,458 102,623

2,038

643 17,244 9,295 24,364 119,611 2,131 2,641

175,928

18,171 10,634 14,474 11,065

54,343

33,392 22,377

6,481 59,974

122,223

10,712 116,775 208,354

335.841

393,643

303,543

127,488

127,488

431,031

2,024 1,340

5 27,289 74,402 28,510 959 23

23 22,624 1,571 58,431 77,818 1,574 3,147

299,725

2.462.337

<File name>

Report Date; 6/11/2020 1:19 PM

30,57_/mh Page 10

AECOM

20-018 Evansville WTP Rehabilitation 6-12-20

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment **2^{age 17}** Page 33 of 105 Page 11 of 54 Page 33 of 105

WBS WE Lv13 Lv1		Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Amor
40.01	t	Above Ground Process Piping Di Flanged 90 ell 8°	12 ea	5,050 mh/ea	61	30.57 /mh	1,852	170.10	2,041			···· · · · · ·				3,894	
		DI Flanged 90 ell 10" DI Flanged Tee 10"	18 ea 4 ea	6.360 mh/ea 6.360 mh/ea	114 25	30,57 /mh	3,489 778	267.30 0.01	4,811 0	1		·	2		· · · ·	8,311 776	6
		DI Flanged Con Red 6x4" Moresand Feed Pilping & Accessories- ALLOWANCE	24 ea 400 FF	4,830 mh/ea 0,240 mh/iF	116 96	30.57 /mh	3,543	168.00 55.01	4,032		-	· · · · · · · · · · · ·		-	•	7,575 26,385	5
	F	olymer Feed System Piping & Accessories- ALLOWANCE	400 LF	0.240 mh/LF	95	45.62 /mh	4,381	55.01	22,004		-					26,385	5
40.03		10,01 Above Ground Process Piping /alves, Meters, Etc.	508 If		1,277		44,184	202.90	103,275	10.00	5,091					152,551	i.
40.0	8	"Butterly Valve, 125 lb class, CI Body, Fig. w/ EIM elec actuator NEMA 4	4 ea	6.400 mh/ea	26 78	30.57 /mh	783	3,800.00	15,200	-	-	-			. .	15,983	
		18" Butterfly Valve, 75 lb class, Cf Body, Fig, w ElM elec actuator NEMA 4 10.02 Valves, Meters, Etc.	2 ea 1 is	39.000 mh/ea	78 104	30.57 /mh	2,384	26,400.00 68,000.00	52,800 68,000	-	-	-	-	-	•	55,184 71,167	
40.04	4 }	lydropneumatic Piping System			104		0,107	00,000100									
		łydropneumatic Piping, Fitting & Valve Alowance 10.04 Hydropneumatic Piping System	1 ls 1 ls	mh / Is		45,62 /mh				32,000.00	32,000					32,000	
		10 Process Piping	661 If		1,813		63,528	531.69	351,445	56,11	37,091	0.64	424			32,000	
43	F	Process Equipment															
43.00		Pumps Pump inspection	8 ea	24.000 mh/ea	192	42,40 /m/h	8.140			2.200.00	17.600					25.740	•
	F	reight On Pumps To Jobsite	8 ea			/ea		-	-	2,200.00	11,000	-	-	1,500.00		12,000	0
	2	/enfied Performance Test /endor Varified Performance Test	6 day 8 sa	8,000 ch/day	64	29.43 /ch /ea	1,984			-	-	-	-	1,500,00 1,500,00	12,000 12,000	13,884 12,000	
	· ·	/endor Witnessed, Verified Performance Test System Disinfection	8 ea 1 day	8,000 ch/day		/ea 29.43 /ch	235	750.00	750					1,500.00		12,000	0
	E	Equipment Unloading	6 ea	4.000 ch/ea	176	182.62 /ch	5,844	500,00	4,000	-	-	381.61	3,053		• •	12,897	7
		Equipment Rigging / Rough Set - Pumps Equipment - Final Setting Grout Base - Pumps	8 8a 8 8a	4.000 ch/ea 4.000 ch/ea	192 56	195.85 /ch 103.33 /ch	6,267 3,307	500,00	4,000 400		-		3,213 2,759	-	. :	13,48D 6,476	
	١	/ariable Frequency Drives	8 ea 6 ea	20.000 mh/ea 40.000 mh/ea	160 240	28.14 /mh	4,502 8,267	15,000.00	120,000	-	-		-	50,000.00	300,000	124,502 308,267	2
	5	Sludge Return Pumps Sump Pump @ Ancillary Building Lower Level	1 ea	20,000 mh/ea	20	34.45 /mh	683	-	-		-		:	30,000.00	30,000	30,689	9
		43.00 Pumps	1 1s		1,148		39,134	129,150.00	129,150	17,600.00	17,600	9,034.92	8,035	378,000.00	378,000	572,919	•
43.01		Flocculators & Mixers	12 49			lea								1.500.00	18,000	18.000	3
	E	Equipment Unbacing Equipment Rigging / Rough Set	12 ea 12 ea	4.000 ch/ea 6.000 ch/ea	254 432	182.62 /ch 195.85 /ch	8,766 14,101	500.00 500.00	6,000 6,000	-	-	381,61	4,579			19,345	5
		Variable Frequency Drives (included)	12 ea	0,000 247 68	412	/ea	14,101	305,00	8,000		-	401,59	4,819		-	24,920	
	F	Repid Mixer w/7.33' Shaft & Dual & Blades, 2 HP (Hydro-Cyclone)	4 ea	45.000 mh/ea	180 480	42.40 /mh	7,631	100.02	400 800					0.00		8,031	
		Flocculator w/19' Shalt & 10.5' Blades, 3 HP 43.01 Flocculators & Mixers	8 ea 1 is	60.000 mh/ea	480		20,350 50,848	100.00 13,200.08	13,200	-	-	9,398,44	9,398	0,00 18,000,00		21,150 91,446	
43.03		Settlement Equipment															
	F	reight On Sedimentation System To Jobsite Jetified Performance Test (2 days per System x θ ea)	4 ea 16 day	8.000 ch/day	128	/ea 29,43 /ch	3,768					-	-	1,500.00 1,500,00	ο 6,000 24,000	5,000 27,768	, 3
		Jendor Verified Performance Test Jendor Witnessed, Verified Performance Test	4 ea 4 ea			/es /ez							· · · ·	1,500.00	5,000	6,000 6,000	0
	E	Equipment Unbacing	4 ea	16,000 ch/ea	352	182,62 /ch	11,588	500.00	2,000		-	381.61	1,526	1,500.00		15,214	4
	Ē	Equipment Rigging / Rough Set Equipment - Final Setting	4 ea 4 ea	95,000 ch/ea 660,000 ch/ea	2,304	195.85 /sh 103.33 /sh	75,205 272,803	500.00 50.00	2,000		-	401.59 346.16	1,605 1,385	-	. :	78,811 274,388	
		CTIFLO-Lamella Tube Plate Settler System wf (4) 21' Troughs/ System 12.5 MGD	4 69			/ea								776,750.00		3,107,000	
43,13		13.02 Settlement Equipment Chemical System Equipment	1 Is		10,704		363,463	4,200,00	4,200			4,517,46	4,517	3,149,000.00	0 3,149,000	3,521,181	
	1	Fotes	8 ea	1,000 mh/ea	8	45,62 /mh	385				•	-	•			365	
	F	vlicrosand Feed System Polymer Feed System	4 ea 4 ea	10,002 mh/ea 10,002 mh/ea	49 40	42,40 /mh	1,696 1,696				-		:	75,014.98 0.00) 0	301,756 1,696	6
		Activation Units Baleh Tank	8 ea 4 ea	10,002 mh/ea 10,002 mh/ea	80 40	42,40 /mh 42,40 /mh	3,392 1,696			:		- 1	:	291,875.00 15.002.99		2,338,392 61,708	
	2	13.13 Chemical System Equipment		10.002	208		8,846							10,002.00	2,695,072		
43.20		Slide Gate w/Operator Slide Gates 36" x 38" w/16'Operators @ influent Chamber	4 ea	30.005 m//ea	120	47.77 /mb	5,734	500.00	2,000					20.000.00	80,000	87.734	
		13.20 Slide Gate w/ Operator	4 6 8	30,006 mm/ 8a	120		5,734	500.00	2,000	-	-			20,000.00	80,000	87,734	
		13 Process Equipment	al t		13,536		468,025	148,660.08	148,550	17,600.00	17,690	22,950.92	22,951	6,320,071.86		£,977,198	
		28 Pretreament - Retrofit North w/ Ballasted Flocculation Pretreatment - Construct New Facility	. 1 ls		35,321		1,310,788	1,339,060,36	1,339,060	690,814.13	690,814	127,253,60	127,254	6,320,071.86	6,320,072	9,787,988	£
00	Ē	Building & Structure Construction											· · · · · · · · · · · · · · · · · · ·				-
03.00		Foundation Mat	474 #	0.050 mh/ř	24	39.49 /mh	936	0.67	319							1.255	
		Keyway 6" wat Foundation Edge Form 24"	1,308 sf	0.350 mh/sf	457	39,49 /mh	18,054	1.31	1,714			:			, e i	19,768	8
		Mat Foundation Bulkhead Form Waterstop 6" Flat	948 sf 474 i	0.350 mh/s/ 0.110 mh/f	332 52	39.49 /mh 39,18 /mh	13,102	1.52	1,443 996	:	-		:	-		14,545 3,039	
		Strip & Oil Mat Found, Form	2,254 st	0,005 mh/st	11	39,17 /mh	442	0.03	68		-					509	9
	Ē	Rebar- Foundation Mat (100 #/cy) Rebar Support - bricks (.12/s/)	97 tn 3,149 na	28,006 mih/tn 0,002 mih/ea	2,722	43,53 /mh	118,487 274	997.70 0.26	96,976 827				:			215,463 1,101	1
		Finish- Hard Trowel Pump Place Mat Foundation 24"	26,244 st 1,944 cv	0.023 mm\/sf 0.500 mm\/cy	604 972	39.17 /mh 41.39 /mh	23,645 40,238		:			4,59	- 8.920	-		23,646	j h
		4000 psi Concrete	1,944 cy			/cv		142.00	276,048		-	-	-		·	275,048	8
		liquid Curing Compounds 5 Mil. Vapor Bartier	28,498 sf 28,900 sf	0.003 mh/sf 0.002 mh/sf	86 58	39.17 /mh 43.53 /mh	3,349 2,516	0.06 0,05	1,676 1,518							5,025	
		03.00 Foundation Mat	1,944 cy		5,324		223,079	196.29	381,584			4.59	B,920			613,583	3
03,03		Columns Form Rectangle Columns 20' h	1,920 st	0,165 mh/s1	317	39,49 /mih	12,510	1,60	3,055	-	_		-		-	15,575	5
		Charrier	1,280 #	0,015 mh/1/	19	39,49 /mh	758	0.57	726						·	1,484	4
	5	Stitp & Oil Column Form Superplasticizers @ Columns	1,920 st 27 cy	0,005 mh/sf	10	. 39.17 /mh /cy	376		58 227		-			· · · · · · · · · · · · · · · · · · ·	. 1	434 227	7
	(Column Rebar (120 #/cy) Finish-Ebat	2 in 72 st	20.004 mh/tn 0.017 mh/sf	40	43.63 /m/n 39,17 /m/n	1,741	997.70	1,995	-	-	-	-			3,737	7
	F	Pump Place Columns 18 ea	27 cy	0.01/mh/st 1.600 mh/cy	43	41,39 /mh	48		. i - 1	2		7.50	202	-		1,991	3
		4000 psi Concrete Srind/Patch Columns	27 cy 1.920 sl	0.013 mh/sf	25	iay 39.17 imh	978	142.00 0.03	3,834 58	-	-		1	-	· · · · ·	3,834	
																5,003	

Page 11

<File name>

Report Date; 6/11/2020 1;19 PM

(1) P. (1) (1) (2) (2)

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{age 12} Page 34 of 105 Page 12 of 54 Page 34 of 105

WBS WBS Lv13 Lv14	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand 1 Amou
	03.03 Columns	27 cy		586		23,313	377.42	10,190			7.50	202			33,706	
	Walls Koyway 6*	3,254 1	0,050 mh/W	163	39,49 /mh	6,426	0.67	2,187	· .						8,613	
	Verlical Wall Keyway 5" Patel Form System 8-12"	795 II 4.871 sf	0,110 mh/lí 0,150 mh/sf	87 731	39,49 /m/n 39,49 /m/n	3,454	0.67 1.84	534 8,950		·· · · · · · · · · · · ·					3,988	
	Panel Form System 12-16'	8,948 st	0.170 mh/sf	1,521	39.49 /mh	60,058	1.84	16,442	-		-				76,510	
	Panel Form System > 16' h Waterstop 6'' Flat	49,674 st 4,049 ll	0.190 mh/sf 0.110 mh/¥	9,440 445	39.49 /mh 39.18 /mh	372,765 17,452	1.84 2.10	81,294 8,505	. *	-		• •		· ·	464,059 25,956	
	Stip & Ol Wail Forms	63,493 sf	0,005 mh/si	318	39,17 /mh	12,438	0.03	1,905	· · · · · · · · · · · · · · · · · · ·						14,342	
	Superplasticizers @ Weils Rebar- Walls (125 #/cy)	1,609 cy 101 in	15,003 mh/th	1,515	/cy 43.53 /mh	65,957	8.40 997.70	13,517 100,768	-	•	-	•		· •	13,517 166,724	
	Finish-Top of Wali	4,571 sf	0.008 mh/sf	37	39,17 /mh	1,433	-	100,786							1,433	
	Pung, Place Walls 12", 18" & 20" 4000 psi Concrete	1,609 cy 1,609 cv	1,150 mh/cy	1,851	. 41,39 /mh /cv	76,599	142.00	- 228,478		-	6.65	10,699			87,298 228,478	
	Grind/Patch Walls	63,493 st	0,013 mh/sf	826	39,17 /mh	32,335	0.03	1,905							34,240	
	Rub Walls Liquid Curing Compounds	53,253 sf 65,983 sl	0,058 mh/sf 0,002 mh/sf	3,089 132	39,17 /mh 39,17 /mh	120,974 S,170	0,06 0,05	3,195 3,881						: :	124,169 5,050	
	03.04 Walls	1,609 cy	0.002 1011 31	20,154	50, 11 Mill	803,920	299.29	481,562			6.65	10,699			1,296,181	
03.05	Slab On Grade															
	Slab Edge Form 8"	361 sí 579 sí	0.240 mh/sf 0.340 mh/sf	87 197	39,49 /mh 39,49 /mh	3,421 7,774	1.22	440		-		•			3,861 8,655	
	Strip & Oil Forms	940 st	0.005 mh/sf	5	39.17 /mh	184	0.04	39						: :	223	
	Rebar- SOG (125 #/cy) Mesh Support - bricks (,12/si)	8 tn 335 ea	14,003 mh/tn 0,002 mh/ea	107	43,53 /mh 43,53 /mh	4,650	997.70 0.26	7,612		:	-				12,263	
	Finish-Hard Trowel	2,791 sf	0.025 mh/sf	70	39,17 /mh	2,733	-	-	-		_				2,733	
	Pump Place Siab on Grade 8" Pump Place Siab on Grade 18"	27 cy 95 cv	0.500 mh/cy 0.500 mh/cv	14 48	41,39 /mh 41,39 /mh	559 1,965		-	- ÷	-	3.67				658 2.315	
	4000 psi Concrete	122 cy			/cy		142,00	17,324			-				17,324	
	Saw Cut S-O-G (J08/sf) Liquid Curing Compounds	223 H 3,731 st	0,030 mh/¥ 0,002 mh/sí	7	39.17 /mh 39.17 /mh	252	0.17	38 219	-	-	0.95	212		· •	512	
	Seal Floors	2,791 sf	0.002 mh/sf	6	39,17 /mh	219	0.09	258	-		-				477	
	S Mill Vapor Barrier Gravel Fill Under Slob 4"	7,000 st 34 cv	0.002 mh/sf 0.004 cd/cv	14	43.53 /mh 1.412.15 /cd	510 182	0.05 29.26	368 995	-	-	3.84	130			977 1.307	
	03.05 Slab Dn Grade	122 CY	0,004 (01/0)	564	1,412,10 100	22,8B1	231.65	28,252	-	•	6.48			•	51,934	
03.05	Suspended Flat Slab															
	Form Suspended Stab. Bottom Stab Edge Form 8" & 12"	8,903 sf 3,050 sf	0.220 mh/s/ 0,250 mh/s/	1,959 765	39.49 /mh 39.49 /mh	77,344 30,214	2.18	19,448 15,623				• •		· •	96,792	
	Slap Edge Form 6 & 12 * Strip & Oil Suspended Slab Forms	11,963 st	0,250 mm/s/ 0,005 mm/s/	60	39,49 /min 39,17 /min	2,343	0.04	15,623			-				46,038 2,834	
	Superplasticizers Rebar-Suspended Shib (225 #/cv)	317 cy	20.004 mh/th	720	43.53 /mh	31,346	8.40	2,663			-	· -		· ·	2,663 67,263	
	Finish- Hard Trowel	35 tn 8,903 sf	20.004 mm/m	312	43.53 /mm 39.17 /mh	12,205	997,70	35,917	-	-					12,205	
	Pump Place Suspended Slab	317 cy	2.160 mh/cy	685	41.39 /mh	28,340	142.00				6.65	2,105			30,449	
	4000 psl Concrete Liquid Curing Compounds	317 cy 20.665 st	0.003 mh/s/	63	39.17 /mh	2,452	142,00	45,014 14,244							45,014	
	03.06 Suspended Flat Slab	317 cy		4,553		184,244	421.45	133,600			6.65	2,109			319,953	
	Misc Metals															
	Aluminum, 2 Line Rail @ Basin Walkways Alum Hatch Cover & Frame 2.5 x2.5' @ Skride Valve Vault	3,000 lf 8 ea	0.200 mh/ř 2.000 mh/ea	600 16	38.76 /mh 39,16 /mh	23,255 627	32.20 900,00	96,600	-	:					119,855 7,827	
	05.01 Misc Metals	1 ls		616		23,881	103,800.00	103,800							127,681	
	Dewatering (2 Building Excevation	1 ez	960,000 ch/ea	3,840	159.35 /ch	152,974	7,500,00	7,500			33,592,77	33,593			194,967	
	Dewatering (g) Building Excelvation 31.01 Dewatering	1 ea 1 ls	960,000 ch/ea	3,840	159.35 /Ch	152,974	7,500,00	7,500	-	•	33,592,77	33,593		· ·	194,067	
31,02	Piles															
	Augered Piles CIP 18" x @ 25 ft depth, 10" nc = 410 ea (1 per 64 sf)	10,250 vf	0,002 cd/v1	1,148	2,146.97 /cd	44,022	35,16	360,354	-	-	2.58				430,824	
	31.02 Piles Excavation Shoring	410 ea		1,148		44,022	878,91	360,354			64.51	26,448			430,824	
	Excavation Shoring Shoring System Design Engineer	1 is					-		15,003,00	15,003	·· · · .				15,003	
	Structure Sheeting (731' x 30' deep) Tie Backs (1 per 80 st of Sheeting, 731' x 22"= 16,082 st)	21,930 s/	0.001 cd/sf	1,981	2,465.38 /od	41,647	16.00	350,550	2,377,47	477,872	0.75	16,489			409,086 477,872	
	The Backs (1 par 80 st of Sheeling, 731" x 22"= 16,082 st) 31.03 Excavation Shering	201 ea 21,930 sf		1,081	-	41,647	16,00	350,950	2,377,47	4/7,872		16,489		• •	4/7,8/2 901,962	
31.10	Structure Excavation															
	Exc Clay-Backhoe/Truck	27,471 cy	499.900 cy/cd	1,978	1,410.06 /cd	77,487	-	•	-	-	6.58				258,356	
	31.10 Structure Excavation Structure Backfill	27,471 cy		1,978		77,487					6.58	180,870			258,356	
31.12	Structure Backhill BackFill Earth-Backhoe/Truck	3,620 cy	0,002 cd/cy	234	1,327.72 /od	9,709				-	4.69	16,965			26,675	
	31,12 Structure Backfill	3,620 cy		234		9,709					4.69				26,675	
	Soil Disposal Scolis to Waste	23.851 cy		2,147	1,410.06 /day	84,095					8.23	196.304			280.399	
	Spolis to Waste 31,13 Soii Disposal	23,851 cy 23,851 cy	0.003 day/cy	2,147	1,410.06 /0ay	84,095	-	-	-	-	8.23			• •	280,399	
	Structure Stone Base			-1												
	Structure Subbase Stone-Loaders/Truck - 26,244 sf x 4*	321 cy	0,003 cd/cy	39	1,609,56 /cd	1,566	28,28	5,078	•	-				· -	13,859	
	31.20 Structure Stone Base Site Improvements	321 cy		39		1,656	28.28	9,078			10.02	3,215			13,859	
	Miso Site Improvement ALLOWANCE	1 Is			/IS	:			10,000.00	10,000					10,000	
	32,00 Site Improvements	1]s							10,000,00	10,000					10,000	
	00 Building & Structure Construction	26,244 gsf		42,274		1,692,817	71.14	1,866,881	19.16	502,875	18,92	496,605			4,558,179	
	Electrical & Instrumentation Above Ground Electrical															
20.01	Electrical Work For Equipment (5% Equipment Cost)	1 ls			As				315,783.00	315,783					315,783	
	26.01 Above Ground Electrical	0 is						1	31,578,300.00	315,783					315,783	
26.02	Instrumentation & Controls Controls & Instrumentation Work For New Performent (1.6%, Fouriermal Cont)	1 łs			/is				94,735.00	94,735					94,735	
	Controls & Instrumentation Work For New Equipment (1.5% Equipment Cost) 26.02 Instrumentation & Controls	1 is 0 is			15				94,735.00 9,473,508,00	94,735 94,735					94,735 84,735	
	26 Electrical & Instrumentation	1 [s							419,618,00	410,518					410,518	
	Process Piping															
	Under Ground Process Piping														4 550	
	Trench Excav & Lay Pipe 0- 4'	762 #	600,000 ll/cd	71	2,539.31 /cd	3,225			-	-	1.88	1,435			4,660	

Report Date: 6/11/2020 1:19 PM

AECOM

20-018 Evansville WTP Rehabilitation 6-12-20

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

Page 35 of 105

Attachment JTP-5 Cause No. 45545 Dare 35 of 105 Cause No. 45545 Page 13 of 54

WBS WBS WBS		Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand To Amour
40.00	Under Ground Process Piping Di Pipe Push - Class 52 6	762 1	0,220 mh/#	168	24.05 /mh	4,033	22,53	17,170							21,203	
	Li Pipe Push - Class 52 6 Hidroslatic Testing	762 1	0,220 mh/8 0,021 ch/11	768 64	182.49 /ch	4,033 2,920	22,53	17,170		:					21,203	
	Chlodnation	762	0.027 0074		10LI-10 / M		0,10	76	-						76	
	DI 90 ell 6"	12 ea	4.830 m/ /ea	58	45.62 /mh	2,644	105.30	1,264		-		-			3,908	
	OI Tee 6"	8 ea	4,830 mh/ea	39	30,57 /mh	1,181	0.02	0	-	-	-	-			1,181	
	Di Bind Flange 6"	1 ea	4,680 mh/ea	5	30,57 /mh	143	103,25	103	-	-		-			245	
	40.00 Under Ground Process Piping	762 11		417		14,682	25,72	19,597			1.88	1,435			35,714	
40.01	Above Ground Process Piping															
	Pipe Supports	8 ea 100 ll	4.001 mh/ea	32	45.62 /mh	1,450 383	250,05	2,000	~	-				-, -	3,461	
	Hydrostatic Testing Chladnation	100 /	0.021 ch/1	8	182.49 /ch	383	0.16	16		:					399	
	Wall Thimble 36" x 24" long	4 69	3,500 ch/ma	56	182,49 /ch	2,555	1,800,00	7,200			842,80	3,371			13.126	
	Mud Valves 8" w 20' Stem	12 ea	11.200 m/ / ea	134	30.71 /mh	4,127	4,000.00	48,000		-		-			52,127	
	Gasket/Nuts/Bolt Kit 24"	8 ea	1.000 mh/ea	8	32.89 /mh	263	129,45	1,038	-	-		-			1,299	
	Gaskel/Nuts/Bot Kit 36"	12 ea	2.600 mh/ea	31	45.62 /mh	1,423	175,04	2,100	-						3,524	
	DI Flanged Joint Pipe 24"	100 8	2.670 mh/¥	267	30.57 /mh	8,161	267.83	26,783	-		-	-		. .	34,945	
	Di Flanged Teo 36" Di Flanged Con Red 36x24"	4 ea 8 ea	20.520 mml/ea 20.520 mml/ea	82 164	30,57 /mh 30,57 /mh	2,509	4,519,20	36,154	-	-		-		• • •	2,509 41,171	
	Piping & Accessories- ALLOWANCE	100 LF	0.240 mh/LF	24	45.62 /mh	1,095	4,519.20	5,501			-				6,596	
	40.01 Above Ground Process Piping	100 Lf	0.240 1011 21	807	40.02 111	26,995	1,288,01	128,801			33.71	3,371			159,167	
40,02						Kolone	()	1201001							lestion	
4010Z	Backflow Provening Fig 6"	0 ea	12.170 mh/ea	0	45.62 /mh	6	5,000.00	50	_	_	····	-			56	
	Magnetic Flow Meter - Inline - 30' wi transmitter	0 83	30,000 mh/ea	ő	48.85 Imh	15	15,000,00	150			•				165	
	Swing Check Valve 6"	0 ea	4,689 mh/ea	0	45,62 /mh	2	1,100,00	11		-	-	-			13	
	Swing Check Valve 18'	0 ea	13,713 mh/ea	0	30.71 <i>im</i> h	4	10,800,00	108		-	-			·	112	
	6" Butterfly Valve, 125 Ib class, Cl Body, Fig. of EIM alec actuator NEMA 4	0 ea	6.200 mh/ea	0	30.57 Imh	2	2,850,00	29		-	-	•		•	30	
	24" Butterfly Valve, 125 to class, CI Body, Fig. or EIM elec actuator NEMA 4	0 ea	19.204 mh/ea	. 0	45.62 /mh	9	12,502.00	125	-	-		-			134	
	35° Butterfly Valve, 75 ib class, Ci Body, Fig. w ElM elec actuator NEMA 4 42° Butterfly Valve, 75 ib class, Ci Body, Fig. w ElM elec actuator NEMA 4	0 ea 0 ea	28,800 mh/ea 33,600 mh/ea	0	30,57 /mh 30,57 /mh	10	19,781.00 23,078,00	198	•	-		-			207 241	
	42 Butterny valve, 75 to criss, Ci Body, Fig. w Elin elec acteator NEMA 4 40.02 Valves, Meters, Etc.	0 is	23,600 mm/rea		30,57 ///	10	90,111,00	237		-	-	-		•	241 957	
		0 15		٦.		26	30,111,00	501							821	
40.04	Hydropneumatic Pipfing System Hydropneumatic Piping, Filting & Valva Allowanca	1 is	mh/bs		45,62 /mh				65,000,00	\$5,00D					65,000	
	40.04 Hydropneumatic Piping System	0 (s	mn 7 95		45,62 ///1				6,500,000,00	65,000 65,000					65,000	
		862 11					470.44			\$5,000	6,58					
	40 Process Piping	002 11		1,226		41,733	173,20	149,299	75,41	62,000	6,50	4,807			260,839	
43	Process Equipment													· · · · · ·		
43.01	Flocculators & Mixers				/02											
	Freight On Miners & Flocovators To Jobsite Equipment Unbading	36 eə 36 eə	4.000 ch/ea	792	182.52 /ch	26,298	500.00	18,000			381.61	13,738	1,500,00	0 54,000	54,000 58,036	
	Equipment Caloriding Equipment Rigging / Rough Set		6,000 ch/ea	1,296	195,85 /ch	42,303	500.00	18,000			401.59			: :	74,760	
	Variable Frequency Drives (Included)	36 ea	0.000 01700	.,	/ea	14,000		10,000			401.00			-	141100	
	Rapid Mixer w/7.33' Shaft & Dual 2.33' Blodes. 2 HP	30 ea 4 ea	45,000 m/ /ea	180	42,40 /mh	7,631	100.02	400					13.700.00	54,800	62.831	
	Floculator w/19' Shaft & 9' Blades, 3 HP	24 ea	60.000 mh/ea	1,440	42.40 /mih	61,049	100.02	2,400		· · · · · · ·		-	30,000.00		783,449	
	PAC Mixer w/19' Shaft & Dual 3.5' Blades 5 hp	8 ea	60,000 mh/ea	430	42,40 /mh	20,350	100,00	300		-	- · · · -		10,000,0		101,150	
	43.01 Flocculators & Mixers	1]s		4,198		157,630	39,600,08	39,600			28,195,34	28,195	908,800,00	908,800	1,134,225	
43.02	Sattlement Equipment															
	Freight On Sedimentation System To Jobsite	6 ea			/ea											
	Verified Performance Test (2 days per System y 6 ea)	12 day	8.000 ch/day	96	29.43 /ch	2,826			_	_	-		1.500.0	0 18.000	20.825	
	Vendor Verified Performance Test	6 ea			/øa	-,							1,500,00		9,000	
	Vendor Witnessed, Verified Performance Test	6 ea			/ea								1,500,0		9,000	
	Equipment Urloading	6 ea	16.000 ch/ea	528	182,62 /ch	17,532	500.00	3,000	-	-	381.61	2,290		- ·	22,822	
	Equipment Rigging / Rough Set	6 ea	96.000 ch/ea	3,456	195.85 /ch	112,807	500.00	3,000	-		401.59				118,216	
	Equipment - Final Setting	6 ea	368.000 ch/ea	6,480	103.33 /ch	223,202	50.00	300	-	-	346.16	2,077		·	225,579	
	Inclined Plate Settlers w/ Flow Control Deck 55' x 86' x 8,2'	6 ea			lea								474,375,0		2,846,250	
	43.02 Settlement Equipment	1 ls		10,560		356,367	6,300.00	6,300			6,776.18	6,776	2,882,250.00	2,882,259	3,251,693	
43.03																
	Flow Control Dilfuser Wall SS 304/304L SS 20' h, 12 ea, 10,560 sf	528 #	6,000 mh/#	3,168	30,57 /mh	96,835					28,00		719.7		491,520	
	43.03 Baffle Walls	1 sf		3,168		3C8,32					14,784.00	14,784	380,000.00	0 380,000	491,520	
						,										
43,20	Sluice Gates 60' x 60'	4 ea	44,800 mh/ea	179	30,71 /mh	5,503	27,500,00	110,000	-	•	-	•		· ·	115,503	
43,20				179		5,503	110,000,00	110,000							115,503	
43,20	43.20 Slide Gate w/ Operator	1 ls		1/9		3,545	110,000,00	110,000							119,503	
43.20		1 ls 1 ls		129		616,335	165,900.08	155,900			49,755.62	49,756	4,171,050.0	0 4,171,050	4,993,041	
43,20	43.20 Slide Gate w/ Operator								978,393.35	978,393	49,755.62 551,167.39	49,756 551,187	4,171,050.0			

<Fila name>

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{age 14} Page 36 of 105 Page 14 of 54

Page 36 of 105

WBS WBS		Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand
		Filtration															
47.1		Filtration - Rebab Existing Water Plant Process Rehab @ Filters 21 thru 28															
	02.01	Demolition Work															
		Non-Hazardous Waste Transport and Disposal Pressure Washing Basin Walls (& Besins 22, 25 & 26	520 ton 5.573 sf	150.000 si/ch	74	52.11 ich	1,973	0.35	1.951	50,00	26,000	0.52	2.908			26,000 5.831	
		Pressure Washing Basin Slab @ Basins 22, 25 & 26	3,108 st	200.000 sf/ch	31	53.11 /ch	825	0,35	1,088			0,39	1,216			3,129	
		Remove Air Header Bag, Transport and Dispose Of Media	3 ea 9,342 cf	8.000 ch/ea 65,867 cl/ch	120 567	231.62 /ch 163.29 /ch	5,559 23,159	250.00 0,22	2,076	-	· · · ·	1,957,34 4,08	5,872 35,137			12,181 63,372	
		Remove Sand (3,108 sf x 24" deep), 230 cy. Remove Anthrache Media (3,108 sf x 6" deep), 58 cy.	6,210 c/ 1,566 c/	0.033 mh/cf 0.033 mh/cf	202	46.32 /mh 46.32 /mh	9,349 2,358			-	-	6.12	37,985		ri	47,334	
		Remove Gravel Media (3,108 st x 6" deep), 58 cy	1,566 cf	0.033 mh/cf	81 51	46.32 /mh	2,358					6.12 6.12	9,579		-	11,936 11,936	
		Remove Underdrain System - Grauted Blocks @ Filters 22, 25 & 26 02,01 Demojition Work	3,108 sf 1 Is	0.180 mh/sf	559 1,655	46.32 <i>I</i> mh	25,915 71,496	1.09 9,260,15	3,396 9,260	26,000,00	26,000	6.12 124,285,12				48,321 231,041	
,	03.30	Patch Cracks and Resurface Concrete			1,000		1 1,400	5,100,15	5,200	10,000,00	20,000	(14,200,12	(24,205			231,041	
		Palch Cracks & Resurface Walls @ Basins 22, 25 & 26 Palch Cracks & Resurface Walls @ Lower Gallary	2,120 sf 6.831 sf	10,000 s//ch 10,000 s//ch	424	53,11 /ch 53,11 /ch	11,259	0,11	231 744	-		-	-			11,490	
		Patch Cracks & Resurface Stab @ Basins 22, 25 % 26	846 sf	5,754 si/ch	251	53.11 /ch	6,659	0.07	63	-			-		: :	6,721	
	09,00	03.30 Patch Cracks and Resurface Concrete Finishes	9,799 sf		2,041		54,198	0.11	1,037							55,235	
	09,00	Pressure Wash Basins 22, 25 & 26	6 fab	90.000 mh / filt	540	40,56 /mh	21,905	· -	-			701.91	4,211		. ,	26,116	
		Clean Basins 22, 25 & 26 Clean Lower Gallery Walls For Painting	6 filt 31,626 sf	30.000 ch/118 150.000 sf/ch	540 422	143.32 /ch 53.11 /ch	25,798 11,198	500,00 0,35	3,000 11,069	-	· · · · · ·	3,597,12 0,52				50,381 38,767	
		Clean & Prep Pipe For Painting	1,740 #			-	-			6,00	10,440	-	-		: :	10,440	
		Paint Lower Gallery Concrete Surfaces Paint 4" Pipe	6,831 st 0 if	0.035 mh/¥	0	27.53 /mh	-	1.00	, ,	1.10	7,514	4.00	-		: :	7,514	
		Paint 6" Pipe Palet 12" Pipe	818 M 0 M	0.070 mh/f 0.120 mh/f	57	27.53 /mh 27.53 /mh	1,577	0,69	566	-		4,24	3,467		: :	5,610	
		Paint 16" Pipe	227 #	0.140 mh/#	32	27.53 /mh	875	1,85	419			6,96	1,375			2,669	
		Paint 18" Pipe Paint 20" Pipe	96 1/ 0 1/	0.200 mh/1/ 0.300 mh/1/	19 0	27,53 /mh 27,53 /mh	529 0	2,08	195 0	:	:	6.06	581 D		: :	1,309 0	
		Paint 24" Pipe Paint 30" Pipe	0 # 0 #	0.350 mh/¥ 0.438 mh/¥		27.53 /mh 27.53 /mh		3,00	0	-	-	7,00	0		· •	0	
		Paint 36" Pipe	541 H	0.525 mh/f	284	27.53 /mh	7,820	4,15	2,247	-		4,95	2,976			12,743	
		Paint 42" Fipe 09.00 Finishes	58 # 1 Ls	0,525 mh/1	30 1,924	27,53 /mh	838 78,639	4.85 17,782.82	281 17,783		- 17,954	4,95 50,680.35			• •	1,486 156,956	
	43.05	Filtration Equipment															
		Filter Equipment Start-Up Gravity Filters - Underdrain Blocks, Sand & Anthracite - Purchase	3 ea 3.108 sf	150,000 ch/ea	3,150	350.77 /ch	157,845	2,500,00	7,500				_	. 172.8	4 537,185	165,345 537,185	
		Install Anthracite Media 6"	1,566 cf	0.033 mh/cl	51	46.32 /mh	2,358					6.36		. 172,0		12,319	
		Install Gravel Modia 6" New Air Header @ Each Basin	1,566 cf 6 ea	0,033 mh/cf 16.000 ch/ea	51 480	46.32 /mh 231.62 /ch	2,358 22,235			:		6,36 3,914,67	9,962 23,488		1	12,319 45,723	
		Install Sand Media ,45 ~ ,55 mm Install Gravity Filter Bottoms/Blocks	6,210 cf 3,108 sf	0,033 mh/cf 0,180 mh/sf	202 559	46.32 /mh 46.32 /mh	9,349 25,915	1.09	3,396	-	-	6,36 15.66	39,504			48,853 77,978	
		43,05 Filtration Equipment	3,108 si 1 is	0.100 881/5	4,493	40.52 7/11	220,059	10,895,80	10,896		-	131,582,88		537,185,1	B 537,185		
		47.1 Water Plant Process Rehab @ Filters 21 thri: 28	1 16		10,114		416,292	38,975.94	38,976	43,954,10	43,954	305,548,35	306,548	537,185,1	3 537,185	1,342,955	
47.2	02.01	Water Plant Process Rehab @ Filters 29 thru 32 Demolition Work															
	01.01	Non-Hazardous Waste Transport and Disposal	524 ton				-	-	-	50,00	26,200					26,200	
		Pressure Washing Basin Walls @ Basins 30, 31 & 32 Pressure Washing Basin Slab @ Basins 30, 31 & 32	5,595 sf 3,174 sf	150.000 sf/ch 200.000 sf/ch	75 32	53,11 /ch 53,11 /ch	1,981 843	0.35 0.35	1,958 1,111		-	0.52	2,919			6,858 3,196	
		Remove Air Hesder Bag, Transcort and Dispose Of Media	3 ea 9,531 cf	8,000 ch/ea 65,867 cf/ch	120	231.62 /ch 163.29 /ch	5,559 23,627	250.00	750	-	-	1,957.34	5,872		·	12,181 54,654	
		Remove Sand (3,174 sf x 24" deep), 235 cy	6,345 cl	0,033 mh/cf	206	46,32 Inth	9,552	0.22	2,116		:	6,12	38,810			48,353	
		Remove Anthracite Media (3,174 sf x 6" deep), 59 cy Remove Gravel Media (3,174 sf x 6" deep), 59 cy	1,593 cf 1,593 cf	0.033 mh/cf 0.033 mh/cf	52 52	46.32 /mh 46.32 /mh	2,398 2,398			:	:	6.12 6.12				12,142 12,142	
		Remove Underdrain System - Grouted Blocks @ Filters 30, 31 & 32	3,174 sł	0.180 mh/sf	571	46.32 /mh	26,465	1.09	3,468			6.12	19,414			49,348	
	03,30	02,01 Demolition Work Patch Cracks and Resurface Concrete	1 ls		1,686		72,824	9,405,06	9,405	26,200,00	26,200	126,653,73	126,654			235,083	
		Patch Cracks & Resurface Walls @ Basins 30, 31 & 32	2,120 sf	10,000 sf/ch 10,000 sf/ch	424	53.11 /ch	11,259	0.11	231	-	-	-				11,490	
		Patch Cracks & Resurface Walls @ Lower Gallery Patch Cracks & Resurface Slob @ Basins 30, 31 & 32	6,831 sf 848 sf	6,764 sf/ch	1,366 251	53,11 /ch 53,11 /ch	36,280 6,659	0.11	63	-	-		:		: :	37,024 6,721	
		03.30 Patch Cracks and Resurface Concrete	9,799 sf		2,041		54,198	0.11	1,037							55,235	
1	09.00	Finishes Pressure Wash Basins 30, 31 & 32	5 fiit	90,000 min / filt	540	40,56 /mh	21,905			-	-	701,91	4,211			26,116	
		Chan Basins 22, 25 & 26	8 Mit 6 Mit	30,000 ch / filt 30,000 ch / filt	720	143.32 /ch 143.32 /ch	34,397 25,798	500.00 500.00	4,000		-	3,597,12	28,777		-	67,174 50.381	
		Clean Lower Gallery Watts For Painting	31,626 sf	30.000 ch/mit 150,000 sf/ch	540 422	53.11 /ch	25,798 11,198	0.35	3,000 11,060	-	:	3,597,12	21,683 16,500			38,767	
		Clean & Prep Pipe For Painting Paint Lower Gallery Concrete Surfaces	1,740 W 6,831 st			-	1	:	:	6.00 1,10	10,440 7,514				::	10,440 7,514	
		Paint 4" Pipe	52 #	0,035 mh/# 0,070 mh/#	2	27.53 /mh	50	0.46	24	-		4,24	220		- 2	295	
		Paint 6" Pipe Paint 12" Pipe	94 W 54 W	0,120 mh/#		27.53 /mh 27.53 /mh	181 178	0,69 1,39	65 75		-	4.24 5.65	398 305			558	
		Paint 16" Pipe	38 H D H	0,140 mh/f 0,200 mh/f	5	27.53 /mmh 27.53 /mmh	146	1.85	70	-		6,06	230		:	447	
		Paint 20" Pipe	276 #	0,300 mh/l	83	27,53 /mh	2,280	2,31	637	-		7.07	1,950		. ,3	4,867	
		Paint 24" Pipe Paint 30" Pipe	206 W 29 V	0.350 mh/lf 0.438 mh/lf	72 13	27.53 /m/h 27,53 /m/h	1,985	2.77 3.46	571 100		-	7,07				4,011 569	
		Pelnt 36° Pipe Paint 42° Pipe	. 91 M O M	0.525 mh/¥ 0.525 mh/¥	48	27.53 /mh 27.53 /mh	1,315	4.15	378 0	-	· .	4,95				2,143	
		09.00 Finishes	0 # 1 is	0.320 BH11	2,457	27.00 mm	99,783	19,989,10	19,989	17,954.10	17,954	76,200.63				213,927	
	40.01	Above Ground Process Piping		0.000 -t / "		00.61		· · · · ·	·								
		12" Filter To Waste Piping To Basins 29 thru 36 40.01 Above Ground Process Piping	600 li 600 li	2,200 mh/l	1,320 1,320	30.57 /mh	40,348 40,348	136.00 136.00	81,600 81,600		-		-			121,948 121,948	
	43.05	Filtration Equipment															
		Filter Equipment Start-Up Gravity Filters - Underdrain Blocks, Sand & Anthracite - Purchase	3 ea 3,174 sf	150.000 ch/ea	3,150	350.77 /ch	157,845	2,590.00	7,500					172.8	4 548,593	165,345 548,593	
		Instali Gravel Media	1,593 of	0,033 mh/cf	52	46.32 /mm	2,398				:	6,36	10,134	112.0		12,532	
		Install Anthractic Media	1.593 cf	0.033 mm/cf	52	46.32 /mh	2.398			-		6.36	18,134			12 532	

Page 14

<File name≻

EWSU Water Treatment Plant- Advanced Facility Plan

20-018 Evansville WTP Rehabilitation 6-12-20

AECOM

WBS Lvi 2		WBS Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Materiai Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand T Amou
			Filtration Equipment Instal Sarukeda, 4.5 Srm Instal Growty Filter Ectorors/Biocus 43.05 Filtration Equipment 47.2 Water Pine Process Rehalu @ Filters 29 thru 32	6,345 ct 3,174 st 1 is 1 is	0,033 mòl/c/ 0,180 mòl/s/	206 571 4,511 12,015	46.32 /mh 46,32 /mh	9,552 26,465 220,894 488,047	1.09 10,967.91 122,999.44	3,468 10,958 122,999	44,154.10	44,154	6,36 15.68 133,818.66 336,673,02	40,363 49,7D1 133,819 336,673	548,592,59 548,592,59		49,915 79,634 914,273 1,546,486	1 - 3 1,
4	7.3		Water Plant Building @ Filters 21 thru 36 Demolition Work Damo HJAC System@ Upper & Lower Levels Damo Lighting System@ Upper & Lower Levels Q2.01 Demolition Work	44,000 sf 44,008 sf 1 ls			- ist	· · · · · ·	-	1	3.00 3.00 264,000.00	132,000 132,000 264,000	-	-	-	· · · · · ·	132,000 132,000 264,000	2
		08,00	Doors, Franties & Hardware Anniwon France Studefonds 10/ h (b) Etites 21 blue 28 Anniwon Doors 5 armes Steps 327 141 1/2 glaos panel Frish Networke by Leak-Albeence 0600 Doors, Frances & Hardware	8,400 sf 6 sa 5 sa 6 ca	5.000 mah/ea 8.002 mah/ea	48 48 95	25.39 /mh 39.18 /mh	1,219 1,881 3,099	1,150.00 900.18 2,050.18	5,900 5,401 12,301	50,00 - 84,000,00	504,000 - 504,000	Ē	:	-	:	504,000 8,119 7,282 519,400	9 2
			Filished Simplement of the second sec	32 ea 32 ea 16,800 st 44,000 st			lea Jea		-		100.02 140.03 1.35	3,2D1 4,481 22,680	· -	į	-		3,201 4,491 22,680	1
			Pant Colling More Archite Paint 12° Flow Paint 12° Flow Paint 13° Flow Paint 13° Flow	44,000 st 1 ls 400 lf 77 ll 12 lf 17 lf	0.120 mh/ř 0.140 mh/ř 0.200 mh/ř 0.300 mh/ř	48 11 2 5	27.53 /mh 27.53 /mh 27.53 /mh 27.53 /mh	1,322 297 55 140	1.39 1.85 2.08 2.31	554 142 25 39	1.00 10,000,00 - -	44.000 10,055 	5.65 6.06 5.05 7.07	2,261 466 73 120			44,000 10,000 4,136 905 164 300	5 5
			Point 24" Pipe Point 35" Pipe Point 36" Pipe 05.00 Finistnes HVAC	960 K 666 K 303 K 1 ls	0.350 mh/ř 0.525 mh/ř 0.525 mh/ř	336 350 159 911	27.53 /mh 27.53 /mh 27.53 /mh	8,251 9,627 4,380 25,083	2.77 4.15 5.54 7,863.94	2,858 2,767 1,678 7,864	84,361.50	- - 84,362	7,07 4,95 4,95 14,494,42	6,782 3,294 1,498 14,494	-	:	18,692 15,687 7,557 131,803	,
		25.01	New HAC System 23.00 HAC Above Ground Electrical New Upbling System	44,000 sf 44,000 sf 44,000 sf			ist ist		-	-	20,00 20,00 12,00	880,000 880,000 528,000	-		-	· · · · ·	880,008 880,000 528,000) :
			Ne Segurit Count & Wring System 25.01 Above Ground Electrical 47.3 Water Plant Building @ Filters 21 thru 36 3.4 Filtation - Relab Existing	44,000 sf 1 is 1 is 1 is		1,007 23,137	ist	28,182 932,521	20,166.02 182,140.40	20,165 182,140	6.00 : 792,000.00 2,524,361.50 2,612,469.70	254,000 792,000 2,524,352 2,612,470	14,494.42 657,715.79	14,494 657,716	1,085,777.77	1,085,778	264,000 792,000 2,587,203 5,470,625	D' D 3
B 4	7,4		Filtration - Rehab Existing & Add Ozone Facility Rehab North Basins #1, 2, 3, 4 & 6 Demolition Work Non-Nazardosi Waste Transport and Disposal	2.464 ton							50.00	123.200					123,200	
			Deno Topy C/ Cloce Basis Walks (Brander 2, 3, 4, 4, 6 (15/2, LF) Deno Top 2/ Cloces Basin Columns (Brasins 2, 3, 4, 6 (15/2, LF) Deno Safis Valks (Brasins 1, 2, 3, 4, 5 (15/2, 2) Deno 7/ Pringe Explorement Form Basins, 547 cy Deno AP Pringe Explorement Form Basins, 1-5	149 cy 16 cy 505 cy 25,454 s1 5 ea	0.500 ch/cy 1,000 ch/cy 0.100 ch/cy 0.018 ch/st 32,000 ch/es	149 32 101 1,375 640	84.95 /ch 84.95 /ch 84.95 /ch 117.52 /ch 167.66 /ch	6,329 1,359 4,290 53,842 26,825	-	-		-	26,85 26,85 26,66 2.00 103,03	4,003 430 13,557 50,908 515	-		10,332 1,789 17,857 104,750 27,340	9 7 D
			Denc Elevicitàl System (B Basin Pessare Washing Basin Wats (B Bosin #1 Pessare Washing Basin Stab (B Basin #1 22.01 Dencolition Work Colomna	1 15 12,647 st 5,518 st 1 1s	150,000 sf/ch 200,000 sf/ch	169 55 2,520	/is 53.11 /ch 53.11 /ch	4,479 1,485 98,589	0,35 0,35 6,367.75	4,425 1,931 6,358	2,000.00	2,000	0.52 0,39 78,179.91	5,598 2,159 78,180	-	:	2,080 15,593 5,556 308,326	3 6
			Form Restangle Column Samounds 78.5 ^c h, 8 ea Clanarder Stiple Col Column Form Stiperglashiciters @ Columns Column Retex (Top Wro)	2,892 sf 928 if 2,892 si 107 cy 6 in	0,165 m/h/sf 0,015 m/h/f 0,005 m/h/sf 20,004 m/h/ts	477 14 14 128	39,49 /mh 39,49 /mh 39,17 /mh /ey 43,53 /mh	18,843 550 556 5,590	1.60 0.57 0.03 8.40 997.70	4,617 525 87 899 5,405		- - -		-			23,459 1,076 653 899 11,995	5 3 9
			Fields-Fold Fields-Fold Fields-Fold Fields-Fold Fields-Fold Fields-Fold Fields-Fold Fields-Fields-Fold Fields-Fiel	101 st 107 cy 107 cy 2,892 sf 2,892 sf 2,892 sf	0,017 mh/sf 1.600 mh/cy 0,013 mh/s/ 0.065 mh/sf 0.003 mh/sf	2 171 38 188	39,17 /mh 41.39 /mh /cy 39,17 /mh 39,17 /mh	67 7,097 1,473 7,383 340	142.00 0.03 0.05 0.06	15,194 87 174 170	-		7,50	802 - -	-		67 7,889 15,194 1,560 7,536	9 4 5
		03.04	Legio Coning Composing 20.03 Columns Walls Keyway 6 ⁴	2,5≋ 51 18 cy 1,170 ⊯ 504 ⊭	0.050 mh/if 0.110 mh/if	9 1,041 59 55	39.17 /m/n 39,49 /m/n 39,49 /m/n	2,311 2,190	0.67 0.67 0.67	28,158 786 339	-	-	42.21	802	-		510 70,839 3,097 2,528	9
			vanuaj v Panal Form System 12-16 Mariesto (FTH) Strip A.C.I.Walf comu Sueprafasilictom (B.Wals	4,973 sf 22,686 sf 1,674 b 22,686 sf 934 cy	0,170 mh/s1 0,190 mh/s1 0,110 mh/s1 0,005 mh/s1	845 4,311 184 113	39,49 /m/h 39,49 /m/h 39,18 /m/h 39,17 /m/h /cy	33,384 176,241 7,215 4,444	1.84 1.84 2.10 0.03 8.40	9,138 41,694 3,516 681 7,847		-		-	-		42,521 211,935 10,731 5,124 7,847	1 5 1 4
			Value (125 Viry) Finish-Topol Walls Promp Pilee Walls 4000 psi Constraine CrindPach Walls	59 th 1,495 st 934 cy 934 cy 22,686 st	15,003 mh/tn 0,008 mh/sf 1,150 mh/cy 0,013 mh/sf	885 12 1,074 295	43.53 /mnh 39.17 /mnh 41.39 /mnh /cy 39.17 /mnh	38,529 469 44,465 11,553	997.70 - 142.00 0,03	58,854 - 132,628 681	-	-	6.65	6,211		-	97,393 469 50,675 132,528 12,234	3 5 6
			Rub Walls Liquid Curing Compounds 03.04 Walls Silab On Grade	22,686 sf 24,181 sf 934 cy	0,058 mh/sf 0,002 mh/sf	1,316 48 9,199	. 39.17 /m/h 39.17 /m/h	51,535 1,895 368,229	0,06 0,06 277.26	1,361 1,422 258,957	-	:	6,65	- 5,211	-		52,897 3,317 633,396	7 7 6
			S.O.G. Explay Form < Y Kentar-SBO ((12 Stroy) Mesh Support - Nricks (, 12)rf) Filish - Iran Towal - Jump Place Salo on Grade S (2) Studge Control Vault	68 sf 0 ta 15 sa 126 sf 3 cy	0,240 m/h/sf 16,000 m/h/t∩ 0,002 m/h/ea 0,025 m/h/sf 0,500 m/h/cy	16 3 	39.49 /mh 43.53 /mh 43.53 /mh 39,17 /mh 41.39 /mh	644 139 1 123 52	1.22 997,70 0,26	83 200 4 -		-			· · · · · · · ·	-	727 339 5 123 73	8 5 3 3
			4000 psi Concrete Liquid Conting Compounds Seal Flaors	3 cy 194 si 126 sf	0,002 mh/s/ 0,002 mh/s/	0	/cy 39,17 /mh 39,17 /mh	15	142.00 0.06 0.09	. 426 11	:		:		-		426 27 22	7

Page 15

AECOM

20-018 Evansville WTP Rehabilitation 5-12-20

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

р. в. 4 20

Attachment JTP-5 Cause No. 45545 Dage 38 of 105 Cause No. 45545 Page 16 of 54

NBS WBS WE _v12 Lv13 Lv1		Descripti	on	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Arnount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Tot Amount
03,05	0	Slab On Grade Gravel Fil Under Slab 4"		2 cy	0,004 cd/cy	0	1,412,15 <i>l</i> ed	11	29,26	59	-	•	3,84	B			· 77	
03.05		33,05 Slab On Grade Suspended Flat Slab		187 cy		25		1,017	4,28	800			0.10	19			1,836	5
	F	Form Suspended Stab Bottom		5,697 sf 307 sf	0.220 mh/sf	1,253	39.49 /mh	49,492	2.18	12,445			-	-		•	61,937	
	5	Slab Edge Form 12" Strip & Oil Suspended Slab Forms		6,004 sf	0.250 mh/sf 0.005 mh/sf	77	39.49 /mh 39.17 /mh	3,031	5.17 0,04	1,588				<u>:</u>		1	4,619	2
	\$	Superplasticizers Rebar-Suspended Slab (225 #/cv)		211 cy 24 to	20.004 mb/to	480	43.53 /mb	20.897	8,40 997.70	1,773 23,945				-			- 1,773 - 44,842	3
	F	inish- Hard Trowe)		5,697 si	0,035 mh/sf	199	39,17 /mh	7,810		20,040		•					7,810)
		² ump Place Suspended Slab 1999 psi Concrete		211 cy 211 cy	2.160 mh/cy	456	41,39 /mh	18,863	142.00	29,962			6.65	1,404		: :	20,267	
	L	Iguid Curing Compounds		11,701 sf	0,003 mh/sf	35	39.17 /mh	1,375	66,0	7,988							9,363	3
05.01		03,06 Suspended Flat Slab Nisc Metals		211 cy		2,530		102,645	369,41	77,945			6.65	1,404			181,994	
05.01		nisc metais Aiminum 2 Line Rail @ Basin Walkways		209 #	0,200 mh/#	42	36,76 /mh	1,620	32,20	6,730	-						8,350	,
	c	5.01 Misc Metals		1 ls		42		1,520	6,729,80	6,730							8,350	
31.1:		Structure Backfill Engineered Fill @ Basins # 2 thru 5 w/ Engineered Fill 29' deep		20,741 cy	300.000 cy/cd	2,212	1.327.72 /cd	91,794	14.00	290,374			7.73	160,391			- 542,559	9
		31.12 Structure Backfill		20,741 cy	300.000 09700	2,212	1,327.72 /00	91,794	14.00	290,374	-	-	7.73				- 542,559	
40.01		Above Ground Process Piping																
	2	Viso Pipe Work- ALLOWANCE 10,01 Above Ground Process Piping		1 bs 1 85	40.000 mh / k	40 40	45.62 /mh	1,825 1,825	2,000.00	2,000	-	-	-	-			- 3,825 3,825	
40.04	04 H	lydropneumatic Piping System						1020	2,0,00	2,000								
	ł	iydropneumatic Piping, Fitting & Valve Allowance		1 (5	mh / Is		45,62 /mh				13,000,00	13,000					13,000	
		40.04 Hydropneumatic Piping System 17.4 Rehab North Basins #1, 2, 3, 4 & S		1 is 1 is		17,610		707,597	671,322,08	671,322	13,000,00 138,200.00	13,000 138,200	247,006.48	247,006			13,00D 1,764,126	
47,5		Dzone Facility		. 15		11,010		101,007	011,022,00	071,011	100,200.00	155,200	241,000.40	247,000			1,704,120	
03.03		Columns																
		Form Rectangle Columns 12" h Chamfer		1,536 s/ 1,152 #	0.165 mh/s/ 3.015 mh/f	253 17	39.49 /m/h 39.49 /m/h	10,008 582	1,60 0.57	2,452 653	:	2		:		: :	- 12,46b - 1,336	
	5	Strip & Oil Column Form		1,536 sł	0,005 mil/sf	8	39.17 /mh	301	0.03	46	-	-		-			347	7
	5	Superplasticizers @ Columns Column Rebar (120 #/cy)		. 19 cy 1 ta	20.004 mh/tn	23	/cy 43.53 /mh	993	8.40 997,70	160 1,137				. 1			- 160 - 2,130	
		Finish-Float Pumo Place Columns 24 ea		42 sf	0.017 mh/sf	1	39.17 /mh	28		-	-		-				- 28	3
	4	1000 psi Concreta		19 cy 19 cy	1.600 mh/cy		41.39 /m/h /cy	1,258	142,00	2,698		-	7.49	142			2,698	
		Srind/Patch Columns Rub Columns		1,536 sf 1,536 sf	0.013 m/s/ 0.065 m/s/s/	20 100	39.17 /mh 39.17 /mh	782 3,910	0.03 0.06	45 92	-	-					- 828 - 4,003	
	ι	iguid Cuting Compounds		1,536 \$/	0.003 mh/s/	5	39.17 /mh	181	0,06	06				-			271	1
		3,03 Columns		19 cy		457		18,143	388,16	7,375			7.49	142			25,661	
03.05		Slab On Grade Slab Edge Form 28"		715 sf	0,350 mh/sf	250	39,49 /mh	3,884	1,31	939							10,822	,
	5	Strip & Oil Form		715 sł	0.005 min/sf	4	39,17 /mh	140	0.03	21	-	-	-	-			162	2
		Rebar-SOG (125 #/cy) Wesh Support - bricks (.12/st)		. 12 tn 689 ea	14,003 mml/tn 0,002 mml/ea	158	43,53 /mh 43,53 /mh	7,314 60	997.70 0.26	11,972 181		-					- 19,286 - 241	,
		"inish-Hard Trows) Pumo Place Slab on Grade 8"		5,740 sf 142 cv	0,015 mh/sf 0,500 mh/cv	B6 71	39,17 /mh 41,39 /mh	3,373	-	-		-	-	521			- 3,373 3,460	
	F	Pump Place Thickened Slab 28" x 20"		45 cy	0,500 mil/cy	23	41.39 /m/h 41.39 /m/h	2,939	·		· · · 1	-	3,67	521 165			- 3,460	
	4	1000 psi Concrete 5aw Cut S-O-G (.08/sf)		187 cy 459 ti	0.030 mh/#	14	/cy 39.17 /mh	539	142.00	26,554			0,95	437			26,554 1,054	
	1	Iquid Curing Compounds		6,455 \$1	0.002 mh/sf	13	39,17 /mh	506	0.06	380	-		-				885	5
		Seal Floors 5 Mil Vapor Barrier		5,740 sf 16,300 sf	0.802 min/sf 0.002 min/sf	11 33	39.17 /mh 43.53 /mh	450 1,419	0.09	530	-	:	-				- 960 - 2,275	
		Gravel Fill Under Slab 4*		70 cy	0,004 cd/cy	8	1,412.15 /cd	375	29.26	2,048	-		3.84				2,691	1
03.07		03,05 Slab On Grade Suspended Beams		187 cy		582		27,930	232,94	43,559			7.44	1,392			72,882	•
03.0		Suspended Beams Beam Sida Forms		2,932 sf	0,210 mh/s/	616	39,49 /m/h	24,318	2.21	6,466				1			- 30,785	š
		Seam Bottom Forms Chamfer		975 sf 1,466 H	0,210 mh/sf 0,015 mh/li	205 22	39.49 /m/n 39,49 /m/n	8,087	2.21 0,57	2,150 831	-	-		-			- 10,237	
	5	Strip & Oil Beam Forms		3,907 st	0.005 mh/st	20	39.17 /mh	755	D.03	117	.	:					883	3
		Superplasticizers @ Beams Rebar- Beams (250 #/cy)		72 cy 9 to	15,003 mh/th	135	/cy 43.53 /mh	5,877	8,40 997.70	605 8,979	:					: :	605 14,857	
	F	Finish-Top of Beam		975 sf	0.008 mh/sf	8	39.17 /mh	306	-	-	-	-	-				- 306	5
		Pump Place Beams @ Roof 4000 csi Concrete		72 cy 72 cy	2,001 mh/cy	144	41,39 /mh /cy	5,953	142.09	10.224			14.42	1,038		: :	· 7,001 • 10,224	
		Grind/Patch Beams		3,907 sf 3,907 sf	0,013 mh/sf	51	39.17 /mh	1,990 13,007	0.03	117		-	- i	-			2,107	7
		Rub Beams Liquid Curing Compounds		3,907 st 3,907 st	0.085 mh/sf 0.002 mh/sf	332	39,17 /m/n 39,17 /m/n	3067	0.05 0.05	234 230		-					- 13,242	
		03.07 Suspended Beams		72 cy		1,540		61,488	416.04	29,955			14.42	1,038			92,481	1
03.0		Pads & Curbs Pad Forms 8" h		264 sf	0.200 mh/sf	53	39.49 /mh	2,085	1.52	402			-				2,487	,
	(Chamler		394 (*	0.015 mh/K	6	39,49 /mh	203	0.57	223	-	· ·					- 457	1
	5 F	Strip & Oil Equipment Curb Forms Rebar- Pads (100 #/cy)		264 sf 1 to	0,005 m/h/s/ 18,004 m/h/h	1	39,17 /mh 43,53 /mh	52 784	0.03 997.70	8 998	1	:	-				- 60 - 1,781	
	F	Finish-Fibat Pumo Place Pads 8*		669 sf 17 cv	0,017 m/h/s/ 2,501 m/h/cv	11 43	39,17 /mh 41,39 /mh	446 1,759	-		-	-	- 9.86	168			- 446	6
		1000 psi Concrete		17 cy	-		loy.		142.00	2,414		2	9.85	168		1 1	- 2,414	
		liquid Curing Compounds 03.08 Pads & Curbs		933 st	0,003 mh/st	3 135	39.17 /mh	110	0.06 241,17	55 4,100	-	-	- 9.86	- 168			- 165	
03.2		03.08 Pads & Curbs Precast Planks		17 cy		135		5,469	243.17	4,100			3.85	168			9,736	
	F	Precast Hollow Core Roof Planks 4' wide x 10"		5,712 sf	0.020 mh/sf	114	42.24 /mh	4,825	8.60	50,276	-	-	0.35				- 57,112	
06.0		03.20 Precast Planks Wood		5,712 sf		114		4,826	8.80	50,276			0.35	2,010			57,112	2
06.0		Wood P'i Roof Blocking @ Top Of Masonry Wall		307 lí	0.035 m///	11	39.67 /mh	425	1.82	559	-	-					- 985	i
		D6.0D Wood		1 1s		11		425	558.54	559							985	i -
07.0		Moisture Protection Caulking @ Masonry Wall Joints- Exterior (.09 [/ist)		555 H			"				4.00	2.720					- 2.220	
		Caulking @ Masonry Wall Joints- Exterior (.09 (/st) Caulking @ Masonry Wall Joints-, Interior		555 H 555 W			18				4.00					-	- 2,220	

Page 16

<File name>

EWSU Water Treatment Plant- Advanced Facility Plan

Material

Cost/Unit

Material

Amount

Subcontract

Cost/Unit

4,440.88

3,00

OUCC Attachment JTP-5

Process

Equip

Cost/Unit

Subcontract

Amount

4,441

18,508

Const Equip Const Equip

Amount

Cost/Unit

Page 39 of 105

Equip Amount Process

Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{age 17} Page 17 of 54

Grand Total

Amount

6,740

28,089 1,749 152 7,127 80,643 117,760

1,341 2,898 3,422 7,449 15,111

607 850 12,638 14,095

4,554 182 1,366 5,102 52,281 52,281 392,026 392,026 144,661 144,661 72,331 100,169 172,500 75,127 75,127

3,394 3,030 13,733 18,977 2,208 2,593 43,935

18,095 28,736 7,521 21,227 9,14 2,051 3,611 2,455 16,289 16,626 42,622 91,934 85,808 787 5,185 5,088 2,952 20,165 20,565 255,496

18,502 506 19,008 21,248 21,248

4,441

18,508

WBS Lvi 1	WBS I Lvi 2	WBS Lvi3	WBS Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount
	·····			07.00 Moisture Protection	1 ls				
				Roofing					
				Membrane Roofing- 60 mil EPDM Mechanically Attached w/ 3" Insulation	6,168 sf			/sf	
				Aluminum Downspouts, 2 ea x 32' each	64 vf			M	
				Scuppers	2 ea			/ea	
				Aluminum Coping @ Roof Parapet 12" wide	313 #			18	
				Translucent Panel Skylight Frame & Panels	1,398 sf			/st	
				07.01 Roofing	6,168 sf				
			08.00	Doors, Frames & Hardware					
				HM Singlo Frames- 16 ga 3'x7'	4 69	1.000 mh/ea		39.18 /m/h	157
				HM Door Leals-3'x7' 20 na, half glass	4 ea	1,500 sa/mh	3	39,18 /m/n	104
				Overhead Doors- 10/x10/ 24 na steel manual 1" installion 26 na hSck-up band	1.68			-	

	Aluminum Downspouts, 2 ea x 32' each	64 vf			M				18.00	1,152					1,152
	Scuppers	2 ea			/ea				50,01	100					
	Aluminum Coping @ Roof Parapet 12" wide Transhicent Panel Skyllight Frame & Panels	313 II 1,398 sf			ri ist				15.00 38,01	4,596 53,135					4,696 53,135
	07.01 Roofing	6,168 sf			/54				12.58	77,590					77,590
08.00	Doors, Fraines & Hardware	0,100 51							12.00	11,000					11,000
00.00	HM Single Frames 16 ga 3'x7'	4 69	1,000 mh/ea	4	39.18 /mh	157	180.04	720			···· ·		-	-	877
	HM Door Leafs-3'x?' 20 ga, half glass	4 69	1,500 ea/mh	3	39,18 /m/n	104	450.09	1,800	-			-	-		1,905
	Overhead Doors- 10'x10' 24 ga steel manual 1" insualion 26 ga back-up panel	1 ea			-		-	-	2,255.00	2,25\$	-	-	-		2,255
	Finish Hardware by Leaf- Allowance	4 ea	8,002 min/ea	32	39.18 /m/n	1,254	900,18	3,501	-	-	-	-	-	•	4,855
	08,00 Doors, Frames & Hardware	4 ea		39		1,515	1,530.31	6,121	553.75	2,255					9,891
09.00	Finishes Paint HM Door Frames - primer (2) coats	4 ea			/ea				100.02	400		· · ·			400
	Paint HM Doors - primer (2) coats	4 ea			/ea				140.03	560	<u>-</u>				560
	Paint CMU Block - block filler & (2) coat	6,168 sf			· -	-	-	-	1.35	8,327		-	-	-	8,327
	09.00 Finishes	1 ls							9,286,99	9,287					9,287
10.00															
	Signs - Building ID	1 ea			/ea				3,000,60	3,001					3,001
	Signs - Doors Fire Extinguisher CO2 10 libs	4 ea 4 ea			/ea /ea				225.05	120 900	-	-	-	•	900
	10.00 Specialty Items	1 s			Jua				4,020.81	4,021					4,021
22,00									-terrer (
	Plumbing Subcontract	5,740 sf			Isf				6.00	34,447					34,447
	22.00 Plumbing	1 15							34,446.88	34,447					34,447
23.00	HVAC														
	Ventilation & Unit Heater System	5,740 sf			Ist		-	-	45,00	258,300	-	•	-	-	258,300
	23,00 HVAC	1 sf							258,300.00	258,390					258,300
25.00															
	Bulking Electrical System	5,956 st			Ist				16,00 95,315,03	95,315					95,315
	26.00 UG Electrical	1 ls							99,315.03	95,315					95,315
26.01	Above Ground Electrical Bulking Ejectrical System	5,956 sf			Ist				6.00	47.655					47,658
	Electrical Work For Equipment (5% Equipment Cost)	0,850 al			/s				66,000.00	66,000					66,000
	26.01 Above Ground Electrical	1 Is							113,857.51	113,658					113,658
26.02	Instrumentation & Controls														
	Controls & Instrumentation Work For New Equipment (1.5% Equipment Cost)	1 is			/Is				49,500.00	49,500					49,500
	26.02 Instrumentation & Controls	1 Is				1 A. 1			49,500.00	49,500					49,500
40.00						<i>i</i>									
	Trench Excav & Lay Pipe 0-4' Stone Pipe Bedding	350 ₩ 52 cy	600,000 ¥/cd 200,000 cy/cd	33	2,539,31 /cd 2,896,43 /cd	1,481 753	23.29	1,211			1,88	659			2,141 1,964
	DI Pipe Push - Class 52 8	200 1	0.250 mh/f	50	51,34 /mh	2,587	31.86	6,371			-	-			8,938
-	DI Pipe Push - Class 52 14	150 //	0,340 mh/F	51	51.34 imh	2,618	65,16	9,774	· · ·	÷ .		-	-		12,392
	Hydrostatic Testing	350 W	0.021 ch/l/	29	182.49 /ch 30.57 /mh	1,341 737	0.16 469.80	55 94D	-	-	-	-	-	. •	1,397 1,677
	D(90 e8 14" 49.00 Under Ground Process Piping	2 ea 350 lf	12,060 mh/ea	24 206	30.57 /mh	737 9,498	469,80	18,352		-	1.88	659		•	28,509
40.01		350 11		200		2/420	02.45	10,352			1.00	635			20,003
40.01	Paint & Steneii Exposed Piping <201	1,192 H						-	10.00	11,922	-	-		-	11,922
	Pipe Supports	40 68	4.001 mh/ea	160	45,62 /mh	7,301	250.05	10,002		-			· ·	-	17,303
	Hydrostatic Testing	1,192 8	0.021 ch/lf	100	182.49 /ch 182.49 /ch	4,569 3,650	0.16 1,286.25	191 5,145	· · · · · · · · · · · ·		1,200,15	4,801	-	-	4,760 13,596
	8" Di Wali Thimbh 24" long Gaskel/Nuts/Bolt Kil 4"	4 ea 16 ea	5,001 ch/ea 1,000 mh/ea	16	182.49 /cn 32.89 /mh	3,650	1,285.25	5,145			1,200,15	4,801	:	:	13,536
	Gaskel/Nuts/Bolt Kill 6"	12 aa	1,000 m/hea	12	32.89 /mh	395	15.87	190			-	-	-		585
	Gasket/Nuts/Bolt Kit 8"	24 na	1.000 mh/ea	24	32,89 /mh	789	22.60	528	-		-	-	-	•	1,317
	Gasket/Nuts/Box Kit 12" Gasket/Nuts/Box Kit 14"	30 ea 20 ea	1.000 m/a 1.000 m/a	30	32,89 /mh 32,89 /mh	987 658	45.00 46.58	1,350	· · · ·				•		2,337
	Di Flanged Joint Pipe 4"	18B #	0,820 mh/3	154	30.57 /mh	4,712	30,99	5,825					· · · · ·		10,537
	DI Flanged Joint Pipe 6"	144 17	0,900 mh/f	130	30.67 /mh	3,961	47.39	6,824		· · ·	-	-	-		10,765
	DI Flanged Joint Pipe 8"	285 #	0,980 mh/if	279	30.57 /mh	8,537 20.220	67,30 112 82	19,180		·			-	.	27,718
	Di Flanged Joint Pipe 12" Di Flanged Joint Pipe 14"	350 M 226 M	1.890 mh/i 2.050 mh/i	662 463	30.57 /mh 30.57 /mh	26,220	112,92	39,521							45,389
	Di Flangad 90 eš 6"	2 ea	4.830 mh/ea	10	30,57 /mh	295	105.30	211		-			-	-	506
	DI Flanged 90 eil 14"	4 ea	12.060 mh/ea	48	30.57 /mh	1,475	469.80	1,879	÷	.	-		-		3,354
	DI Flanged Tee 6"	2 ea	4,830 mh/ea 5,050 mh/ea	10	30,57 /mh 30,57 /mh	295 \$17	0.02 313.10	1,252	• .	· · · · ·	-	-	•		295 1.870
	Di Flanged Tee 6" Di Flanged Con Red 12x8"	4 ea 4 ea	11.010 mh/ea	20 44	30,57 /mh	1,345	487.20	1,949		:	-				3,295
	Di Flangad Con Red 14x8"	2 ea	12,060 mh/ea	24	30.57 /mh	737	588,00	1,176		•		-		-	1,913
	Mise Piping & Accessories- ALLOWANCE	200 LF	0.240 mh/LF	48	45.62 /mh	2,190	55.01	11,002		-		-	-	-	13,192
	40.01 Above Ground Process Piping	1,192 lf		2,334		77,424	116.20	138,511	10.00	11,922	4.03	4,801			232,658
40.02	Valves, Melers, Etc.														
	6" Butterily Valve, 125 b class, Cl Body, Fig. # EIM elec actuator NEMA 4 Pressure Regulator 8"	4 ea 2 ea	6,200 mh/ea 5,229 mh/ea	25 10	30.57 /mh 30.57 /mh	758	2,850.00	11,400				·	-		12,158
	40.02 Valves, Meters, Etc.	1 ls	3.228 (IN/ ea	35	30.07 11-1	1,078	11,400.00	11,400							12,478
40.04															
-0.04	Hydropheumatic Piping, Fitting & Valve Allowance	1 is	mh/b		45.62 /mh				14,000.00	14,000					14,000
	40.04 Hydropneumatic Piping System	1 /s							14,000.00	14,000					14,000
43,10	Ozone Equipment														
	Freight On Equipment To Jobsite	1 is			As.										
	Verified Performance Test	1 is			//s										
	Vendor Verified Performance Test	1 is			/b:								1,500,00	1,500	1,500
	Vendor Witnessed, Verified Performance Test	1 is			Лs										
	Equipment Unloading, Setting, Startup & Testing	1 ls	650.000 ch / ls	3,575	182.62 /ch	118,706	500,00	500		· ·	31,005,98	31,006	3,300,000.00	3,300,000	150,212 3,300,000
	Ozone System Equipment	⊺ls 1 ea			is /ea								5,300,000.00	3,300,000	3,300,000
	Air Compressor & Receiver Destruct Units (Blower, Analyzer, Preheater, Destruct Vessel)	7 ea 2 ea			/ea										
	Destruct Units (Blower, Analyzer, Preneater, Destruct Vessel)														

Report Date: 6/11/2020 1:19 PM

2,277

237,984 5,008,461

<File name>

Destruct Units (Blower, Analyzer, Preheater, Destruct Vessel)

/ea Page 17

2 ea

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment **Zage 18** Page 40 of 105 Page 18 of 54

Page 40 of 105

3S WBS WBS 12 Lv13 Lv14	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Materiaj Cost/Unit	Material Arnount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand T Amou
43.10	Ozone Equipment Blower Silencer	2 ea			/ea											
	Catalytic Chamber	2 ea			/ea											
	Cooling Water Pump	2 ea			/ea											
	Cooling Water Skid / Heat X-Changer 10' x 5.67'	2 ea			/ea											
	Cooling Water Supply Pumps	3 ea			/ea											
	Demister	2 ea			/ea											
	Eductor	2 ea			/ea											
	Filter	2 ea			/ea											
	Heater	3 ea			/ea											
	Ozone Diffuser	2 ea			/ea											
	Ozone Generator Skid 17' x 5.5'	2 82			/ea											
	Ozone injection Manifold 8" x 10.75' long	1 ea			/ea											
	Ozone injection Water Supply Pumps	4 ea			/ea											
	Ozone Quench Manifold 30" x 11' long	2 ea			/ea											
	Particulate Filter	1 ea			/ea											
	43.10 Ozone Equipment	1 is		3,575		118,706	500,00	500			31,005.98	31,006	3,301,600.00		3,451,712	
.7.0	47.5 Ozone Facility	6,168 gst		9,127		326,505	50,37	310,707	109,39	674,735	6,68	41,215	535,26	3,301,500	4,654,664	
47.6 03.05	LOX Equipment Slab On Grade															
03.05	S.O.G. Edua Form 8"	118 st	0.240 mb/s/	28	39.49 /mh	1,118	1.22	144							1,262	
	Strip & Oil Form	118 sf	0.00,5 mh/sf	1	39.17 /mh	23	0.03	4		-		-		-	27	
	Rebar-SOG (125 #/cy) Mesh Support - tricks (.12/sf)	.2 th 175 ea	14,003 mh/tn 0,002 mh/ea	32	43,53 /mh 43,53 /mh	1,375 15	997.70 0.26	2,245	· · · · *	-		-	· · · · · ·	-	3,616 61	
	Finish- Broom	1,462 sf	0.022 mh/sf	32	39.17 /mh	1,260		-		-					1,260	
	Pump Place Slab on Grade 8"	36 cy	0.500 mh/cy	18	41.39 /mm /cv	745			-		3.67	132	-	.	877	
	4000 psi Concrete Saw Cut S-O-G (,08/sf)	36 cy 117 lí	0.030 mh/¥	4	29.17 /mh	138	142.00	5,112		-	0.95	111			5,112 269	
	Liquid Curing Compounds	1,580 sf	0,002 mh/s/	3	39,17 /mh	124	0,06	93	-	-	-	-	-	-	217	
	Seal Floors 6 Mit Vacor Barrier	1,462 st 1,600 sf	0.002 mh/sf 0.002 mh/sf	3	39.17 /mh 43.53 /mh	115 139	0.09	135 84	· · · ·		-	-	. •	-	250	
	Gravel Fill Under Slab 4"	1,000 St 18 cv	0.002 mm/st	2	1.412.15 /cd	36	29.26	527		:	3.84	59			223	
	03.05 Slab On Grade	36 cy		126		5,144	233,57	8,409			8.68	313			13,866	
03,08	Pads & Curbs															
	LOX Tank Pad Form 24" LOX Vaporizer Pad Form 12"	350 st 78 st	0,180 m//sf 0.160 m//sf	63 12	39.49 /m/h 39.49 /m/h	2,488 493	1.37 1.37	478	-	-	-	-		-	2,966 599	
	Cox vaporaar Pan Porm 12	191 lf	0,015 mh/3	12	39,49 /mh	493	0,57	106 105	-	-			-	-	221	
	Stilp & Oil Equipment Pad Forms	428 sf	0,005 mh/sf	2	39,17 /mh	84	0.03	13		-	· -	-			97	
	Rebar-Pads (100 W/cy) Finish-Float	1 tn 223 s/	18,004 mh/tn 0,017 mh/sf	18	43.53 /mih 39.17 /mih	784 149	997.70	998			-				1,781 149	
	Pump Place Pads 12" & 24"	17 cy	1.600 mh/cy	27	41.39 /mh	1,126	-				7.49	127		:	1,253	
	4000 psi Concrete	17 cy	0.003 mh/sf	7	/cy 39.17 /mb	77	142,00	2,414		-		-		-	2,414	
	Liquid Curing Compounds 03.08 Pads & Curbs	651 st 17 cy	0.003 mh/st	2 101	39.17 Imh	77 5,313	0.06 244.44	38 4,155	-	-	7.49	- 127	-	-	115 9,596	
26.01	Above Ground Electrical	ii uy		101		2,010	244.44	4,100			1.40	123			3,030	
	Electrical Work For Equipment (5% Equipment Cost)	1 is			/Is				42,977.00	42,977					42,977	
	26.01 Above Ground Electrical	1 Is							42,977.00	42,977					42,977	
26,02	Instrumentation & Controls															
	Controls & Instrumentation Work For New Equipment (1.5% Equipment Cost) 25.02 Instrumentation & Controls	1 la 1 ls			/Is				12,893.00 12,893.00	12,893 12,893					12,893 12,893	
32.01	Zouz instrumentation & Controls	7 15							12,693.00	12,893					12,893	
52.01	B' Chain Link Fence @ LOX Tanks	111 //			-	•••	-	· · · .	31.01	3,442	-	-	-	· · · ·	3,442	
	8' Fence Vehicle Gate 12' @ LOX Tanks	1 ea			-	-	-	-	1,700,34	1,700	-	-	-	•	1,700	
	32.01 Fencing & Gates	1 ls							5,142.02	5,142					6,142	
40.00	Under Ground Process Piping Tranch Excav & Lay Pipe 0-4'	100 2	600.000 [f/ed		2,539.31 /cd	423					1.88	188			612	
	Stone Pipe Bedding	15 cy	200,000 cy/cd		2,896,43 /cd	217	23,29	349			1.00	108	-		567	
	Di Pipe Push - Class 52 4	100 #	0.190 mh/¥	19	ímh		14.54	1,454	-	-		-	-	-	1,454	
	Hydrostatic Testing	100 # 2 ea	0.021 ch/lf 4,530 mh/ea	8 9	182,49 /ch 30,57 /mh	383 277	D.16 72.90	16 146	-						399 423	
			4,000 1117 ca	51	50.07 Mar	1,301	19.65	1,965	-	-	1,88	188	-	-	3,454	
	DI 90 ell 4" 40.00 Under Ground Process Piping	100 If														
40.01	01 80 814 40,00 Under Ground Process Piping Above Ground Process Piping	100 If										-	-	•	1,130	
40.01	40,00 Under Ground Process Piping Above Ground Process Piping Paint & Siand Expead Piping 420*	113 g			-			-	10.00	1,130					2,163	
40.01	40,00 Under Ground Process Piping Above Ground Process Piping Paint & Standi Exposed Piping <20" Pige Support	113 g 5 ea	4,001 mh/ea	20	45.62 /mh	913 (13	250.05	1,250	10.00	1,130			· · · · · · · · · · · · · · · · · · ·			
40,01	40.00 Under Ground Process Piping Above Ground Process Piping Park & Sund Exposed Piping cCC Pipe Support Hydrostatis Testing GasterMetrike K at	113 g	4,001 mmh/ea 0.021 ch/ff 1,000 mmh/ea	20 9 10	182.49 /ch 32,89 /mh	433 329	250.05 0.18 4.90	- 1,250 18 43	10.00	1,130 - -	· · · · · · · · ·	:			461 378	
40.01	40,00 Under Ground Process Piping Above Ground Process Piping Pipe Suportis Pipe Suportis Pipe Suportis Pipe Suportis Pipe Suportis Caster/Mutu/Bob Ki 3* Caster/Mutu/Bob Ki 4*	113 8 5 ea 113 M 10 ea 15 ea	0.021 ch/ff 1,000 mh/ea 1,000 mh/ea	20 9 10 15	182.49 /ch 32.89 /mh 32.89 /mh	433 329 493	0.16 4,90 7,87	18 49 118	10.00 	1,130 - - - -		-		-	378 611	
40.01	40.00 Under Ground Process Piping Above Ground Process Piping Pipe Saland Exposed Piping 4707 Pipe Saland Exposed Piping 4707 Pipe Saland Exposed Piping 4707 Caster Annual Piping 470 Caster Annual Piping 470 Caster Annual Piping 470	113 8 5 ea 113 M 10 ea 15 ea 50 M	0.021 ch/ff 1.000 mh/ea 1.000 mh/ma 0.820 mh/ff	20 9 10 15 41	182.49 /ch 32.89 /mh 32.89 /mh 30.57 /mh	403 029 493 1,253	0.18 4.90 7.67 30,99	18 49 118 1,549	10.00	1,130 - - - -					378 611 2,803	
40,01	40.00 Under Ground Process Piping Above Ground Process Piping Pres & Sund Exposed Piping CCC Pipers Stand Exposed Piping CCC Pipers CCC Constantive CCC Constantive CCC Constantive CCC Constantive Piper CCCC Constantive Piper CCCCC Constantive Piper CCCCCC Constantive Piper CCCCC Constantive Piper CCCCCCCCC Constantive Piper CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	113 명 5 ea 113 년 10 ea 15 ea 50 년 63 년 20 ea	0.021 ch/ff 1.000 mh/ea 1.000 mh/ea 0.820 mh/f 0.820 mh/f 1.940 mh/ea	20 9 10 15 41 52 39	182,49 /ch 32,89 /mh 32,89 /mh 30,57 /mh 30,57 /mh 30,57 /mh	433 329 493 1,253 1,579 1,186	0.16 4.90 7.67 30.99 30.99 55,08	18 49 118 1,549 1,952 1,102	10.00	1,130 - - - - - -			· · · · · · · · · · · · · · · · · · ·		378 611 2,803 3,531 2,258	
40.01	40.00 Under Ground Process Piping Abave Ground Process Piping Pipits Support Prige Support Registration Testing Gassimily Registration St. 3" Gassimily Registration St. 3" Of Piping Abave St. 3" Of Piping Abave St. 3" Of Piping Abave St. 3"	113 8 5 ee 113 8 10 ea 15 ea 63 8 20 ea 30 ea	0.021 ch/ff 1.000 mh/ea 1.000 mh/ea 0.820 mh/ff 0.820 mh/ff 1.940 mh/ea 4.530 mh/ea	20 9 10 15 41 52 39 135	182.49 /ch 32.89 /mh 32.89 /mh 30.57 /mh 30.57 /mh 30.57 /mh	433 329 493 1,253 1,579 1,185 4,154	0.16 4.90 7.67 30.99 30.99 55,08 72,90	18 49 1,549 1,952 1,102 2,187	10.00	1,130 - - - - - - - - - - - - - - - - - 			· · · · · · · · · · · · · · · · · · ·		378 611 2,803 3,531 2,258 6,341	
40.01	40.00 Under Ground Process Piping Above Ground Process Piping Press & Sundel Exposed Piping COT Press Address Control Process Piping Consummers Control Process Piping Consummers Control Process Piping Consummers Control Piping Consummers Piping Construction Piping Construc	113 // 5 ea 113 // 10 ea 15 ea 50 // 63 // 20 ea 30 ea 3 ea	0.021 ch/ff 1,000 mh/es 0,820 mh/f 0,820 mh/f 1,940 mh/es 1,940 mh/es 1,940 mh/es	20 9 10 15 41 52 39	182,49 /ch 32,89 /mh 32,89 /mh 30,57 /mh 30,57 /mh 30,57 /mh	433 329 493 1,253 1,579 1,186	0.16 4.90 7.67 30.99 30.99 55,08	18 49 118 1,549 1,952 1,102	10.00	1,130 - - - - - - - - - - - - - - - - - - -			· · · · · · · · · · · · · · · · · · ·		378 611 2,803 3,531 2,258	
40.01	40.00 Under Ground Process Piping Abave Ground Process Piping Pipits Support Prige Support Registration Testing Gassimily Registration St. 3" Gassimily Registration St. 3" Of Piping Abave St. 3" Of Piping Abave St. 3" Of Piping Abave St. 3"	113 8 5 ee 113 8 10 ea 15 ea 63 8 20 ea 30 ea	0.021 ch/ff 1.000 mh/ea 1.000 mh/ea 0.820 mh/ff 0.820 mh/ff 1.940 mh/ea 4.530 mh/ea	20 9 10 15 41 52 39 135 6	182.49 /ch 32.89 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh	433 329 493 1,253 1,578 1,186 4,154 178	0.16 4.90 7.67 30.99 30.99 55.08 72.90 0.04	18 49 1,549 1,952 1,102 2,187 0	10.00 - - - - - - - - - - - - - - - - - -	1,130 			· · · · · · · · · · · · · · · · · · ·		378 611 2,803 3,531 2,288 6,341 178	
40,01	40.00 Under Ground Process Piping Abave Ground Process Piping Pipe Support Abave Strond Exposed Piping - 20° Pipe Support Stronged-Joing Fiping - 20° GasketMuktRich Ki 4° GasketMuktRich Ki 4° G Fipinged-Joing Fiping - 20° C Fipinged-Joing Fiping - 20° C Fipinged Teing - 20° C Fiping	113 8 5 ea 113 1/ 110 ea 15 ea 15 ea 70 ea 30 ea 3 ea 4 ea 4 ea 1 1/	0.021 ch/ff 1.000 mh/ea 0.820 mh/fa 0.820 mh/ff 0.820 mh/ff 1.940 mh/ea 4.530 mh/ea 4.530 mh/ea	20 9 10 41 52 39 135 6 18 346	182.49 /ch 32.89 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh	433 329 433 1,253 1,579 1,186 4,154 178 554 11,072	0.18 4.50 7.87 30.99 65.08 72.50 0.04 107.52 8,655.55	18 49 118 1,549 1,552 1,102 2,187 0 430 8,656					· · · · · · · · · · · · · · · · · · ·		378 611 2,803 3,531 2,288 6,341 178 984 20,858	
	40.00 Under Ground Process Piping Above Ground Process Piping Pipe Septon Pipe Septon CarsonNaurition Ki a* CarsonNaurition Ki a* CarsonNaurition Ki a* CarsonNaurition Ki a* CarsonNaurition Ki a* CarsonAurition	113 g 5 ee 113 l 10 ee 116 ee 20 ee 30 ee 30 ee 30 ee 4 ee 1 lf 8 ee	0.021 ch/ff 1.000 mh/ea 1.000 mh/ea 0.820 mh/ff 0.820 mh/ff 1.940 mh/ea 4.530 mh/ea 1.940 mh/ea 4.530 mh/ea	20 9 10 15 41 52 35 135 6 18 346 24	182.49 /ch 32.88 /mh 30.87 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh	433 229 493 1,253 1,579 1,185 4,154 4,154 11,072 734	0.18 4.90 7.87 30.99 55,08 72.90 0.04 107.52 8,655.55	18 49 118 1,549 1,952 1,102 2,187 0 430 8,656 11,400					······································		378 611 2,803 3,831 2,258 6,341 178 984 20,858 12,134	
	40.00 Under: Ground Process Piping Above Ground Process Piping Pipis Suport GastafMatrice Strat GastafMatrice	113 8 5 ea 113 1 110 aa 15 ea 35 b 70 aa 30 aa 3 ea 4 ea 4 f 1 ff 8 ea 4 ea 4 aa	0.021 ch/ff 1.000 mh/ea 0.820 mh/fa 0.820 mh/ff 0.820 mh/ff 1.940 mh/ea 4.530 mh/ea 4.530 mh/ea	20 9 10 15 41 52 39 135 6 18 346 24 14	182.49 /ch 32.89 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh	433 329 493 1,253 1,579 1,186 4,154 178 554 11,072 734 428	0.18 4.90 7.87 30.99 65,08 72.90 0.04 107.52 8,655.55 1,426,00 1,900,00	18 49 118 1,549 1,552 1,102 2,187 0 430 8,656 11,400 7,600					· · · · · · · · · · · · · · · · · · ·		378 611 2,803 3,531 2,258 8,341 178 884 20,858 12,134 8,028	
40.02	40.00 Under Ground Process Piping Above Ground Process Piping Pipe Support Above Ground Process Piping Pipe Support Above Ground Process Piping CasterMarking RK a ¹⁰ CasterMarking RK a ¹⁰ CF Ranged Sol Right CF Ranged Sol Right CF Ranged Sol a ¹⁰ CF Ranged Sol a ¹⁰	113 g 5 ee 113 l 10 ee 116 ee 20 ee 30 ee 30 ee 30 ee 4 ee 1 lf 8 ee	0.021 ch/ff 1.000 mh/ea 1.000 mh/ea 0.820 mh/ff 0.820 mh/ff 1.940 mh/ea 4.530 mh/ea 1.940 mh/ea 4.530 mh/ea	20 9 10 15 41 52 35 135 6 18 346 24	182.49 /ch 32.88 /mh 30.87 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh	433 229 493 1,253 1,579 1,185 4,154 4,154 11,072 734	0.18 4.90 7.87 30.99 55,08 72.90 0.04 107.52 8,655.55	18 49 118 1,549 1,952 1,102 2,187 0 430 8,656 11,400							378 611 2,803 3,831 2,258 6,341 178 984 20,858 12,134	
	40.00 Under Ground Process Piping Park & Stand Exposed Piping - r20" Pipe Support Answe Ground Process Piping Pipios Support GastafMukrBot Ki a" GastafMukrBot Ki a" GastafMukrBot Ki a" Of Pipinged Joint Pipi a" Of Pipinged Coint Pipi a" Of Pipinged Joint Piping Valves, Meters, Etc. D' Bustingt Valves, Meters, Etc. LOX Equipment	113 g 5 ea 113 j 6 aa 50 j 70 j 30 ca 30 ca 30 ca 4 ca 4 ca 1 j 1 j 4 ca 4 ca 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j	0.021 cb/ř 1.000 mh/ea 0.820 mh/e 0.820 mh/e 1.540 mh/ea 4.530 mh/ea 3.500 mh/ea 3.500 mh/ea	20 9 10 15 41 52 39 135 6 18 346 24 14 38	182.46 (ch 32.89 (mh 32.89 (mh 30.57 (mh 30.57 (mh 30.57 (mh 30.57 (mh 30.57 (mh 30.57 (mh	433 329 493 1,253 1,573 1,386 4,154 178 554 11,072 734 428 1,182	0.18 4.90 7.87 30.99 65,08 72.90 0.04 107.52 8,655.55 1,426,00 1,900,00	18 49 118 1,549 1,552 1,102 2,187 0 430 8,656 11,400 7,600			763.23		209.000.00	418.000	378 611 2,803 3,531 2,258 8,341 178 884 20,858 12,134 8,028	
40.02	44.00 Under Ground Process Piping Above Ground Process Piping Park & Stand Expond Piping 420" Pipe Support Augustatil: Testing Gaster/Mutripol Ki a" Gaster/Mutripol Ki a" Caster/Mutripol Ki a" Caste	113 g 5 ee 113 j 50 j 50 j 70 aa 3 ea 4 ea 1 j 1 j 1 j 1 j 1 j 1 j 1 j 2 ea 2 ea 2 ea 2 ea 2 ea	0.021 ch/ř 1.000 mh/ea 0.820 mh/e 0.820 mh/ř 1.540 mh/ea 4.530 mh/ea 3.500 mh/ea 3.500 mh/ea 1.000 mh/ea	20 9 10 15 41 52 39 135 6 18 346 24 14	122.49 /ch 32.89 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh	433 329 493 1,253 1,573 1,573 1,788 4,154 178 554 11,072 734 428 1,462 3,566 3,565	0.16 4.50 7.87 30.99 65,08 72,00 0.04 107.52 8,655.55 1,425,00 1,900,00 19,000,00	13 3 43 118 1,552 1,162 2,197 430 8,655 11,400 7,600 19,000				1,526	219,000,00	418,000 433,000	378 611 2.803 3.531 2.238 6.341 178 984 20,858 12,134 8,028 20,152 423,093 442,093	
40.02	44.00 Under Ground Process Piping Abava Ground Process Piping Parts & Stand Expend Piping +20" Pipe Support GasterMaufactor R1 at GasterMaufactor R1 at GasterMaufactor R1 at C Fanged South Pipe at C Fanged	113 g 5 ee 113 l 10 ea 15 ea 30 ea 30 ea 30 ea 4 ea 4 ea 4 ea 1 lf 1 lf 1 lf 2 ea	0.021 ch/f 1.000 mh/ea 0.820 mh/f 0.820 mh/f 1.940 mh/ea 4.530 mh/ea 3.000 mh/ea 3.500 mh/ea 3.500 mh/ea	20 9 10 15 39 136 6 18 346 24 14 38	12.249 (ch 32.89 (mb 30.57 (mb 30.57 (mb 30.57 (mb 30.57 (mb 30.57 (mb 30.57 (mb 30.57 (mb 30.57 (mb	433 329 433 1,253 1,579 4,154 4,154 4,154 11,072 734 428 1,162 3,566	0.16 4.50 7.67 30.99 95,08 72,90 0.04 107.52 8,655.55 1,425,00 1,900.00	19 49 118 1,549 1,552 1,102 2,187 0 430 8,656 11,400 7,600				1,526 1,526 1,536		418,000 438,000 7,200 858,200	37% 611 2,803 3,331 12,288 6,341 178 884 20,858 12,134 8,028 20,162 20,162	

Page 18

<File name>

Report Date: 6/11/2020 1:19 PM

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

WBS WB Lvil 1 Lvi			WBS Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Materia) Cost/Unit	Materiai Arnount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
		l.		3B Filtration - Rehab Existing & Add Ozone Facility	1 łs		27,591		1,065,272	1,041,664,11	1,041,664	875,078,20	875,078	291,903.83	291,904	4,164,700.0	0 4,164,700	7,438,618	11,380,49
30	47.	,		Filtration - Install Membranes In Existing Filters Water Plant Process Rehab @ Filters 21 thru 28															
			02.01	Demolition Work															
ļ				Non-Hezardous Waste Transport and Disposal. Pressure Washing Basin Wats @ Basins 21 thru 28	2,058 ton 14,860 st	150,000 st/ch	198	53.11 ich	5,261	D,35	5,201	50.00	102,900	0.52	7,753			102,900 18,215	156,17 28,56
L				Prossure Washing Basin Slab @ Basins 21 thru 28 Remove Air Header	5,288 sf 8 aa	200.003 si/ch 8,000 ch/ea	83 320	53.11 /ch 231.62 /ch	2,201 14,823	0.35 250.00	2,901	-	:	0.39 1,957,34	3,243 15,659		: :	8,345 32,482	13,04 51,41
(Bag, Transport and Dispose Of Media Remove Sand (8,288 sf x 24" deep), 614 cy	24,948 cf 16,578 cf	65.867 c1/ch 0.033 mh/c1	1,515 539	163.29 /ch 46.32 /mh	61,845 24,958		5,544		:	4.08 6.12	101,845 101,402			169,235 126,360	268,38
1				Remove Anthracile Media (8,288 sf x 6" deep), 155 cy Remove Gravel Media (8,288 sf x 6" deep), 155 cy	4,185 c1 4,185 c1	0,033 mh/cf 0,033 mh/cf	136 136	46,32 /mh 46,32 /mh	5,301 5,301			-	-	6,12 6,12	25,598			31,899	50,71 50,71
1				Remove Underdrain System - Grouted Blocks	8,288 st	0,180 mh/si	1,492	46,32 /mh	69,107	1.09	9,055	-		6.12	50,695		: :	128,857	203,80
[03.30	02.01 Demolition Work Patch Cracks and Resurface Concrete	1 ls		4,419		190,798	24,701.27	24,701	102,900,00	102,900	331,793,44	331,793			650,192	1,023,69
				Patch Cracks & Resurface Walls @ Basins 21-28 Patch Cracks & Resurface Walls @ Lower Gattery	14,860 st 6,831 st	10,000 st/ch 10,000 st/ch	2,972	53,11 /ch 63,11 /ch	78,922 36,280	0.11	1,618 744			-			: :	80,540 37.024	127,35 58,54
				Patch Cracks & Resurtaon Slab @ Basins 21-28 03,30 Patch Cracks and Resurface Concrete	8,288 sf 29,979 sf	6.764 sf/ch	2,451	53,11 /ch	65,07B	0.07	613		-		-			65,691	103,93
		c	09.00	Finishes			6,789		180,280	0.10	2,975							183,255	289,84
				Pressure Wash Basins 21-28 Clean Basins 21-28	16 ea 16 ea	90.000 m/r/ea 30.000 ch/ea	1,440 1,440	40.56 /mh 143.32 /ch	58,412 68,794	500,00	8,000		:	701.91 3,597.12	11,231 57,554			69,643 134,348	110,32 212,62
				Clean Lower Gallery Walls For Painting Clean & Prep Pipe For Painting	31,626 sf 1,740 lf	150,000 s1/ch	422	53.11 /ch	11,198	p.35	11,069	6.00	- 10,440	0,52	16,500			38,767	60,78
				Paint Lower Gallery Concrete Surfaces	6,831 st				-	-	-	1.10	7,514		:		: :	10,440 7,514	15,84 11,40
Į				Paint 4" Pipe Paint 6" Pipe	818 5	0.035 m//# 0.070 m//#	57	27,53 /mh 27.53 /mh	1,577	1,00 0.69	0 566		-	4.00 4.24	D 3,467			0 5,610	
3				Paint (2" Pipe Paint 16" Pipe	0 H 227 H	0,120 mh/# 0.140 mh/#	0 32	27,53 /mh 27.53 /mh	0 875	1.00 1.85	0 419	:	:	6.00 6.06	0 1,375		1 1	0 2,669	4,20
				Paint 18" Pipe Paint 20" Pipe	11 36 11 0	0.200 mh/¥ 0.300 mh/¥	19	27.53 <i>lm</i> h 27,53 <i>lm</i> h	529	2.08	199	-	-	6.06 7.00	581 D			1,309	2,06
				Paint 24" Pipe Paint 30" Pipe	0 N 0 1/	0,350 mh/lí 0,438 mh/lí	0	27,53 /mh 27,53 /mh	D	3.00	0		-	7.00	a			0	i
				Paint 36" Pipe	541 //	0.525 mh/¥	284	27.53 /mh	7,820	4,00 4,15	2,247	:		4,00 4.95	2,675		: :	0 12,743	28,04
1				Paint 42" Pipe 09.00 Finishes	58 // 1 ls	0.525 mh/i	30 3,724	27.53 /mb	838 150,043	4.85 22,782.62	281 22,783	17,954.10	- 17,954	4,95 93,670.65	287 93.671			1,405 284,451	2,21
1				47.1 Water Plant Process Rehab @ Filters 21 thru 28	1 ls		14,932		521,121	50,468,56	50,459	120,854.10	120,854	425,464.09	425,464			1,117,898	
	47.		02.01	Water Plant Process Rehab @ Filters 29 thru 32 Demolition Work															
			04.01	Non-Hazardous Waste Transport and Disposal	2,154 ton 31,626 st	150.000 st/ch	422	53.11 /ch	·		-	50,00	107,700	0.52	16.500			107,700	163,45
				Pressure Washing Basin Walis @ Basins 29 thru 36 Pressure Washing Basin Slab @ Basins 29 thru 36	20,059 st	200.000 si/ch	201	53.11 /ch	11,198 5,327	0,35	7,021	-	:	0,39	7,849		: :	38,767 20,196	31,57
				Remove Air Header Bag, Transport and Dispose Of Media	8 ea 7,938 cf	8,000 ch/na 65,867 cl/ch	320 482	231.62 /ch 163.29 /ch	14,823 19,578	250,00 0.22	2,000	-	-	1,957.34 4,08	15,659 32,405			32,482 53.848	51,41 85,39
1				Remove Sand (8704 sfx 24" deep), 645 cy Remove Anthracite Madia (8704 sfx 5" deep), 161 cy	17,408 cf 4,352 cl	0.033 mh/cf 0.033 mh/cf	566 141	46.32 /m/h 46.32 /m/h	26,208 6,552					6.12 6.12	106,479 26,520			132,687	210,94
1				Remove Gravel Media (8704 si x 6" deep), 161 cy Remove Underdrain System - Grouted Blocks	4,352 cf 8,704 sf	0.033 m/r/cf 0.180 m/r/sf	141 1,567	46.32 /mh 46.32 /mh	6,552 72,575	1,09				6.12	26,520		: :	33,172	52,73
1				02.01 Demolition Work	1 ls	0,150 mm / 51	3,540	46,32 /mn	162,913	31,363,74	9,610 31,364	107,700,00	107,700	6.12 285,371.47	53,240 285,371			135,325 587,348	214,03 923,07
1		0	03.30	Patch Cracks and Resurface Concrete Patch Cracks & Resurface Walls @ Only Basins 33 thru 36	7,460 sf	10.000 sf/ch	1,492	53.11 /ch	39,620	0.11	812							40,433	\$3,94
				Patch Cracks & Resurface Walls @ Lower Gallery Basins 29 thru 36	6,631 sf	10,000 sf/ch	1,365	53,11 /ch	36,280	0.11	744	-	:	-	-		: ;	37,024	58,54
				Patch Cracks & Resurface Slab @ Only Basins 33 thru 36 03,30 Patch Cracks and Resurface Concrete	4,352 sf 18,643 sf	6.764 sl/ch	1,287 4,145	53.11 /ch	34,172 110,073	0.07	322 1,878	-	-	-	-			34,494 111,950	54,57
1		0	09,00	Finishes		A0.000 11/2													
				Pressure Wash Basins 29 thru 36 Clean Tank	16 filt 16 filt	90,000 mh/fit 30,000 ch/fit	1,440 1,440	40,56 /mh 143.32 /ch	58,412 68,794	500.00	8,000	-		701,91 3,597,12	11,231 57,554		: ·:	69,643 134,348	212,62
				Clean Basins 29 thru 36 Clean Lower Gallery Walls For Palniling	16 filt 31,626 s/	30,000 ch/filt 150,000 st/ch	1,440 422	143.32 /ch 53.11 /ch	68,794 11,198	500,00 0,35	8,000 11,069	· · · · -	:	3,597.12 0.52	57,554 16,500		: :	134,348 38,767	212,62 50,78
				Clean & Prep Pipe For Painting Paint Lower Gallery Concrete Surfaces	1,740 # 6,831 st			-		-		5.00 1.10	10,440 7,514		-		: 5	10,440 7.514	15,84 11,40
				Paint 4" Pipe Paint 6" Pipe	52 ¥ 94 ¥	0,035 mih/¥ 0,070 mih/¥	. 2.	27.53 /m/h 27.53 /m/h	5D 181	0.46	24 65	-	•	4,24	220 398		- •	295 645	45 1,02
				Paint 12" Fipe	54 8	0.120 mh/ř 0.140 mh/ř		27.53 /mh 27.53 /mh	178	1.39	75		:	5.65	305		: :	558	88
1				Paint 16" Pipe Paint 18" Pipe	38 ¥ D ¥	0.200 mh/3	0	27.53 /mh	146 D	1.85	70 0	-	:	6.06 6,00	230			447 D	70
				Paint 20" Pipe Paint 24" Pipe	276 W 206 #	0.300 mh/f 0.350 mh/f	83 72	27.53 /m/h 27,53 /m/h	2,280 1,985	2.31 2,77	\$37 571	1		7.07 7.07	1,950 1,455		1 1 1	4,867 4,011	7,67 6,32
				Paint 20" Pipe Paint 36" Pipe	29 M 91 M	0.436 mh/3 0.525 mh/3	13 48	27.53 /m/h 27.53 /m/h	349 1,315	3.46 4.15	100 378	-	:	4.12 4.95	119		: :	569 2.143	89 3,37
				Paint 42* Pipe	0 16	0.525 mh/1	0	27.53 /mh		5.00	0	-	-	5,00	D			D	
		4		09.00 Finishes Above Ground Process Piping	1 ls		4,977		213,684	28,989.10	28,989	17,954.10	17,954	147,967.89	147,968			408,595	544,94
				12" Filter To Waste Piping To Basins 29 thru 36	600 # 600 1f	2,200 mh/¥	1,320	30,57 /mb	40,348	135.00	81,600	÷.	•	-	-		- '-	121,948	187,70
i.				40,01 Above Ground Process Piping 47,2 Water Plant Process Rehab @ Filters 29 thru 32	500 lf 1 ls		1,320 14,282		40,348	136.00 143,830.73	81,600 143,831	125,654.10	125,654	433,339.36	433,339			121,948 1,229,842	
	47,			Water Plant Building @ Filters 21 thru 36															
		(02.01	Demoiltion Work Non-Hazardous Waste Transport and Disposal	1 15			-	-		1.12	10,000.00	10,000		<u> </u>		- ⁻	10,000	15,17
				Demo HVAC System @ Upper & Lover Levels Demo Lighting System @ Upper & Lover Levels	44,000 sl 44,000 sl			- jet	-'		-	3.00	132,000	-	-			132,000	200,33
1				02.01 Demolition Work	1 ls			.31				274,000.00	274,000					274,000	
		(09.00	Finishes Paint HM Door Frames - primor (2) coats	32 ea			lea				100,02	3,201		-			3,201	4,85
1				Paint Paul Doors - primer (2) coats Paint Paul Doors - primer (2) coats Paint CMU Slock - block filler 8 (2) coat	32 ea 15,800 sf			/ea		-	-	140.03 1,35	4,481	-	-		· ·	4,481 22,680	\$,80 34,42
				Paint Ceilings	44,000 sf			-	·		.	1.00	44,000	-	1		II	44,000	68,77
				Minor Architectural Improvements	1 Is							10,000,00	10,000					10,000	15,17

Page 19

Report Date: 6/11/2020 1:19 PM

E E E

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

/BS WBS WE vì2 LvÌ3 LvÌ	vl 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Amo
23.0		HVAC New HVAC System	44,000 sf			/at			-	20.00	\$80,00D		-			880,000	
		23.00 HVAC	44,000 sf							20.00	930,000					880,000	
26.0		Above Ground Electrical New Liphtling System	44,000 st			ist				4.00	176.000					176.000	
		New Support For Conduit & Wiring System	44,000 st			/at				2.00	88,000					88,000	
		Electrical Work For Equipment (3% Equipment Cost) 26.01 Above Ground Electrical	ils 1 Is			/Is				540,000,00 804,000,00	548,000 804,000					540,000 804,000	
26.0	.02	Instrumentation & Controls									504,000					004,000	
		Controls & Instrumentation Work For New Equipment (1% Equipment Cost)	t is			/Is				180,000.00	180,000					180,000	
40.0		26.02 Instrumentation & Controls Above Ground Process Piping	1 is							180,000,00	186,000					180,000	
40.0		Filmte 7 Backwash Piping & Valves	1,800 #	2,200 mh/¥	3,960	30,67 /mh	121.045	136.00	244,800		-	-	-			365.845	
		Cut Holes In Walls For Filtrate 7 Backwash Piping	24 sa			lea			-	2,500.00	000,03					60,000	
43.1		40.01 Above Ground Process Piping Membrane Filtration Equipment	1,800 lf		3,960		121,045	136.00	244,800	33.33	60,000					425,845	
		Filter Equipment Start-Up @ Basins 21-28 & 33-36	12 ea	150.000 ch/ea	12,500	350.77 /ch	631,379	2,500,00	30,000							661,379	
		Stez-ZeeWeed Utrafikation Membrane System Install Double Stack Cassette 23' long we 112 Modules/Cassette (21-28)	1 ks 64 sa	9.000 mh/ea	576	/bs 30.57 /m/h	17,808					55.00	3,520	18,594,595.00	10,594,595	18,594,595 21,126	
		install Double Stack Cassile 18' long w/o 98 Modules/Cassette (33-36)	40 ea	7.000 mh/ea	280	30.57 /mh	8,559					55.00	2,200		: :	10,759	
		Install 2' x 2' Modules in 104 Cassettes Install 2' x 2' Modules in 104 Cassettes	11,008 ea 11,008 pa	1.000 mh/ea 1.000 mh/ea	11,008 11,008	30.57 /mh 30.57 /mh	336,479				-	6.00	66,048 65,048			402,527 402,527	
		Instal Membrane Header Piping System @ Each Basin	24 ea	64.000 mh/ea	1,536	30.57 /mh	46,951				-	400.00	9,500			56,551	
		Install Air Scour Haader Piping System @ Each Basin Install Sodium Hyzochlorite Dosing System @ Each Basin	24 ea 24 ea	64,000 mh/ea 64,000 mh/ea	1,536 1,536	30,57 /mh 30,57 /mh	46,951 46,951				·	400.00 400.00				56,551 56,551	
		43.11 Membrane Filtration Equipment	1 ls	04.000 1117 64	40,080	30.07 11-1	1,471,354	30,000,00	30,000		-	166,616.00		18,594,595,00	18,694,595	20,262,565	
43.1		Air Scour Blowers															
		Air Scour Blower 200 hp 43,12 Air Scour Blowers	4 ea 1 is	40.000 mh/ea	160 160	34.45 /mh	5,511 5,511			-	-	-	-	220,000.00 880,000.00		885,511 885,511	
		47.3 Water Plant Building @ Filters 21 thru 36	1 15		44,200		1,597,910	274,799.99	274,900	2,282,361.50	2,282,362	166,615,00	165.616	19,474,695,00		23,786,283	
		3C Filtration - Install Membranes In Existing Filters	1 (s		73,414		2,646,049	469,089.28	469,089	2,528,869.70	2,528,870	1,025,419.45		19,474,595.00		26,144,022	
		Filtration - Construct New Gravity Filters															
20 03.0		Building & Structure Construction Foundation Mat															
03.0		Keyway 6"	2,842 #	0.050 mh/#	142	39.49 /mh	5,612	0.67	1,910			-				7,523	
		Mat Foundation Edge Form 30"	1,628 si	0.350 mh/sf	570	39.49 /mh	22,505	1,31	2,137	-	-				• . •	24,542	
		Mat Foundation Buikhead Form Waterstop 6" Flat	1,095 s/ 2.842 #	0.350 mh/sf 0.110 mh/lf	383 313	39,49 /mh 39,18 /mh	15,134	1.52	1,667 5,969		-					16,801 18,219	
		Strip & Cil Mat Found. Form	2,723 sf	0.005 mh/sf	14	39.17 /mh	533	0,03	82	-	-					615	
		Rebar- Foundation Mat (100 #/cy) Rebar Support - blicks (.12/sf)	122 tn 3,147 ea	28.006 mh/tn 0.002 mh/ea	3,417	43.53 /mh 43,53 /mh	148,718 274	997.70	121,719 826		-		:			270,437	
		Finish-Hard Trowel	26,221 sf	0.023 mh/s/	603	39.17 /mh	23,626	-	-		-	-	-			23,525	
		Pump Place Mat Foundation 24" 4000 psi Controle	2,428 cy 2,428 cy	0,500 mh/cy	1,214	41.39 /mh /cv	50,246	142.00	344.776			4,59	11,140			61,387 344,776	
		Liquid Curing Compounds	28,944 st	0.003 mh/sf		39.17 /mh	3,402	0.06	1,702	-			-			5,104	
		6 Mil, Vapor Barrier 03.00 Foundation Mat	28,800 s/ 2,428 cy	0,002 m/h/sf	58 6,806	43,53 /mh	2,50B 284,807	0.05 198.64	1,512 482,302	-	•	4,59	- 11,140		•	4,020 778,249	
03,0	.03	Columns										. 470-					
		Form Rectangle Columns 15' Chamler	3,780 si 2,520 ∦	0.165 mh/sf 0.015 mh/3/	624 38	39.49 /mh 39.49 /mh	24,629 1.493	1.60	6,034 1.429	-	•	-	-		-	30,663	
		Strip & Oli Column Form	3,780 sf	0,005 mh/sf	19	39,17 <i>l</i> mh	740	0.03	113	:			-			854	
		Superplasticizers @ Columns Column Rober (120 #/cy)	53 cy 3 tn	23.004 mh/tn	64	/cy 43.53 /mh	2,769	8.40 997.70	445 3,173	-	•	-	•		•	445 5,942	
		Finish-Fbat	95 sf	0.017 mh/sf	2	39,17 /mh	63				· .	<u>-</u>	-			63	
		Pump Place Columns 42 ea 4000 psi Concrete	53 cy 53 cy	1,600 mh/ey	85	41,39 /mh	3,510	142.00	7,525			7,49	397		-	3,908 7,526	
		Grind/Patch Columns	3,780 sf	0,013 mh/sf	49	39,17 /mh	1,925	0.03	113		· ·					2,038	
		Rub Columns Llavid Curing Compatitude	3,780 sf 3,780 sf	0.065 mh/sf 0.003 mh/sf	246 11	39.17 /mh 39.17 /mh	9,623 444	0.06	227	-	-	-				9,850 667	
		03.03 Columns			1,137		45,197	363,83	19,283		-	7.49	397		-	64,877	
03.0		Walls															
		Keyway 6" Vertical Wall Keyway 6"	7,105 ¥ 1.415 ¥	0.050 mh/1 0.110 mh/1	355 156	39.49 /mh 39.49 /mh	14,D33 6,148	0.67 0.67	4,776		-					18,809	
		Panel Form System 10'h	1,109 st	0.150 mh/sf	166	39.49 /mh	6,570	1,84	2,038			· · · · · -	. I			\$,608	
		Panel Form System 20' & 25' h Waterstop, 6' Flat	111,995 sf 8,521 if	0,190 mh/sf 0,110 mh/∦f	21,283 937	39.49 /m/n 39,18 /m/n	840,435 36,727	1.84	205,832 17.898	-	-		1			1,046,267 54,625	
		Strip & Oil Wall Forms	113,104 sf	0,005 mh/sf	556	39.17 /mh	22,154	0,03	3,394		-					25,548	
		Superplasticitiens @ Walls Rebar- Walls (125 #/cv)	3,094 cy 194 tn	15.003 mh/tn	2,911	/cy 43.53 /mh	125.689	8.40 997.70	26,993 193,554			· · · · · · ·			: :	25,993 320,243	
		Finish- Top of Wall	3,483 sf	0.008 mh/sf	28	39.17 /mh	1,092			· · · ·	-					1,092	
		Pump Place Walls 12" Pump Place Walls 18"	430 cy 2,002 cy	1.150 mh/cy 1.150 mh/cy	495 2,303	41,39 /mh 41,39 /mh	20,470 95,309	:	:		· :	6,65 6.65				23,331 108,621	
		Pump Place Walls 24"	662 cy	1,150 min/cy	761	41.39 /mh	31,515	-	-		-	6,65				35,919	
		4000 psi Concrete GrindPatch Walls	3,094 cy 113,104 sf	0.013 mh/sf	1,471	/cy 39.17 /mh	57,601	142.00 0,03	439,348 3,394	-	-	-	-			439,348 60,995	
		Rub Walls	96,854 sf	0.058 mh/sf	5,61B	39.17 /mh	220,022	0.06	5,811	-	-	-				225,833	
		Liquid Curing Compounds 03,04 Walls	112 sf 3,094 cy	0.002 mh/sf	0 37,049	39.17 /mh	9 1,478,773	0.05 291.85	7 902,995	-	-	6.65	20,577			15 2,402,345	
03,0		Suspended Flat Slab	3,094 CY		21,043		1,4/6,//3	401.85	202,232			6.65	20,577			2,402,345	
		Form Suspended Stab Bottom	17,177 st	0,180 min/s/	3,092	39,49 /mh	122,116	2.18	37,522				·			159,638	
		Slab Edge Form 12" Strip & Qil Suspended Slab Forms		0.250 mh/s/ 0.005 mh/s/	1,045	39.49 /mh 39,17 /mh	41,283 4,183	. 5.17.	21,620 876				-			62,903 5,059	
		Superplasticizers	647 cy			-		8.40	5,435			-			. :	5,435	
		Rebar- Suspended Slab (225 #/cy) Finish- Hard Trowe)	73 tn 17,177 sf	20.004 mh/tn 0.030 mh/s1	1,460 515	43,53 /mh 39,17 /mh	63,562 20,187	997.70	72,832	-			-			136,394 20,187	
		Pump Place Suspended Slab 12"	647 cy	1.800 mh/cy	1,165	39.17 /m/n 41.39 /m/n	48,211	-			· · · · · · · · · · · · · · · · · · ·	5.65	4,304			52,518	
		4000 psi Concrete	647 cy 0 st	0,003 mh/s/		- 39,17 /mh	-	142.00 1.00	91,874				· · ·			91,874	
		Liquid Curleg Compounds 03.06 Suspended Flat Slab	0 st \$47 cy	o,uus mn/sf	0 7,385	38,17 /mh	299,543	1.00 355.73	0 230,159			6,65	4.304			0 534,007	

Page 20

Report Date: 6/11/2020 1:19 PM

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5

r
 r

AECOM

WBS WBS Lvi 3 Lvi 4	DEScription	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand T Amou
03.07	Suspended Beams Beam Side Forms	10,878 st	0.210 mh/sf	2,285	39,49 /mh	80,224	2,21	23,991	···· · · ·						114,21	
	Seam Bottom Forms Chamter	3,146 sf 4,194 M	0.210 mh/sf 0.015 mh/t	661 63	39.49 /m/h 39.49 /m/h	26,093 2,485	2.21 0.57	6,938 2,378	1	2	1	1		1	33,03 4,86	3
	Strip & Oil Beam Forms	14,024 sf	0,005 min/sf	70	39,17 /mh	2,747	0,03	421		-		-			3,161	1
	Superplasticizers @ Bearns Rebar- Bearns (250 #/cy)	302 cy 38 tn	15,003 min/to	570	/cy 43,53 /min	24,815		2,537 37,913	· · · · ·	:	<u></u>	:			2,53	8
	Finish-Top of Beam	3,145 sf	0,008 min /sf	25	39.17 /m/n	586	-	-		-						6
	Pump Piace Beams @ Roof 4000 psi Concrete	302 cy 302 cy	2,001 mh/cy	604	41.39 /mh /cy	25,011	142.90	42,884	-	-	14.42	4,355			29,36	
	Grind/Patch Beams	14,024 sf	0.013 mh/sf	182	39,17 /mh	7,142	0.03	421	-	-	-	-			7,56	3
	Rub Seams Liquid Curing Compounds	14,024 sf 14,024 sf	0,085 m/n /sf 0.002 m//sf	1,192 28	39,17 /mh 39,17 /mh	45,689 1,099	0,06 0,06	841 825	-					: :	47,53 1,92-) /
	03,07 Suspended Beams	302 cy	0.002 ///// 8/	5,681	33,17 /101	227,290	394,53	119,149			14.42	4,355			350,78	
03.09	Pan Stair Fill															
	Finish Stains Pump Place Pan Stair Concrete	415 sf 6 cy	0.055 mh/sf 3.001 mh/cy	23 18	39.17 /mh 41.39 /mh	694 745	-		-	-	9.17	55			89-	
	3000 psi Concrete	6 cy	3.001 1117 69	10	-		138,00	828	-	-	-	-			82	8
	03.09 Pan Stair Fili	6 cy		41		1,639	138.00	828			\$.17	55			2,52	2
03.20	Precast Planks															_
	Precast Hollow Core Roof Planks 4" wide x 10" 03.20 Precast Planks	25,298 sf 25,298 sf	0.020 mh/st	506 506	42.24 /mh	21,376 21,376	8.80 6.80	222,667 222,657		•	0,35 0,35				252,94	
04.00		20,250 31		500		1,,,,,	0.00	222,007			0.00	0,502			202,54	,
	8" CMU + Rigid Insulation Backup To Brick, 20' h	12,093 51			Ist		-	-		217,717		-		· -	217,71	,
	8" CMU + Rigid Insulation Backup To Brick @ Parapet 3,67" h Precast Cap 16" × 4"	2,576 sf			/st /if		-	-	18.00 20.00	45,368 12,883	· · · · · ·	-			46,36	; 3
	Brick Veneer @ Block Wall Backup & Concrete Beam	16,601 sf			- "	-			9.00	149,439		2			148,43	9
	04.00 Masonry	16,6D1 sf							25.69	426,407					426,40	/
05.01	Misc Metals Metal Stairs Concrete Pans	132 rs	0.067 mh/rs		42.08 /mh	370	80.02	10,552							10.93	
	Metal Stairs Concrete Pans	132 IS 8 ea	4,000 mh/ea	32	42,08 /mh	1,347	80,02	6,400				-			7,74	
	Alum Stair Wall Handrail	112 1	0.150 mh/¥	17	42.08 /mh	797	16.80	1,882	-	-	-	-			2,58	
	Aluminum 3 Line Rati @ Basins Aluminum Hendral @ Pan Stalis	1,512 if 112 if	0.234 mh/# 0.234 mh/#	354	42.08 /mh 42.08 /mh	14,892 1,103	44.11 44.11	66,693 4,940				:			81,58 6,04	
	Alum Grate Cover .75" @ 4'x4' Sump	12 ea	0,600 mh/ea	7	42.08 /mh	303	185,04	2,220	~	-	·· -	-			2,52	3
	Anminum Hatch & Frame Over Pipe Gallery 0.33'x 6.33' 05.01 Misc Metals	12 ea 1 (s	8,002 mh/ea	96 541	39,16 /mh	3,762 22,484	5,001.00 152,709.28	60,012 152,709	-	-		-			63,77	
06.00	Wood	1.15		341		22,484	102,708.28	152,705							1/0,13	·
	Misc Nailers & Blocking	26,076 st	0.010 mh/sf	251	39.67 /mh	10,347	0.40	10,465		-		-			20,81	2
	05.00 Wood	1 ls		261		10,347	10,465.09	10,465							20,81	2
07.00	Moisture Protection	1,494 if			ж				4.00	5,977					5.97	•
	Caulking @ Masonry Wali Joints- Exterior (.09 li/sf) Caulking @ Masonry Wali Joints- Interior	1,494 #			n				4.00	5,977		-			5,97	
	07.00 Moisture Protection	1 ls							11,954.41	11,954					11,95	4
07.01	Roofing				lst				3.00	78,244						
	Membrans Roofing- 60 mil EPDM Mechanically Attached w/ 3" Insulation Aluminum Downsports, 14 ea	26,075 sf 280 if			/st ณ				3.00	78,244 5,041					78,24 5,04	1
	Scuppers	14 pa			/ea				50,01	700					70	0
	Aluminum Coping @ Roof Parapet 12" wide Roof Hatch, 4'0" x 4'0"	650 i/ 1 ea			/ff /ea				15.00 2,200,44	9,752 2,200					9,75	
	07.01 Roofing	26,076 sf							3.68	95,937					85,93	
08,00	Doors, Frames & Hardware															
	HM Single Frames-16 ga 3'x7' HM Door Leafs-3'Y7' 20 ga, hait glass	8 ea 8 ea	1,000 mh/ea 1,500 ea/mh	8	39.18 /m/h 39,18 /m/h	313 209	180.04 450,09	1,440 3,601	-	-		-			1,75	1
	Finish Hardware by Leaf- Albwance	8 00	8.002 mh/ea	64	39.18 /mh	2,508	900.18	7,201	-		-	-			. 9,70	9
	08.00 Doors, Frames & Hardware	8 ea		77		3,030	1,530,31	12,242							15,27	3
09.00	Finishes Paint HM Door Frames – primer (2) coats	8 ea			/ea				100.02	500					. 80	•
	Paint HM Doors - primer (2) coals	8 ea			/ea /ea			:	140.03	1,120		:		1	. 1,12	:0
	Paint CMU Block - block filter & (2) coat	12,093 sf			-			554	1,35	16,326					16,32	6
	Paint 12" Pipe	400 lif 77 lif	0.120 mh/if 0.140 mh/if	48 11	27,53 /mh 27,53 /mh	1,322 297	1,39 1,85	554 142		:	5.65	2,251			4,13	5
	Paint 18" Pipe	12 #	0.200 mh/if	2	27.53 (mh	88	2.06	25			6,06	73		- , -	. 15	4
	Paint 20" Pipe Paint 24" Pipe	17 ¥ 960 ¥	0.300 mh/if 0.350 mh/if	5 336	27.53 /mh	9,251	2.31 2,77	39 2,659		:	7.07	120 6,782			30	د د
	Palet 26 Pipe	665 W	0.525 mh/3	350	27.53 /mh	9,627	4.15	2,767	-		4,95	3,294		-	15,68	7
	Paint 48" Pipe	303 #	0,525 mb/f	159	27.53 /mh	4,380	5,54	1,678			4,95				7,55	
	09.00 Finishes	1 Is		911		25,083	7,863,94	7,864	18,245.93	18,246	14,494.42	14,494			65,58	<i>'</i>
10.00	Specialty Items Signs - Bullding ID				/ea				3,000.60	3,001					3,00	1
	Signs - Doots	8 ea			/eg				30.01	240	-	÷		·	. 24	0
	Fire Extinguisher CO2 10 bs 10.00 Specialty (terns	8 es 1 ls			/ea				225.05 5,041.02	1,800					1,80	
22.00	10,00 Specially Items Plumbing	1 15							5,041,02	5,041					5,04	'
22.00	Plumbing Subcontract	25,300 st			/s/				4.00	101,220					101,22	
	22.00 Plumbing	t Is							101,220,21	101,220					101,22	3
23,00		er er														
	Ventilation & Unit Heater System 23.00 HVAC	25,300 sl 25,300 sf			Ist			-	45,00 45,00	1,138,500 1,138,500	-	-			. 1,138,50 1,138,50	
31.01	23.00 HVAC Dewatering	20,000 51							43,00	1,130,500					1,146,60	
0.01	Devratering - Well Point System Installation	1 sys	240.048 ch/sys	960	159.35 /eh	38,251	7,501.50	7,592		-	33,599,22	33,599			79,35	
	Develoring - Weil Point System Monthly Rental Develoring - Weil Point System Removal	4 mo 1 sys	13,288 mh/mo 69,012 ch/svs	53 240	39,17 /mh 159,35 /ch	2,082	5,704,89	22,820	-	•	22,004.39 6,399.94	88,018 8,400		: 1	· 112,91	
	Jewatening - Weit Foint System Removal 31.01 Dewatering	1 sys	60.012 UN1 SYS	1,253	105.00 100	49,895	32,821.55	32,822	-	-	130,016,73				212,73	
31,02	Piles															
	Augered Piles CIP 18" x @ 25 ft depth, 10' oc = 329 ea (1 per 77 sf)	8,225 vf	0,002 cd/vf	921	2,146.97 /cd	35,325	35.16	289,162	-	-	2.58	21,223		· ·	345,71	
	31,02 Piles	329 ea		921		35,325	878,91	289,162			64,51	21,223			345,71	

Page 21

<File name>

EWSU Water Treatment Plant- Advanced Facility Plan

Page 44 of 105

Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment $\mathcal{Z}^{age 22}$ Page 22 of 54

AECOM

WBS Lvi 1	WBS WBS Lvi2 Lvi	3 Lvl 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
		31.03	Excavation Shoring System Design Engineer		·····		· · . · · · · · ·	-	-		15,003.00	15,003		-			- 15,003	22,770
			Structure Sheating (703' x 36' deep) Tie Backs (1 per 80 sf of Sheating, 700' x 28'= 19,600 sf)	25,200 sf 245 ea	0,001 cd/sf	1,242	2,465.38 /cd	47,851	16,00	403,280	2,377,48	582,481	0.75	18,952			470,084	717,962 884,041
			31.03 Excavation Shoring	25,200 sf		1,242		47,851	16.00	403,280	23.71	597,484	0.75	18,952			1,067,568	1,624,773
		31.10	Structure Excavation Exc Clay-Backhoe/Truck (30,336 sf x 28')	31,460 cy	499.900 cy/cd	2,266	1,410.05 /cd	88,738	-		-	-	6,58	207,133			295,872	470,103
		31.12	31.10 Structure Excavation Structure Backfill	31,460 cy		2,256		88,738					6.58	207,133			295,672	470,103
		31.12	BackFill Earth-Backhoe/Truck	4,358 cy	495,000 cy/cd	282	1,327.72 /cd	11,589			-	-	4.69				32,114	51,007
		31,13	31.12 Structure Backfill Soil Disposal	4,358 cy		282		11,689					4,69	20,425			32,114	51,007
		31.13	Spoils to Waste	27,102 cy	0.003 day/cy	2,440	1,410.06 /day	95,557	-		-	-	8.23				318,607	505,228
		31.20	31,13 Soil Disposal Structure Stone Base	27,102 cy		2,440		\$5,557					8.23	223,050			318,607	506,228
		01120	Structure Subbase Stone-Loaders/Truck - 26,400 sf x 6"	489 cy	0.003 cd/cy	59	1,609,56 <i>l</i> cd	2,385	28,28	13,829	-	-	10.02				21,112	32,559
			31.20 Structure Stone Base 00 Building & Structure Construction	489 cy 26,076 gsf		59 68,859		2,385 2,751,011	28,28 111,20	13,829 2,699,758	91,84	2,394,790	10.02 26.46				21,112 8,735,482	32,659 13,487,710
1		26	Electrical & Instrumentation															
		26,00	UG Electrical UG Electrical System	25,300 st			ist				16.00	404.881					404.881	614.494
			26.00 UG Electrical	1 ls							404,880.81	404,881					404,881	514,494
		26.01	Above Ground Electrical Building Electrical Systems	25,300 st			fst				4.00	101,200					101,200	153,593
1			Electrical Work For Equipment (5% Equipment Cost) 26,01 Above Ground Electrical	1 k 1 ls			As				109,719,00 210,919.00						109,719 210,919	166,522 320,115
		26,02	Instrumentation & Controls															
			Controls & Instrumentation Work For New Equipment (1.5 % Equipment Cost) 26.02 Instrumentation & Controls	1 ls 1 ls			/15				34,830,00 34,830,00						34,830 34,830	52,862 52,852
			26 Electrical & Instrumentation	1 1s							660,629.81	650,530					650,638	987,471
		40 40,00	Process Piping Under Ground Process Piping															-
		40,00	Trench Excav & Lay Pipe 0-4"	920 #	600.000 ¥/cd	86	2,539.31 /cd	3,894				-	1.88	1,733			5,627	8,921
			Stone Pipe Bedding DJ Pipe Push - Class 52 30	136 cy 794 #	199.900 cy/cdi 0.440 mh/¥	49 349	2,896.43 /cd 51,34 /mh	1,971	23.29 167.28	3,168 132,818	:	:	-				5,138 158,754	7,927
			DI Pipe Push - Class 52 48 Hydrostatle Testing	126 H 920 H	0.640 mh/lí 0.021 ch/lí	81 77	/mh 182,49 <i>i</i> ch	3,527	365.30 0.16	45,028	-		-	-			46,028	69,857 5,805
			40.00 Under Ground Process Piping	920 lf		642		27,325	198.00	182,151			1.88	1,733			211,220	322,476
		40.01	Above Ground Process Piping Paint & Stencil Exposed Piping <20"	489 #			-	2			10.00	4,891					4,891	7,423
1			Paint & Stencil Exposed Piping > 20" Pipe Supports	1,946 H 60 ea	4,001 mmh/ea	240	45,62 /mh	10,951	250,05	15,003	25.01	48,660		-			48,669	73,852 40,193
			Hydrostatic Testing Dresser Couplings 48*	2,435 H 12 na	0.021 ch/1/ 27,200 mh/ea	205	182,49 /ch 40,79 /mh	9,333 13,313	0.16 2,400.00	390 28,800	-	-	-			· ·	9,723 42,113	15,363 64,780
i			12" Di Wall Thimble 24" long	12 ea	1.250 ch/ea	60	182.49 /ch	2,737	430.09	5,161	-	-	301,00				11,510	17,914
ļ			24" DI Wali Thimble 24" long 30" Di Wali Thimble 24" long	24 ea 7 ea	2.501 ch/ea 3.751 ch/ea	240 105	182.49 /ch 182.49 /ch	10,951 4,792	860.17 1,100.21	20,644 7,701	-	-	602,12 900,35	6,302			46,046	71,664 29,303
			36" Di Wall Thimble 24" long 48" Di Wall Thimble 24" long	4 ea 2 ea	5.001 ch/ea 6.700 ch/ea	80 54	182.49 /ch 182.49 /ch	3,650 2,445	1,266,26	5,145 3,430	-	-	1,200.24	4,801 3,200			13,596	21,227 14,169
			Gesket/Nuls/Bolt Kit 12" Gasket/Nuls/Bolt Kit 16"	40 ea 5 ea	1.000 mh/ea 1.000 mh/ea	40 8	45.62 /mh 32.89 /mh	1,825	45.01 46.64	1,800 373	-	-	-				3,525	5,621 983
1			Gaske/Nutr/Boh Kit 18" Gaske/Nutr/Boh Kit 20"	1 sa 2 sa	1.000 mh/ea 1.000 mh/ea	1 2	32,89 /mh 32,89 /mh	33	63.09 94.52	63 189		:					96 255	148
			Gasket/Nuts/Boit Kit 24"	80 es	2.000 mh/ea	160	45.62 /mh	7,301	129.48	10,358	-						17,659	27,276
			GaskeutNuls/Boh Kit 36" GaskeutNuls/Boh Kit 48"	56 ea 26 ea	3.001 mh/¢a 1.000 mh/ea	168 26	45.62 /mh 32.89 /mh	7,665 855	225.05 425.00	12,603 11,050	-	· .					20,269	31,260 18,124
			Di Flanged Joint Pipe 12" Di Flanged Joint Pipe 18"	400 H 77 H	1.890 mh/ř 2.170 mh/ř	756 167	45.62 /mh 30.57 /mh	34,497 5,107	112,94 162.43	45,176 12,507	-	:	:	-			79,673 17,614	123,163 27,066
			Di Flanged Joint Pipe 18" Di Flanged Joint Pipe 20"	12 K 17 K	2,270 mh/ř 2,490 mh/ř		30,57 /mh 30,57 /mh	533 1,294	183,93 211,50	2,207 3,595		-		-			- 3,040 - 4,889	4,668
			Di Flanged Joint Pipe 24" Di Flanged Joint Pipe 36"	960 W	2.671 mh/f 3.471 mh/f	2,564 2,311	45.62 /mh 45.62 /mh	116,982 105,454	267.89 426.62	257,171 284,130	-	-				-	374,133	575,430 598,133
			Di Flanged Joint Pipa 48" Di Flanged 90 ell 12"	303 li 12 ea	4.370 mh/¥ 11.012 mh/ea	1,324	30.57 /mh 45.62 /mh	40,474 6,029	711.54	215,597 4,569	-	-	-	-			256,071	391,274 18,477
			DI Flanged 90 eH 16"	24 ea	12,680 mh/ea	304	30,57 /mh	9,302	599,40	14,386		-					23,688	36,556
			Di Flanged 90 ell 24" Di Flanged 90 ell 30"	28 ea 27 ea	15.733 mh/ea 17.870 mh/ea	441 482	45,62 /mh 30,57 /mh	20,098 14,748	1,458.29 2,316.60	40,832 62,548	-	-	· · ·]				60,930 77,295	93,781 118,273
1			Di Flanged 90 oli 48" Di Flanged Teo 12"	1 еа 6 еа	25.710 mmi/ea 11.012 mmi/ea	26 55	30.57 /mh 45.62 /mh	785 3,014	6,533.90 777.86	6,634 4,567		:	-				- 7,420 7,682	11,312 11,854
ł			Di Flanged Tee 16" Di Flanged Tee 24"	6 ea 26 ea	12,680 mh/ea 15,733 mh/ea	76	30,57 /m/n 45,62 /m/n	2,326	2.587.14	0 69,866		:					- 2,326	3,681
			Ci Fangad Tee 30" Di Fangad Tee 36"	7 ea 9 ea	17,674 m//ea 20,524 m//ea	125 185	45,62 /m/h 45,52 /m/h	5,708	0.00	0	-	-		-			5,708	9,634 13,338
4			Ur Franged Tee 48" Di Franged Tee 48" Di Franced Cross 48"	9 na 3 ea 6 sa	25.710 mh/ea 53.500 mh/ea	77	40.02 /m/n 30.57 /m/n 30.57 /m/n	8,427 2,358 9,812	24,816.96 26,896,80	74,451 161,381		-					- 76,809 - 171,193	116,727
1			DF Flanged Con Red 24x16"	12 aa	15.730 mh/ea	189	30,57 /mh	5,770	1,764.00	21,168		:					26,938	41,259
			Di Flanged Can Red 48x36" Di Bind Flange 48"	4 ea 2 sa	25.710 mh/ea 23.590 mh/ea	103	30,57 /m/h 30,57 /m/h	3,143 1,442	9,912.00 7,186.20	39,648 14,372		. :		:		: :	42,791 15,815	65,150 24,096
l			Chemical Piping & Accessories- ALLOWANCE 40.01 Above Ground Process Piping	1,500 LF 2,435 [f	0.240 mh/LF	360	45.62 /mh	16,427 508.855	55.01 632,50	82,516 1,540,133	- 21.99	53.551	13.29	32.386			98,944 2,134,906	151,236 3,275,645
		40.02	Valves, Meters, Etc.	-							×1.99	23,551	13,29	32,385				
1			Magnetic Flow Meter - Infine - 24" wit transmitter 12" Butterfly Valve, 125 Ib class, Cl Body, Fig. wit ElM elec actuator NEMA 4	12 ea	26,000 mh/ea 9,600 mh/ea	312 115	43.67 /mh 30.57 /mh	13,626 3,521	12,000,00 13,040,00	144,000 156,480		:				:	- 157,626	240,117 243,065
i.			16" Butterfly Valva, 125 lb cfass, Cl Body, Fig. w Eliki elec actuator NEMA 4 24" Butterfly Valva, 125 lb class, Cl Body, Fig. w Eliki elec actuator NEMA 4	24 63 34 ea	12,800 m//ea 19,204 m//ea	307 853	30,57 /mh 45,62 /mh	9,390 29,788	17,386,00 26,005.19	417,264 884,177							426,654	648,150 1,389,075
1			36" Butterfly Valve, 75 lb class, Cl Body, Fig. w ElM elec actualor NEMA 4	0 ea	28,806 mh/ea	0	45.62 /mh	13	39,008.00	390							- 403	613 '
		40.04	40.02 Valves, Meters, Etc. Hydropneymatic Piping System	1 ls		1,388		56,338	1,602,310.64	1,602,311							1,658,849	2,521,019
			Hydropneumatic Piping, Eitling & Valve Allowance		mh/bs			·····				64,000		·			.64,000	

Page 22

<Fi)e name>

97.134 Report Date: 6/11/2020 1:19 PM

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{age 23} Page 45 of 105 Page 23 of 54

Page 45 of 105

41 41.22 43 43,05 00 03.00 03.00	40.04 Hydropneumatic Piping 5 40 Process Piping Material Hundling & Process Ech Monist & Cranes Monoral Jan 28 Fisme 37 Humang 5 5 and Jb Cranes 41.22 Holists & Cranes Piocess Equipment Filter Golgement Sart-to Crawy Theor Vision Handling & Process Piocess Equipment Filter Golgement Sart-to Crawy Theor Vision Bother, Sa Instal Archrache Media 6" How Withead ge Each Basin Instal Archrache Media 6" How Withead ge Each Basin Instal Archrache Media 6" How Withead ge Each Basin Instal Sand Media, 45 - 65 mm, 24" Instal Gravy Filter Stormal Pick 43.05 Filtration Equipment 3D Filtration - Construct New Of Filtration - Construct New Of Filtration - Construct New Of Filtration - Construct New Of History 6" Half Foundation Edge Form 30" Water policy 1996 (1997) Ream Seguer Jose (1998) Filtration - Desk Materia	lpment ism 4 Ardiracile - Purchase Vity Filters Filters & Zozone Facility		1 is 3,365 if 1 ea 1 ea 1 is 1 is 24 ea 5,246 ef 6,248 ef 6,248 ef 2,2666 st 2,2666 st 1,2666 st 1,2666 st 1 is 1 is 1 is 1 is	32.000 mh/ea 0.033 mh/cf 0.033 mh/cf 0.033 mh/cf 0.033 mh/cf 0.033 mh/cf 0.033 mh/cf	14,280 32 32 25,200 206 205 1,920 825 2,285 30,643	47.77 /mh 350.77 /ch 551 46.32 /mh 46.32 /mh 231.62 /ch 46.32 /mh	592,521 1,529 1,529 1,262,758 9,557 8,540	990.94 - - 2.500.00	3,324,605 - - 60,000	54,000.00 35,04 -	54,000 117,551		34,D95 - -	120,000,00 25,000,00 145,000,00	25,000 145,000 145,000	64,000 4,055,775 120,000 26,529 146,529 146,529 1,322,758 2,194,370	6,216,27 182,12 40,36 222,48
41.22 43 43.05 00 03.00 03.00 03.03	Moiste & Cranes Moiste & Cranes Monical Lanc & Bran, 87 Humary 5 -ton Jb Crane 41 Material Handling & Process Process Equipment Filtration Equipment Filtration Equipment Filtration Equipment Instal Grevel Mode of Instal Arbanch Mede of Instal Arbanch Mede of Instal Grevel Mode of Instal Mode Mode of Instal South And JD Filtration - Construct Mode of Materia Instal Mode of Mode of Instal Materia Mode of Inst Materia Mode of Inst Instal Grevel Mode of Inst Instal Grevel Mode Mode of Inst Instal Grevel Mode of Inst Inst Fondation Materia Materia Mode of Inst Instal Grevel Mode of Inst Inst Inst Inst Instal Mode of Inst	ean quipment 8 Ardiracile - Purchase My Fultors Fillors & Ozone Facility		1 63 24 93 12,636 51 5,348 cf 24 93 25,392 cf 12,696 sf 1 15 1 15	150.000 ch/ea 0.033 mh/cf 0.033 mb/c1 16.000 ch/ea 0.033 mh/c1	32 32 25,200 206 206 1,920 825 2,285	350.77 /ch /sf 46.32 /mh 46.32 /mh 231.62 /ch 45.32 /mh	1,529 1,529 1,262,758 9,557 9,557 88,940	- - 2,500.00	- - 60,000	-				25,000,00 145,000,00	25,000 145,000 145,000	26,529 146,529 146,529 1.322,758	40,36 222,48 222,48 222,48
43 43,05 03,00 03,03	Monichal Jan 28 frame. Br 11 runwys 5-lona Ib Cares 41,22 Holista & Cranes 41,22 Holista & Cranes 41,22 Holista & Cranes Process Equipment Filter Googlement Start-to Gravy Filters - Unideratin Botes, Sa Iosaid Antraine March Iosaid Sand March 1997 Barry 1998 - Charles Construct 43,05 Filtration Equipment 43 Process Equipment 50 Filtration Equipment 43 Process Equipment 50 Process Equipment 50 Process Equipment 50 Process Process Building & Structure Construct Poundation Mat Keyway 6' Mat Foundation Edgi Form 50' Mat Foundation Mat (100 Jev) Rear-Support Device From So Process Hord Form Rear-Foundation Mat (100 Jev) Rear-Support House Form Barry Foundation 12' 400 per Compounds	quipment 8 Andracile - Purchase Vity Fultors Fillers & Ozone Facility		1 63 24 93 12,636 51 5,348 cf 24 93 25,392 cf 12,696 sf 1 15 1 15	150.000 ch/ea 0.033 mh/cf 0.033 mb/c1 16.000 ch/ea 0.033 mh/c1	32 32 25,200 206 206 1,920 825 2,285	350.77 /ch /sf 46.32 /mh 46.32 /mh 231.62 /ch 45.32 /mh	1,529 1,529 1,262,758 9,557 9,557 88,940	2,500.00	50,000	-		· · · · ·	-	25,000,00 145,000,00	25,000 145,000 145,000	26,529 146,529 146,529 1.322,758	40,36 222,48 222,48 222,48
43 43.05 03 03.00 03.03	41.22 Hojsta & Granes 41.4 Matelah Analling & Process Process Equipment Filtration Equipment George Timoru (Education Books, Sa Instal Grave) Kedis 6" Instal Admetei Medis 6" New XI Header © Each Basin Instal Borwy Filter Federamillecks 43.05 Filtration Equipment 30 Filtration - Construct New Grav Building & Structure Construct Ver Grav Building & Structure Construct Foundation Mat Keyway 6" Mat Foundation Bothead Form Reser: Foundation Mat (Sap Form 30) Mat (S	\$ Anthracile - Purchase Vity Filters / Filters & Ozone Facility		1 63 24 93 12,636 51 5,348 cf 24 93 25,392 cf 12,696 sf 1 15 1 15	150.000 ch/ea 0.033 mh/cf 0.033 mb/c1 16.000 ch/ea 0.033 mh/c1	32 32 25,200 206 206 1,920 825 2,285	350.77 /ch /sf 46.32 /mh 46.32 /mh 231.62 /ch 45.32 /mh	1,529 1,529 1,262,758 9,557 9,557 88,940	- 2,500.00	60,000	-			40 444	25,000,00 145,000,00	25,000 145,000 145,000	26,529 146,529 146,529 1.322,758	40,31 222,45 222,45 222,45
43 43.05 03.00 03.03	41 Material Handling & Process Process Europment Filtration Equipment Filtration Equipment Filtration Equipment Falls Cavety Earls Deavy Telbars - Underdain Botes, Sa Instal Grevel Media 6° Instal Activation Media 6° Instal Activation Media 6° Instal Activation Media 6° Add Schlassing Electration Add Schlassing Electration Add Schlassing Electration Add Schlassing Electration Building & Structure Construct Foundation Mat Keyway 6° Mat Fendation Mata Mat Fendation Mata (Sa) (2018) Filtration - Construct Media 97 National Schlassing 6° Hand Fendation Mat Mat Fendation Mata (Sa) (2018) Filtration - Construct Media Mat Fendation Mata (Sa) (2018) Filtration - Construct Media Mat Fendation Mata (Sa) (2018) Filtration - Construct Media Material Material (2018) Filtration - Construct Media Material (2018) Filtration - Construct Media Matarial (2018) Filtration - Construct Media Material (2018) Filtration - Construct	\$ Anthracile - Purchase Vity Filters / Filters & Ozone Facility		24 93 12,696 st 6,348 ct 2,493 ct 25,392 ct 12,696 st 1 1s 1 1s	0.033 mh/cf 0.033 mh/cf 16.000 ch/ea 0.033 mh/cf	32 25,200 206 206 1,920 825 2,285	ist 46.32 /mh 46.32 /mh 231.62 /ch 46.32 /mh	1,529 1,262,758 9,557 8,557 88,940	2,500.00	60,000	-			40 ***		145,000	146,529	222,4
43 43.05 03.00 03.03	Process Equipment Filtration Equipment Filtration Equipment Santy Filtration Equipment Filtration Equipment Santy Filtration Equipment Instal Activates Media 6" New Xir Headsing Elech Basin Instal Santy Media 6 55 mr. 24 Instal Carrier Gel Santy Filtration All Santy Filtration Equipment 33 Process Equipment 30 Printation - Construct New Grav Building 8 Santy Term Foundation Mat Keyway 6" Mat Foundation Baihaa Form Nater Foundation Mat (Santy Santy Water Jona Santy Santy Water Santy Santy Mat Foundation Mat Resonance (2019) Part Santy Santy Santy Mat Foundation Mat (Santy Santy Nater Santy Santy Mat Foundation Mat (Santy Santy Nater Santy Santy Foundation Mat (Santy Santy Mat Foundation Mat (Santy Santy Mat Foundation Mat (Santy Santy Nater Santy Santy Furp Place Mat Foundation 24 Motor Pales Mat Foundation 24 Mat Foundation Mat (Santy Santy Furp Place Mat Foundation 24 Motor Pales Mat Foundation 24 Mat Foundation Santy Furp Place Mat Foundation 24 Mat Foundation Santy Furp Place Mat Foundation 24 Motor Pales Mat Foundation 24 Mat Foundation Santy Furp Place Mat Foundation 24 Mat Foundation Place Mat Foundation	\$ Anthracile - Purchase Vity Filters / Filters & Ozone Facility		24 93 12,696 st 6,348 ct 2,493 ct 25,392 ct 12,696 st 1 1s 1 1s	0.033 mh/cf 0.033 mh/cf 16.000 ch/ea 0.033 mh/cf	25,200 206 205 1,920 825 2,285	ist 46.32 /mh 46.32 /mh 231.62 /ch 46.32 /mh	1,262,758 9,557 9,557 88,940	2,500.00	60,000				-			1.322.758	2,089,6
00 03.00 03.03	Filler Calphroni: Start-Bo Convey Filles - Unideralia Dische, So Install Grevel Media 6" install Grevel Media 6" install Grevel Filler Start, Son 2010 Install Grevel Filler Stormark-Bott 43.05 Filtration Equipment 43.05 Filtration Equipment 43.05 Filtration Equipment 43.05 Filtration Equipment 43.05 Filtration Construct New Gra- Billitolia 6. Sonstruct New Gra- Bula Foundation Mat Keyway 6" Mat Foundation Edge Form 50" Met Foundation Mat Results 6. Sonal Form So Step 4.01 Met Found Form Retar-Foundation Mat (100 Hory) Retar Suppt 1- New Found Form Retar-Foundation Mat (100 Hory) Retar Suppt 1- New Found Form Retar-Suppt 1- New Found Form Retar Foundation Mat (100 Hory) Retar Suppt 1- New Found Form Retar Suppt 1- New Found Found Form Retar Suppt 1- New Found	vity Filters / Filters & Ozone Facility		12,696 st 6,348 ct 5,348 ct 25,392 ct 12,696 st 1 is 1 is	0.033 mh/cf 0.033 mh/cf 16.000 ch/ea 0.033 mh/cf	206 205 1,920 825 2,285	ist 46.32 /mh 46.32 /mh 231.62 /ch 46.32 /mh	9,557 9,557 88,940	2,500.00	60,000				-	172.84	2,194 370	1,322,758	
00 03.00 03.03	Gravity Files - Unknown Biotes, Sa Install Gravit Wede 6" Install Arthrache Mede 6" Install Gravit Wede 6" Installing & Structure Construct Mev Guideling & Structure Construct Foundation Math Foundation Math Math Foundation Bhabes Form Rear-Foundation Math Form Strip & Ol Mar Found Form Rear-Foundation Math (Subject 7) Waterlage 6" Hat Foundation Bhabes Form Rear-Foundation Math (Subject 7) File Toward Storm Found Form Rear Seguer 1-Subject 7) File Toward Storm Foundation 24" 4000 pt Courses Jones 12"	vity Filters / Filters & Ozone Facility		12,696 st 6,348 ct 5,348 ct 25,392 ct 12,696 st 1 is 1 is	0.033 mh/cf 0.033 mh/cf 16.000 ch/ea 0.033 mh/cf	206 205 1,920 825 2,285	ist 46.32 /mh 46.32 /mh 231.62 /ch 46.32 /mh	9,557 9,557 88,940	2,500.00	60,000					172.84	2,194 375	1,322,758	
00 03.00 03.03	Isall Grevel Media 6" Isall Activation Media 6" New Xir Heading Elech Batin Isall Activated Media 6". 55 mm 24" Isall Grevy Filler Extensibilities 43 Process Equipment 30 Filtration - Construct New Grav Building 8. Structure Construct Foundation Mat Keyway 6" Mat Foundation Babbaa Form Waterlaps 6" Filt Mat Foundation Babbaa Form Nater Foundation Mat Reparts 10 Form 30" Mat Foundation Mat Reparts 10 Form 30" Mat Foundation Mat Reparts 10 Form 30" Mat Foundation Mat (102 Jac) Prime Place Mat Foundation 24" 4000 pel Courses Foundation 24"	vity Filters / Filters & Ozone Facility		6,348 cf 6,348 cf 24 ea 25,392 cf 12,696 sf 1 is 1 is	0.033 mb/cf 16.000 ch/ea 0.033 mb/cf	205 1,920 825 2,285	46.32 /m/h 231.62 /ch 46.32 /m/h	9,557 88,940						10				
00 03.00 03.03	New V/ Headar (2 Esch Baan) Instal Saw Meda (5 56 m; q2') Instal Gravly Filmer Rottmarillecks 43.05 Filtration: Equipment 43 Process Equipment 30 Filtration - Construct New Grav Building 8 Structure Construct Foundation Mat Keyway (7 Mat Foundation Kähes Form Water Foundation Mathes Form Water Foundation Mathes Form Relation - Source Construct New Foundation Mathes Form Relation - December 2018 Provide State (2 12 A) Provide State (2 12 A) Provide State (2 12 A) Provide State (2 12 A) Provide Disk	/ Fillers & Ozone Facility		24 ea 25,392 cf 12,696 sf 1 is 1 is	16,000 ch/ea 0,033 mh/cf	1,920 825 2,285	231,62 /ch 46,32 /mh	88,940				-	6.36	40,382		•	49,939	79, 79,
00 03.00 03.03	Issal Gravly Filer Restmaniblecks 43.05 Filtration: Equipment 43 Process Equipment 30 Filtration - Construct New Grav Dilliding 8 Structure Construct Foundation Mat Kayway 6 [*] Mat Foundation Kähes Form Watering 6 [*] Filt Mat Foundation Mat (Kosh Form Watering 6 [*] Filt Mat Foundation Mat (Vol Birly) Resar Support - Bioka (2128) Fundation Mat (Vol Birly) Resar Support - Bioks (2128) Fundation 24* Hold Birly Fundation 24* Hold Birly Form Place Mat Foundation 24* 4000 pci Cources in Ligid Curing Compounds 6 Mil Vapor Entering	/ Fillers & Ozone Facility		12,696 sf 1 ไร 1 ไร	0,033 m/t/cf 0,160 m/t/sf	2,285	46,32 /mh				-	-	6,36 3,914.67	93,952	-	-	49,939 182,892	290,
00 03.00 03.03	43.05 Filtration Equipment 43 Process Equipment 3D Filtration - Construct New Grav Building & Structure Construct Foundation Mat Keyway (* Mat Foundation Edge Form 30° Mat Foundation Edge Form 30° Mat Foundation Edge Form 30° Mat Foundation Edge Form 30° Mat Foundation Matheas Form Water and State Matheas Form Water State State State State State State State State Water State State State Water State	/ Fillers & Ozone Facility		1 is 1 is		20.645	46.32 /mh	38,228 105,861	1.09	13,872	-		6.36 15.66	161,527 198,803	:	:	199,755 318.535	317,5
00 03.00 03.03	3D Filtration - Construct New G Filtration - Construct New Grav Building & Structure Construct Foundation Mat Keyway 6 ⁻ Mat Foundation Edge Form 30 ^o Mat Foundation Edge Form 30 ^o Mater Foundation Edge Form Mater Foundation At (100 Rev) Patter Patter Materia Patter Foundation At (100 Rev) Patter Patter Materia Batter Foundation At (100 Rev) Patter Patter Materia Patter Pa	/ Fillers & Ozone Facility						1,514,900	73,871,85	73,872	-		535,045.63	535,046	2,194,370.37		4,318,188	6,691,3
00 03.00 03.03	Filtnikin - Construct New Grav Building & Structure Construct Foundation Mat Keyway (F Mat Foundation Edge Form 30° Mat Foundation Edge Form 30° Mat Foundation Stabilities of Mat Water London Stabilities of Mat Water London Stabilities of Mat Water Stabilities of Mat Rest Found These Mat Foundation 24° Mat Mat Mat Mat Mat Mat Stabilities of Mat Mat Mat Mat Mat Mat Mat Mat Mat Mat	/ Fillers & Ozone Facility		1 IS		30,643		1,514,9DD	73,871.65	73,872			535,045.63	535,046	2,194,370.37			6,691,3
00 03.00 03.03 03.03	Building & Structure Construct Foundation Mat Keywey (5 Mat Foundation Edge Form 30° Materia of Found Form Stop A Col Mat Found Form Stop A Col Mat Found Form Patter Foundation At (100 BH/) Relar September At (100 BH/) Relar September At (100 BH/) Relar Materia At September Party Pitce Mat Foundation 24° 4000 pci Coursols Legid Curing Compounds & Mil Vapor Emaine					113,814		4,859,961	6,298,234.04	6,298,234	3,162,970.32	3,162,970	1,259,068.51	1,259,069	2,339,370.37	2,339,370	17,919,604	27,605,6
03.03	Kayawy 5" Mat Foundation Edge Form 30" Mat Foundation Bulbhad Form Waterstop 6" Fish Strip 2. Of Mat Found Form Rebar Foundation Mat (100 Jery) Rebar Support - bricks (12/st) Freish - Hart Towel Pump Place Mat Foundation 24" 4000 psi Correste Liquid Caring Corrected & Mil Vapor Barier																	
03.03	Mai Foundation Edge Form 30° Mai Foundation Bibbead Form Waterstop 6° Flat Strip & O Mar Found, Form Rebar- Foundation Mai (100 J/cy) Rebar Support - Victs (12/51) Freish - Hart Towel Pump Place Mai Foundation 24° 4000 pai Counteste Liquid Curting Compounds & Mil Vapor Barrier				0.050 mh/¥						,							
03.03	Waterstop 6" Flat Strip & Ol Mar Found. Form Rebar: Foundation Mai (100 #/or) Rebar Support - bricks (1225) Frieldh-Hord Trowel Pump Piece Mai Foundation 24" 4000 pel Counceste Liquid Curing Compounds 6 Mill. Vapor Batrier			2,842 # 1,628 sł	0.350 mh/sf	142 570 383	39,49 /mh 39,49 /mh	5,512 22,505	0.67 1.31	1,910 2,137	-			-		2	7,523 24,542	11, 38,
03.03 03.04	Strip 2: Ol Mat Found, Form Rebar-Foundlion Mat (100 #/or) Rebar Support - bricks (:12/s1) Frisish- Hard Trowel Pump Pitese Mat Foundation 24" 4000 pei Conceste Liquid Curing Compounds 5 Mil Vapor Bartier			1,095 sf 2,842 #	0.350 mh/st 0.110 mh/¥	383 313	39,49 /m/h 39,18 /m/h	15,134	1.52	1,667		-				-	16,801 18,219	25,
03.03	Rebar Support - bricks (, 12/sf) Finish - Hard Trowel Pump Pitzce Mat Foundation 24* 4000 psi Concrete Liquid Curing Compounds 5 Mil, Vapor Barrier			2,723 st	0.005 mh/st	14	39,17 /mh	533	0.03	82		2	-	-	-		615	
03.03 03.04	Pump Place Mat Foundation 24" 4000 pei Concrete Liquid Curing Compounds 6 Mil, Vapor Barrier			122 M 3,147 ea	28,006 mh/tn 0.002 mh/ea	3,417	43,53 /mh 43,53 /mh	148,718 274	997.70 0.26	121,719 826			-	2	-		270,437 1,100	420, 1,
03.03	4000 psi Concrete Liquid Cuting Compounds 6 Mil, Vapor Bastier			26,221 st 2,428 cy	0.023 mh/sf 0.500 mh/cy	603 1,214	39,17 /m/n 41,39 /m/n	23,525 50,246	· · · ·	-	.	-		11,140		-	23,626	37,
03.03	6 Mil, Vapor Barrier			2,428 cy			/cy		142.00	344,776		:	4,59	11,140		1	344,776	523.
03,03				28,944 st 28,800 st	0.003 mh/sf 0.002 mh/sf	87 59	39,17 /mh 43,53 /mh	3,402	0.06 0.05	1,702	1	:		:		1	5,104 4,020	7, 6,
03.04	03,00 Foundation Mat			2,428 cy		6,806		284,807	198.64	482,302			4.59	11,140			778,249	1,200,
03.04	Columns Form Rectangle Columns 15			3,780 si	0,165 mh/sf	624	39,49 /mh	24,629	1.60	6,034							30.663	43.
03.04	Chamler			2,520 8	0.015 mh/¥	38	39,49 /mh	1,493	0.57	1,429	· · · · ·			-		-	2,922	4,
03.04	Strip & Oil Column Form Superplasticizers @ Columns			3,760 si 53 cy	0,005 mh/sf	19	39,17 /mh /cv	740	D.03 8.40	113 445			1	-	· · · ·	:	854 445	1.
03.04	Column Rebar (120 #/cy) Finish- Float			3 tn 95 s1	20.004 mh/bn 0.017 mh/sf	64	43.53 Inti	2,769	997.70	3,173	-	-	-	-	-		5,942	9,
03.04	Pump Place Columns 42 ea			53 cy	0,017 mn/st 1,600 mh/cy	2 85	39,17 /m/h 41,39 /m/h	\$3 3,510	-	-	-		7.49	397	5		53 3,908	5,
03.04	4000 psi Concrete Grind/Patch Columns			53 cy 3,780 sf	0.013 mh/sf	49	/cy 39.17 /mh	1,925	142.00	7,526	1	-		-	:	-	7,626 2,038	11, 3,
03.04	Rub Columns			3,780 st	0.065 mh/st	246	39.17 /mh	9,623	0.06	227	-	-					9,850	15,
	Liquid Curing Compounds 03.03 Columns			3,780 st 53 cV	0.003 mh/s/	11 1,137	39.17 /mh	444 45,197	D.05 363.83	222 19,283	-	-	- 7,49	397		-	667 64,877	1, 101,
	Walls																	
	Keyway 6" Verticel Wali Kayway 6°			7,106 H 1,415 N	0,050 mh/¥ 0,110 mh/¥	355 156	39,49 /mh 39,49 /mh	14,033 6,148	0,67 0,67	4,776 951			-	:		-	18,809 7,099	29,4 11,1
	Panel Form System 10' h Panel Form System 20' & 25' h			1,109 st	0.150 mh /sf	166 21,283	39.49 /mh	6,570	1.84	2,038		-		-	-		8,608	13,
	Waterstop 6" Flat			111,995 sf 8,521 ⊮	0,190 m//s/ 0,110 m//j/	937	39,49 /mh 39,18 /mh	840,435 36,727	2.10	205,832 17,898			1	:	:		1,046,267 54,625	1,642, 85,
	Strip & Oil Wall Forms Superplasticizers & Walls			113,104 st 3,094 cy	0.005 mh/s1	566	39.17 /m/h /cy	22,154	0.03	3,394	-		-		-	in e	25,548 25,993	40. 39,
	Rebar- Walls (125 #/cy)			194 In	15.003 mh/to	2,911	43.53 /mh	126,689	997.70	193,554				-	:		320,243	494;
	Finish-Top of Wall Pump Place Walls 12"			3,483 st 430 cy	0.008 m/t/sf 1.150 m/t/cy	28 495	39,17 /m/h 41,39 /m/h	1,092 20,470	:	-			-	2.861		-	1,092 23.331	1, 35.1
	Pump Place Walls 18" Pump Place Walls 24"			2,002 cy 662 cy	1.150 mh/cy 1,150 mh/cy	2,303 761	41.39 /mh 41.39 /mh	95,309 31,515	-	•	-	-	6.65 6.65	13,312 4,404			108,621 35,919	172, 56,
	4000 psi Concrete			3,094 cy			/cy		142.00	439,348	-	:		- 404			439,348	666,
	Grind/Patch Walls Rub Walls			113,104 st 96,854 st	0,013 mmh/s/ 0.058 mmh/s/	1,471 5,618	39.17 /mh 39.17 /mh	57,601 220,022	0,03 0.06	3,394 5,811	1	-	-	:	:	-	60,995 225,833	96, 357,
	Liquid Curing Compounds 03.04 Walls			112 sf 3,094 cy	0.002 mh/sf	0 37,049	39.17 /mh	9 1,476,773	0.06 291.85	7 902,995	-			-	-	-	15	
	03.04 Walls Suspended Flat Slab			3'0ad ch		37,049		1,478,773	291.85	902,995			6.65	20,577			2,402,345	3,743,
	Form Suspended Slab. Bottom Slab Edge Form 12*			17,177 sł 4,181 sł	0,180 mh/s/ 0,250 mh/s/	3,092	39.49 /mh	122,115	2.18	37,522				-	-	-	159,638	250,
	Strip & Oil Suspended Stab Forms			21,358 st	0,250 mh/sf 0,005 mh/sf	1,045	39,49 /mh 39,17 /mh	41,283 4,183	5.17 0.04	21,620 876			:	:	-		62,903 5,059	7;
	Superplasticizars Rebar- Suspended Stab (225 #/cy)			647 cy 73 tn	20.004 mh/ta	1,460	- 43.53 /mh	63,562	8.40 997,70	5,435 72,832	-			-	-	-	5,435 136,394	8, 211,
	Finish-Hard Trowel			17,177 st	0.030 mh/st	515	39.17 /mh	20,187			-	-		-	-	:	20,187	31,
	Pump Place Suspended Slab 12" 4000 psi Concrete			647 cy 647 cy	1.800 mml/cy	1,165	41.39 /mh	48,211	142.00	91,874			6,65	4,304		2	52,516 91,874	83,1 139,4
	Liquid Curing Compounds 03.06 Suspended Flat Slab			0 st 647 cy	0,003 mh/s/	0 7.385	39,17 /mh	299.543	1.00 355,73	230,159			- 6,65	4,304	-	-	0	
03.07	Suspended Beams			-				X83'943	300,73	Z30,159			0,65	4,304			534,807	830,
	Beam Side Forms Beam Bottom Forms			10,878 sf 3,146 sf	0.210 m//s/ 0.210 m//s/	2,285 661	39.49 /mth 39.49 /mth	90,224 26,093	2.21	23,991 6,938	-	-	-	-	-	•	114,214	179. 51,1
	Chamfer			4,194 If	0.015 mh/X	63	39.49 /mh	2,485	2.21 0.57	2,378		:	·····	-		:	33,032 4,863	7.
	Strip & Oil Beam Forms Superplasticizars @ Beams			14,024 sf 302 cy	0,005 mh/sf	70	39.17 /mh	2,747	0.03	421 2,537		-	-	:	:	-	3,168 2,537	4, 3,
	Rebar- Beams (250 #/cy)			38 tn	15,003 mh/tn	570	43,53 /mh	24,815	997.70	37,913		-	-	-	-		62,728	98,
	Finish-Top of Beam Pump Place Beams @ Roof			3,145 sf 302 cy	0.008 mil/sf 2.001 mil/cy	25	39.17 /m/h 41,39 /m/h	986 25,011	1	:	-	:	14,42	4,355	-	. • I	986 29,367	1. 46,
				302 cy 14,024 sf	0,013 m/sf	182	icy 39.17 imh	7,142	142.00 0.03	42,884 421	-	-	-		-	-	42,884	65,0 11,1
	4000 psl Concrete Grind/Patch Beams			14,024 st 14,024 st 14,024 st	0,013 mh/st 0,085 mh/st 0,002 mh/st	182	39,17 /m/h 39,17 /m/h	_ 7,142 46,689	0,03 0.06	425 841							7,583 47,530	

BS WBS A12 LVI3		Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Arnount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Arnount
	03.09	03.07 Suspended Beams Pan Stair Fill	302 cy		5,681		227,290	394.53	119,149			14.42	4,355			350,795	547,5
	20100	Finish Stairs Pump Piace Pan Stair Concrete	415 sf 6 cγ	0.055 mh/sf 3.801 mh/cy	23 18	39.17 /mh 41.39 /mh	894 745	:	:	2		9.17	55			- 894	1.4 1.2 1,2
		3000 psi Concrete 03,09 Part Stair Fill	6 cy 6 cy		41	-	1,639	136,00 138,00	828 828	•	•	9,17	55	·	· ·	- 828 2,522	
	03,20	Precast Planks Precast follow Core Roof Planks 4" wide x 10" 03/00 Precast Planks	25,298 sf 25,298 sf	0,020 m/n/st	506 506	42.24 Imb	21,376	8,80 8,80	222,657	-		0.35				- 252,945 252,945	
	04.00	Masonry 5" CMU + Ricid Insulation Backton To Brick, 20" h	12,093 sł			/st	21,010		-	18.00	217,717		-			- 217,717	330
		8" CALI's Régid Insulation Backay To Brick @ Parpet 3.57" h Preset Cap I6"	2,576 sf 644 ll 16,601 sf 16,501 sf				· ··· <u>·</u>	-	-	18.00 20.00 9.00 25.69	45,358 12,883 149,439 426,407					- 46,368 - 12,883 - 149,439 426,407	19. 228.
	05.01	Metal Stairs Concrete Pans Metal Stair Landing Concrete Pans	132 rs 8 ea	0,067 mml/rs 4,000 mml/ea	9 32	42.08 /mh 42.08 /mh	370 1,347	80,02 800,00	10,552 \$,400	:	:	-	1			- 10,933 - 7,747	1
		Alum Stair Wall Handrail Aluminum 3 Line Rali @ Basins	112 H 1,512 H	0.150 mh/¥ 0.234 mh/¥	17 354	42.08 /mh 42.08 /mh	707 14,892	16,80 44,11	1,882 66,693		:	······································	:			- 2,559 - 81,585	12
		Aluminum Hundrail @ Pan Stains Alum Grate Cover .75° @ 4'x4' Sump	112 l/ 12 ea	0,234 mh/¥ 0,600 mh/ea	26 7	42,08 imh 42,08 imh	1,103 303	44,11 185.04	4,940 2,220	:	:	·· · · :				- 6,043 - 2,523	
		Aleminum Hatch & Frame Over Pipe Gallery 6.33' x 6.33' 06.01 Misc Metals	12 na 1 Is	6.002 mb/ea	96 541	39.18 /mh	3,762 22,484	5,001.00 152,709.28	60,012 152,709	-		-	•		• •	- 63,774 175,193	
	06,00	Wood Misc Nailers & Blocking 06.00 Wood	26,076 st 1 ls	0.010 mh/s/	261 261	39.67 /mh	10,347 10,347	0.40 10,465.09	10,465 10,455		-	-	÷			- 20,812 20,812	
	07.00	Moisture Protection Calking @ Masony Wall Joints- Exterior (.09 l/sf)	1,494 li		201	a.	10,347	10,480.05	10,465	4.00	5,977		_			- 5,977	
	07.01	Caulting @ Masonry Wall Joints-Interior 07.00 Moisture Protection Roofing	1,494 lf 1 [s			if				4.00 11,954.41	5,977 11,954	-	-			- 5,977 11,954	
	07.01	Membrane Reofing- 60 mil EPDM Mechanically Attached w/ 3" Insulation	26,076 st 280 W			ist IX				3.00 18.00	78,244 5,041					78,244 5,041	i 11
		Scuppers Aurinum Coping @ Roof Parapet 12" wide	14 es 650 lí			lea N				50,01	700 9,752					700 9.752	
		Roof Hatch 40" x 40" 07.01 Roofing	1 ea 26,075 sf			lea				2,200,44 3,68	2,200 95,937					2,200 95,937	
		Doors, Frames & Hardware HM Single Frames - 16 ga 3%7'	8 ea	1.000 mmh/ea	8	39,18 /mh	313	180.04	1.440	5.00	00,007					- 1.754	
		HM Single Franks - 16 ga 37X/ HM Door Leals - 37X? 20 ga, half glass Finish Hartwarte by Leal-Albuvance	8 ea 8 ea	1,000 mm/ea 1,500 mm/ea 8,902 mm/ea	8 5 64	39,18 /mm 39,18 /mm 39,18 /mm	209 2,508	180,04 450,09 900,18	1,440 3,601 7,205	-	-	-	-			- 1,/54 - 3,810 - 9,709	
	09.00	08.00 Doors, Frames & Hardware Finishes	8 ea		77		3,030	1,530.31	12,242							15,273	
		Paint HM Door Finanes - primar (2) coats Paint HM Doors - primar (2) coats Paint CMU Bback - back (file (2) coats	8 ea 8 ea 12.093 si			lea lea		-	:	10D.02 140.03 1.35	800 1,120 16,328	:	-			- 800 - 1,120 - 16,326	
	10.00	Parti UNO DECE - DECHART S (2) COST 09,00 Frishes Specialty Lens	12,093 Si 1 (s			-	•	-	-	18,245,93	18,246	-	-		-	- 16,325 18,246	
	10.00	Signs - Building ID Signs - Oors	iea 8 ea			/ea /oa				3,000,60 30,01	3,001					- 3,001	
		File Extinguisher CO2 10 lbs 10.00 Specialty Items	8 ma 1 ls			lea				225.05 5,041.02	1,800 5,041					1,800	
	22.00	Plumbing Plumbing Plumbing	25.300 sf			151				4.00	101.220					101.220	
	23.00	22,00 Plumbing HVAC	25,300 sr 1 ts			751				101,220.21	101,220					101,220	
	23.00	MVAC Ventilation & Unit Heater System 23.00 HVAC	25,300 st 25,300 st			/st		-		45.00 45.00	1,138,500 1,138,500	-	•			- 1,138,500	
	31.01	Dewatering Devatering - Well Point System Installation	1 sys	240.048 ch/sys	960	159,35 /ch	38,251	7,501,50	7,502			33,599,22	33,599			- 79,352	
		Levalering - Well Point System Koolibly Rental Davalering - Well Point System Kooliby Rental Davatering - Well Point System Removal	4 mo 1 sys	13.268 mh/mo 60,012 ch/sys	53 240	39.17 /mh 159.35 /ch	2,082	5,704,89	22,820	-	:	22,004,39 8,399,94	88,018			- 112,919	51
		31,01 Dewatering	1 Is	00.012 001 393	1,253	100,00 100	49,855	32,821.55	32,822			130,018.73				212,734	
	31.02	Piles Augered Piles CliP 18" x @ 25 ft depth, 10" cc = 329 ea (1 per 77 sf) 31,02 Piles	8,225 vf 329 ea	0.002 cd/v1	921 921	2,146.97 /cd	35,325	35.16 878,91	289,162 289,162	-	•	2.58 64,51				- 345,710 345,710	
	31.03	Excavation Shoring Sharing System Design Engineer	325 Ea		921		33,323	0/0,91	203,162	15,003.00	15,003	04,01	21,223			- 15.003	
		Sharing System Lessing Engineer Structure Sheeting (700' x 36' deep) The Backs (1 per 80 st of Sheeting, 700' x 26'= 19.600 st)	25,200 sf 245 ea	0.001 cd/s/	1,242	2,465.38 /cd	47,851	16.00	403,280	2,377.48	582,481	0.75	18,952			- 470,084 - 582,481	7
		31.03 Excavation Shoring	25,200 sf		1,242		47,851	16.00	403,280	23.71	597,484	D.75	18,952			1,067,568	
	31.10	Structure Excavation Evo Cby-Backhoe/Touk (0.036 of x 28') 31 10 Structure Excavation	31,460 cy 31,460 cy	499,900 cy/cd	2,266	1,410,06 /cd	88,738 88,738		-	-	-	6,58 6.58			-	- 295,872 295,872	
	31.12	ST, IO STRUCTURE EXCAVATION Structure Backfill Backfill Cath-Backhow/Fruck	4,358 cy	495,000 cy/cd	2,200	1,327.72 /cd	11,689					4.69			_	- 32,114	
		31.12 Structure Backfill	4,358 cy	485,000 69760	282	1,521.12 Rd	11,685					4.69				32,114	
	31.13	Soil Disposal Spais to Waste	27,102 cy	0.003 day/cy	2,440	1.410.05 /day	95,557	-			-	8.23			. ·	- 318,607	
	31.20	31,13 Soll Disposal Structure Stone Base	27,102 cy		2,440		95,557					8.23				- 21.112	
		Situcture Subbase Sione-Loaders/Truck - 25,400 sl x 5* 31,20 Structure Stone Base	489 cy 489 cy	0.003 cd/cy	59 59	1,609.56 /cd	2,385	28.28 28.28		-		10.02 10.02	4,898		-	21,112	
	6	00 Building & Structure Construction Electrical & Instrumentation	26,076 gsf		67,948		2,725,928	110,90	2,891,894	91.84	2,394,790	25.90	675,429			8,688,041	13,4

AECOM

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Page 46 of 105

Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{age 24} Page 24 of 54

Report Date: 6/11/2020 1:19 PM

Page 24

<Fije name>

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2²⁹ ²⁵ Page 25 of 54

WBS WBS Lvi 3 Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	
26.00	UG Electrical UG Electrical System 26.00 UG Electrical	25,300 sf			/si				16,00	404,881					404,981	
26.01	Above Ground Electrical Buldag Electrical Systems	25,300 st			ist				4,00	101,200					404,981	
	Electrical Work For Equipment (3% Equipment Cost) 26.01 Above Ground Electrical	1 Is			/b		-		65,620.00	65,820 167,020					65,820 167,020) ·
26.02	Instrumentation & Controls Controls & Instrumentation Work For New Equipment (1 % Equipment Cost)	1 ls			/k				21,944.00	21,944					21,944	
	26.02 Instrumentation & Controls 26 Electrical & Instrumentation	1 is							593,844,81	21,944 593,845					21,944 593,845	
40 40.00	Process Piping Under Ground Process Piping															
	Trench Excave & Lay Pipe 0-4" Stone Pipe Botching DJ Pipe Push - Class \$2.30	920 # 136 cy 794 #	600,000 11/cd 199,900 cy/cd	85 49 349	2,539.31 /cd 2,896.43 /cd 51,34 /mh	3,894 1,971 17,836	23.29 167.28	3,168 132,818	-	2	. 1.88	1,733		: :	5,627 5,138	8
	DI Mpie Musin - Class 52:30 DI Pipe Push - Class 52:48 Hvdrostatic Testina	794 il 126 il 920 il	0,440 mh/¥ 0,640 mh/¥ 0.021 ch/¥	349 81 77	51,34 /m/n /m/n 182,49 /ch	3,527	167,28 365.30 0.16	132,818 46,028 147	-		-				150,754 46,028 3,674	8
40.01	40.00 Under Ground Process Piping Above Ground Process Piping	920 If		642		27,326	198.00	182,161			1.88	1,733			211,220	
	Paint & Stendl Exposed Piping <20" Paint & Stendl Exposed Piping ≥20"	489 lí 1,946 lí			:	:	:	:	10.00 25,01	4,891	:	-			4,891 48,660	
	Pipe Supports Hydrostatic Testing Dresser Couplings 48*	60 ea 2,435 li 12 ea	4.001 mh/ea 0.021 ch/l/ 27.200 mh/ea	240 205 326	45,62 /mh 182,49 /ch 40,79 /mh	10,951 9,333 13,313	250.05 0.16 2.400.00	15,003 390 28,800	-			-			25,954 9,723	3
	24" DI Wall Thimble 24" long 24" DI Wall Thimble 24" long	12 aa 24 ea	1.250 ch/ea 2,501 ch/ea	50 240	182.49 /ch 182.49 /ch	2,737	430.09 850.17	5,161 20,644	-	-	301.00 602.12	3,612 14,451			42,113 11,810 46,045)
	30" DJ Wall Thimble 24" long 36" DJ Wall Thimble 24" long	7 es 4 es	3.751 ch/ea 5.001 ch/ea	105 80	182.49 /ch 182.49 /ch	4,792 3,650	1,100.21 1,286.26	7,701 5,145	:		900.35 1,200.24	8,302 4,801		: :	18,795 13,595	5
	48° CV Wai Thimbe 24° bog Gasket/Nivit/Boh Kit 12° Gasket/Nivit/Boh Kit 16°	2 es 40 es 8 es	6,700 ch/ea 1.000 mh/ea 1.000 mh/ea	54 40	182,49 /ch 45.62 /mh 32,89 /mh	2,445 1,825 263	1,715,00 45,01 46,64	3,430 1,800 373			1,600.00	3,200			9,075 3,625 636	5
	GeskevNuts/Bott Kit 18" GeskevNuts/Bott Kit 20"	1 ea 2 ea	1,000 mh/ea 1,000 mh/ea	1 2	32.89 /mh 32.89 /mh	33 65	63,09 94,52	63 189	-		-	:			96 255	5
	Gasket/Nuts/Bolt Kit 24" Gasket/Nuts/Bolt Kit 38"	80 ea 56 ea	2.000 mh/ea 3.001 mh/ea	160 168	45,62 /mh 45,62 /mh	7,301 7,865	129,48 225,05	10,358 12,603		:		:			17,659 20,269	
	GaskedNuts/Bot Kit 48" D/ Ebragd John Pipe 12" Of Ebragd Joint Pipe 12"	26 ea 400 ir 77 ir	1,000 m/h/ea 1,890 m/h/# 2,170 m/h/#	26 756 167	32,89 imh 45,62 imh 30,67 imh	855 34,497 5,107	425,00 112,94 162,43	11,050 45,176 12,507	-	-					11,905 79,673 17,614	3
	Di Flanged Joint Pipe 18" Di Flanged Joint Pipe 20"	12 H 17 H	2.270 mh/b 2.490 mh/b	27 42	30,57 /mh 30,57 /mh	833 1,294	183.93 211.50	2,207 3,595				-			3,040 4,889	9
	Di Flanged Joint Pipe 24" Di Flanged Joint Pipe 36" Di Flanged Joint Pipe 46"	960 W 666 W 303 W	2.671 mh/∦ 3.471 mh/∦ 4.370 mh/∦	2,564 2,311 1,324	45.62 /mh 45.62 /mh 30.57 /mh	116,962 105,454 40,474	267,89 426,62 711,54	257,171 284,130 215,597	-			-		: ;	374,133 389,585	3
	UF Fangled 30 eff 12" Di Flanged 30 eff 12" Di Flanged 30 eff 16"	303 8 .12 ea 24 es	4.3/0 m//ii 1.1,012 m//ea 12.680 m//ea	1,324 132 304	45.62 /mh 30.57 /mh	40,474 6,029 9,302	380.76 599,40	215,597 4,569 14,386				-			256,071 10,598 23,688	в
	Di Flanged 90 ell 24" Di Flanged 90 ell 30"	28 eā 27 ea	15.733 mil/ea 17.870 mil/ea	441 482	45.62 /mh 30.57 /mh	20,098 14,748	1,458.29 2,316,60	40,832 62,548	· · · · :			-		: ;	60,930 77,296	6 6
	DF Filingad 90 ef 44" DF Falanged Tee 12' DF Falanged Tee 16"	1 ва 5 ша 6 ез	25.710 mh/ea 11.012 mh/ea 12,680 mh/ea	26 68 76	30.57 /m/n 45.62 /m/n 30.57 /m/n	786 3,014 2,326	6,633,90 777,86 0.00	5,634 4,667	-		-	-		:	7,420 7,682 2,326	2
	D! Flanged Tee 24" D! Flanged Tee 30"	26 ea 7 ea	15,733 mh/ea 17,874 mh/ea	409 125	45.62 /mh 45,62 /mh	18,662 5,708	2,587.14	388,63 0							88,528 5,708	8 8
	Di Flanged Teo 36" Di Flanged Teo 48" Di Flanged Cross 48"	9 еа 3 еа 6 еа	20,524 mh/ea 25,710 mh/ea 53,500 mh/ea	185 77 321	45,62 /mh 30,67 /mh 30,57 /mh	8,427 2,358 9,812	0.00 24,816.96 26,896,90	0 74,451 161,381	-		-	-			8,427 76,809 171,193	9
	Di Flanged Con Red 24/16"	12 ea 4 ea	15.730 m/a /ea 25,710 m/a /ea	189 103	30.57 /mm 30.57 /mm 30,57 /mm	5,770 3,143	1,764.00 9,912,00	21,168 39,548			-				26,938	в
	DI Blnd Flange 46" Chernical Piping & Accessories- ALLOWANCE	2 ea 1,500 LF	23.590 mh/ea 0,240 mh/LF	47 360	30.57 /mh 45,62 /mh	1,442 16,427	7,186.20 55.01	14,372 82,516				:		: :	15,815 98,944	4
40.02	40.01 Above Ground Process Piping Valves, Meters, Etc.	2,435 lf		12,250		508,856	63 <u>2</u> .50	1,540,133	21.99	53,551	13.29	32,368			2,134,906	
	Magnebic Fbow Meter-Indina - 24''wit transmitter 12" Butterfly Valve, 125 biclass, CIBody, Fbg, wi ElMielec actuator NEMA 4 16" Butterfly Valve, 125 biclass, CIBody, Fbg, wi ElMielec actuator NEMA 4	12 ea 12 ea 24 ea	26.000 mh/ea 9,600 mh/ea 12,800 mh/ea	312 115 307	43.67 /mh 30,57 /mh 30,57 /mh	13,626 3,521 9,390	12,000.00 13,040.00 17,386.00	144,000 156,480 417,264			-	-			157,626 160,001 428,654	1
	24° Butterfly Valva, 125 Diclass, Cl Body, Fig. w/ ElM elec actuator NEMA 4 36° Butterfly Valva, 75 Diclass, Cl Body, Fig. w/ ElM elec actuator NEMA 4	34 ea D ea	19,204 m//ea 28,806 m//ea	853 0	45,62 /mh 45,62 /mh	29,788 13	26,005,19 39,008.00	884,177	:						913,965 403	5
40,04	40.02 Valves, Meters, Etc. Hydropneumatic Piping System			1,388		56,338	1,602,310,64	1,602,311							1,658,649	
	Hydropneumatic Piping, Fitting & Valve Allowance 40.04 Hydropneumatic Piping System	i hs 1 is	mh / Is		45,62 /mh				64,000,00 64,000.00	64,000 64,000					64,000 64,000	D
41	40 Process Piping Material Handling & Process Equipment	3,355 If		14,280		592,521	990.94	3,324,605	35.04	117,551	10.16	34,098			4,068,775	;
41.22	Hoists & Cranes Monorall 3 ton 26 ft span, 87 ft runway beam	1 ea						-				· · · ·	120,000.0	120,000	120,000	a)
	5 -ton Jib Crane 41,22 Hoists & Cranes	1 ea	32,090 mil/ea	32 32	47.77 /mh	1,529		-	-				25,000.0	145,000	26,529 146,529	9.
43	41 Material Handling & Process Equipment Process Equipment	1 is		32		1,529							145,000.0	145,000	146,529	
43,05	Filtration Equipment Filler Equipment Start-Up	24 ea	150.000 ch/ea	25,200	350.77 /ch	1,262,758	2,500.00	60,000		· · · ·					1,322,758	
	Gravity Filters - Underdrain Blocks, Sand & Antwacite - Purchase Install Gravel Media 6° Install Rativacita Media 6°	12,696 sf 6,348 cf 6,348 cf	0.033 mmh/cf 0.033 mmh/cf	206	/si 46.32 /mh 46.37 /mh	9,557 9,557			2		6.36 6.36	40,382	172,8	2,194,370	2,194,370 49,939 49,939	9
	Naw Air Header @ Each Basin Install Sand Media .4555 mm, 24"	24 ea 25,392 of	0,033 mm/ct 16.000 ch/ea 0.033 mm/ct	1,920	46,32 /min 231.62 /ch 46.32 /mh	88,940 38,228					6.36 3,914,67 6.36	40,382 93,952 161,527			182,892	2
	43.05 Filtration Equipment	12,696 st	0,180 mh/sf	2,285 30,643	46.32 /mh	105,861 1,514,900	1.09	13,872 73,872	-		15.66	198,803		2,194,370	318,535 4,318,188	5
	43 Process Equipment Ozone Facility	t ls		30,643		1,514,980	73,871.65	73,872			535,045.63		2,194,370.3		4,318,188	

Page 25

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 OUCC DR 17-6 Attachment $\mathcal{P}^{age 26}$ Page 48 of 105 Page 26 of 54

Page 48 of 105

WBS WBS WBS LVI2 LVI3 LVI4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Materiai Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
03.03	Columns Form Rectangle Columns 12" h Chanfer Strip & Ol (Column Form	1,636 sf 1,152 if 1,536 sl	0,165 mh/sf 0,015 mh/lf 0,005 mh/sf	253 17 8	39,49 /mh 39,49 /mh 39,17 /mh	10,008 682 301	1.60 0.57 0.03	2,452 653 46	-	-	-				12,450 1,336 347	19,5 2,0
	Superplastifictars (§) Columns Column Rebar (120 W/cy) Finish-Fibat	19 oy 1 tri 42 sf	20.004 mh/tn 0,017 mh/sl	23	loy 43,53 imh 39,17 imh	993 28	8.40 	160 1,137		-		-			031 2,130 28	2 3,5
	Pump Place Columns 24 ea 4000 psi Concrete	19 cy 19 cv	1,600 mh/cy	20	41.39 /mh	1,258	142,00	2,698			7.49	142			1,401	2.3
	Grind/Patch Columns Rub Columns	1,536 sl 1,536 sl	0.013 mh/si 0,065 mh/si	20 100	39.17 /mh 39.17 /mh	782	0.03 0.05	46 92	:	-	:	-		: :	828 4,003	1,3 6,3
	Liquid Curling Compounds 03,03 Columns	1,536 st 19 cy	0.003 mh/sf	5 457	39,17 /mh	181 18,143	0,06 388,16	90 7,375	-	-	7.49	- 142			271 25,661	40,-
03.05	Slab Dri Grade Slab Edge Form 26"	715 sf	0,350 mh/sf	250	39,49 /mh	9,884	1.31	939	-	-		-			10,822	17,0
	Strip & Off Form Rebar-SOG (125 #/cy)	715 sf 12 tn	0.005 mh/sf 14.003 mh/ln	4 168	39.17 /mh 43.53 /mh	140 7,314	0.03 997.70	21 11,972	-	:		-		: ;	162 19,286	29,
	Mesh Support - bricks (.12/st) Finish-Hard Trowel	689 ea 5,740 sf	0.002 mh/ea 0.015 mh/sf	1	43.53 /mh 39.17 /mh	60 3,373	0,26	181	:	:	3.67	-			241 3,373	5,
	Pump Place Stab on Grade 8" Pump Place Thickened Stab 28" x 20" 4000 csi Concrete	. 142 cy 45 cy 187 cy	0.500 mh/cy 0.500 mh/cy	71 23	41,39 /mmh 41,39 /mmh	2,939 931	142,00	26,554	- 1 i - 1	:	3,67	521 165			3,460 1,097 26,554	5 1 40
	4000 psi Concrete Saw Cut S-O-G (J06/s/) Liquid Cuting Compounds	187 cy 459 li 6,455 st	0.030 mmi/∦ 0.002 mmi/sf	14 13	/cy 39.17 /m/h 39.17 /m/h	539 506	0,17	26,054 78 380	-	-	0.95	437			25,534 1,054 885	1
	Seal Floors 6 MIL Vapor Barrier	5,740 sf 16,300 sf	0.002 mml/sf 0.002 mml/sf	11 33	39,17 /mh 43,53 /mh	450 1,418	0.09	530 855		-	-	-			980	1.
	Grave Fill Under Slab 4" 03.05 Slab On Grade	70 cy 187 cy	0.004 cd/cy	8	1,412.15 /ed	375 27,930	29.26 232.94	2,048 43,559	×	-	3.84 7.44				2,691 72,882	4
03.07	Suspended Beams Beam Side Forms	2.932 sf	0.210 mh/sf	616	39,49 /mb	24.318	2.21	6,466							30,785	48,
	Beam Bottom Forms	975 sf 1,466 l?	0.210 mh/s/ 0.015 mh/s/	205	39,49 /mh 39,49 /mh	8,057	2,21	2,150		-					10,237	15
	Skip & Oil Beam Forms Superplasticizers @ Beams	3,907 sf 72 cy	0.005 mh/sf	20	39.17 /mh /cy	765	0.03 8.40	117 605	-		:				883	
	Rebar- Beams (250 #/cy) Finish- Top of Beam	9 tn 975 si	15.003 mb/to 0.008 mb/sf	135 8	43.53 /mh 39.17 /mh	5,877	997.70	8,979	-	-	-			: :	14,857 305	22
	Pump Place Beams @ Roof 4000 psi Concrete	72 cy 72 cy	2.001 mh/cy	144	41,39 /mh /cy	5,963	142.00	10,224			14,42	1,038			7,001	1 1
	GiladPatch Beams Rub Seams	3,907 sf 3,907 sf	0,013 mh/s/ 0,085 mh/s/	51 332	39,17 /mh 39,17 /mh	1,990 13,007 306	0.03 0.06 0.06	117 234 230	-	-				: :	2,107	2
	Liquid Curing Compounds 03.07 Suspended Beams	3,907 s/ 72 cy	9.002 mh/sf	1,540	39.17 /mh	51,488	416,04	230 29,955	-	-	14.42	1,038			536 92,481	14
03.08	Pads & Curbs Pad Forms 8" h	264 si	0.200 mh/sf	53	39.49 /mh	2,085	1.52	402	-		· .				2,487	:
	Chamfer Strip & Oil Equipment Curb Forms	394 K 264 st	0.015 mh/8 0.005 mh/s/	6 1	39.49 /mh 39.17 /mh	203 52	0.57	223	1					: :	457 80	
	Rebor- Pads (100 #/cy) Finish- Ebat	1 tn 669 sf	18.004 mh/tn 0.017 mh/sf 2.501 mh/cγ	18 	43,53 /mh 39,17 /mh 41,39 /mh	784 445 1,759	997.70	999		-	9,86	169			1,781 446 1,927	:
	Perror Pface Pads 8* 4000 psi Concrete Ligiti Curing Compounds	17 cy 17 cy 933 sf	2.003 mm/cy	43	/cy 39.17 /m/h	1,759	142.00 0.06	2,414		-	9,66	168			2,414	
	03.08 Pads & Curbs	17 cy	5,555 1117 5	135	00.77 111	5,469	241.17	4,100			9.85	168			9,735	
03,20	Precast Pilanks Precast Hollow Cora Roof Planks 4" wide x 10"	5,712 sf	0.020 mh/sf	114	42.24 /mh	4,825	8.80	50,275		-	0.35			· · ·	57,112	
06,00	03.20 Precast Planks Wood	5,712 sf		114		4,826	8.80				0.35	2,010			57,112	
	PT Roof Blocking @ Top Of Masonry Wall 06.00 Wood	307 ₩ 1 ls	0.035 mh/1/	11 11	39.67 /mh	426 425	1.82 558.54	559 559	-						985	
07.00	Moisture Protection Cauliting & Masonry Wall Joints- Exterior (.09 Wst)	655 II			л				4.00	2,220					2,220	
	Caulting @ Masoniy Wal Joints-Interior 07.00 Mojsture Protection	555 F 1 1s			n				4.00 4,440.88	2,220	-			· ·	2,220	
07.01	Roofing Membrana Roofing- 60 mil EPDM Mechanically Attached w 3" Insulation	6,168 sf			kt				3.00	18.508					18.508	2
	Ahining bownspouts, 2 ea x 32' each Scuppers	64 vf 2 sa			M lea				18,00	100					1,152	
	Aluminum Coping @ Roof Parapat 12" wide Translucent Pane) Skylight Frame & Panels	313 lf 1,398 sf			Ni Ist				15.00 38,01	4,696 53,135					4,696 53,135	8
08.00	07.01 Roofing Doors, Frames & Hardware	6,168 sf							12,58	77,590					77,590	11
	HM Single Frames- 16 ga 3%7 HM Door Leals- 3%7' 20 ga, half glass	4 ea 4 ea	1.000 mh/ea 1.500 ea/mh	4	39,18 /m/n 39,18 /m/n	157 104	18D,04 450.09	720 1,800	:					: ;	. 877 1,905	
	Overhead Doors- 10/x10" 24 go steel manual 1" Insuation 26 ga back-up panel Finish Hardware by Leaf- Alowance	1 aa 4 ea	8,002 mm\/ea	32	- 39,18 /min	1,254	900.18	3,601	2,255.00					: ;	2,255	
09,00	08.00 Doors, Frames & Hardware Finishes	5 ea		39		1,515	1,224.24	6,121	451.00	2,255					9,891	
05,00	Paint HM Door Frames - primer (2) coats Paint HM Doors - primer (2) coats	4 ea 4 ea			/ea /ez		-	•	100.02	400				:	400	
	Palint CMU Block - block filler & (2) coat 09.00 Finishes	6,168 sf 1 1s			-	-	-	-	1.35 9,286,99						- 8,327 9,287	1
10.00	Specially ltems Stors - Bullding ID	1 ea			/ea				3,000.60						3,001	
	Signs – building ID Signs – Doors Frie Extinguisher CO2, 10 Rbs	4 ea 4 ea			/ea /ea				30.01 225.05	120	-	·			- 120 900	
	10.00 Specialty items	1 is							4,020.81						4,021	
22.00	Plumbing Plumbing Subcontract	5,740 st			ist				6.00						34,447	5
23.00	22,00 Plumbing HVAC	1 ls							34,446.88						34,447	
116>	Vanillation & Unit Heater, System	5,740 st			. /sf Page 2					250,300				•	258,300	Report Date:

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{age 27} Page 49 of 105 Page 27 of 54

Page 49 of 105

	WBS Lvi 4	Description	1	Labor Productivity	Man Hours	Labor Price	Labor Amount	Materiai Cost/Unit	Materia) Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Tot Amount
26	5,00	23.00 HVAC UG Electrical Buildon Pischinal System	5,740 sf			(SI				45.00	258,300					258,300	
		26.00 UG Electrical	5,956 Si 1 ls			151				95,315.03	95,315					95,315	
. 26	6.01	Above Ground Electrical Building Electrical System Electrical Work For Equipment (3% Equipment Cost)	5,956 s/ 1 ls			/s/ /s				8.00 99,000.00	47,658 99,000					47,658 99,000	
26	6.02	26.01 Above Ground Electrical Instrumentation & Controls	1 Is			-				145,857,51	146,658					146,658	
20	0.02	Controls & Instrumentation Work For New Equipment (1% Equipment Cost) 26.02 Instrumentation & Controls	1 is 1 Is			/Is				33,000.00 33,000.00	33,000 33,000					33,000 33,000	
40	0.00	Under Ground Process Piping Trench Excav & Lay Pipe 0-4'	350 W	600,000 E/cd	33	2,539.31 /cd	1,481					1.88	659			2,141	
		Stona Pipe Bedding DI Pipe Push - Class 52 8	52 cy 200 #	200.000 cy/cd 0,250 mh/f	19 50	2,896.43 /cd 51,34 /mb	753 2,567	23.29 31,86	1,211 6,371	:		-	-			1,964 8,938	1 1 ·
		DI Pipe Push - Class 52 14 Hydrostatic Testing	150 M 350 H	0,340 mh/1/ 0.021 ch/1/	51 29	51.34 /mh 182.49 /ch	2,618 1,341 737	65,16 0.16	9,774 56		:				: .:	12,392 1,397	2 7
		Di 90 ell 14" 40.00 Under Ground Process Piping	2 ea 350 lf	12,060 mh/ea	24 206	30.57 /mh	737 8,498	469.80 52.43	940 18,352		•	- 1.88	659		•	1,677 28,509	
40	0.01	Above Ground Process Piping Paint & Stendi Exposed Piping <20"	1,192 M						-	10,00	11,922		-			11,822	
		Pipe Supports Hydrostatic Tosting *01 Wall Thinkbe 24" long	40 ea 1,192 M 4 ea	4.001 mh/ea 0.021 ch/li 5.001 ch/ea	160 100 80	45.62 /mh 182.49 /ch 182.49 /ch	7,301 4,569 3,650	250,05 D,16 1,286,25	10,002 191 5,145		-	1,200,15	4,601			17,303 4,760 13,596)
		Gasteritikustor kit 4" Gasteritikustor kit 4"	16 ea 12 ea	1,000 mh/ea 1,000 mh/ea	16 12	32,89 /mh 32,89 /mh	528 395	7,87	126			-	4,001			652	2
		GaskevAuts/Bolt Kit 8* Gaskev/Auts/Bolt Kit 12*	24 es 30 ea	1,000 mh/ea 1.000 mh/ea	24 30	32.89 /mh 32.89 /mh	789 987	22.00 45.00	528 1,350		:		-		:	1,317 2,337	r
		Gaskel/Nuts/Bok Kit 14" DF Flanged Joint Pipo 4" DF Flanged Joint Pipo 5"	20 ea 198 l! 144 l!	1.000 mh/ea 0.820 mh/lí 0.900 mh/lí	20 154 130	32.89 /mh 30.57 /mh 30.57 /mh	658 4,712 3,961	46.58 30.99 47.39	5,825 5,824			-				1,589 10,637 10,785	7
		Di Fanged Joint Pipe 8" Cli Fanged Joint Pipe 12"	285 II 350 II	0,960 mh/) 1,890 mh/)f	279	30,57 /mh 30,57 /mh	8,537 20,220	67,30 112,92	19,180	-		-	-			27,718	3
		Di Flanged John Pipe 14" Di Flanged 90 ell 5"	226 ∦ 2 ea	2.050 mh/lf 4,830 mh/ea	463 10	30,57 /mh 30,57 /mh	14,182 295	138,18 105,30	31,228 211		:	· · · · · · · · · · · ·	:			45,389	3
		Di Flanged 90 ell 14" Di Flanged Tee 6"	4 ea 2 ea	12,050 mh/ea 4,830 mh/ea	48 10	30,57 /mh 30,57 /mh	1,475 295	469.80 0.02	1,879 0	-		-	-		:	3,354 295	5
		DI Fibaged Tee 8" DI Fibaged Con Red 12x8" DI Fibaged Con Red 14x8"	4 ea 4 ea 2 ea	5,850 mh/ea 11,010 mh/ea 12,050 mh/ea	20 44 24	30.57 /mh 30,57 /mh 30,57 /mh	617 1,348 737	313,10 467,20 588,00	1,252 1,949 1,176	-	-	-	-			1,870 3,295 1,913	5
		Misc Pling & Accessolis- ALLOWANCE 40.01 Above Ground Process Piping	200 LF 1.192 lf	0.240 mh / LF	48 2,334	45,62 /mh	2,190 77,424	55.01 115.20	11,002 138,511		11,922	4.03	4,801			13,192 232,658	2
40		Valves, Meters, Etc. 6" Butterfly Velve, 125 biclass, Cl Body, Fb, w Efm elec actuator NEMA 4	4 na	6,200 mh/ea	25	30.57 /mh	758	2,850,00	11,400				•			12,158	
		Pressure Regulator 8" 40.02 Valves, Meters, Etc.	2 ea 1 is	5.229 mh/ea	10 35	30.57 /mh	320 1,078	11,400.00	11,400	-	-		•			320 12,478	
40	0.04	Hydropneumatic Piping System Hydropneumatic Piping, Fitting & Valve Allowence	1 ls	min / bs		45.62 /mh				17,000.00	17,000					17,000	,
43	3.10	40.04 Hydropneumatic Piping System Ozone Equipment	1 Is							17,000.00	17,090					17,000	
		Freight On Equipment To Jobsite Verified Performance Test	1 is 1 is			Л s Лs											
		Vendor Verified Performance Test Vendor Witnessed, Verified Performance Test	1 ls 1 /s			/s As								1,500.00	0 1,500	1,500	r.
		Equipment Unbacing, Setting, Startup & Testing Ozano System Equipment	1 ks 1 ks	650,000 ch/ls	3,575	182.62 /ch	118,706	500.00	500		•	31,005,98	31,006	3,300,000,00	3,300,000	150,212 3,300,000	
		Air Compressor & Receiver Destruct Units (Blower, Analyzer, Preheater, Destruct Vessel)	1 ea 2 ea			/ea /ea											
		Blower Silencer	2 ea			/ea											
		Catalytic Chamber Cooling Water Pump	2 ea 2 ea			/ea /ea											
		Cooling Water Skid / Heat X-Changer 10' x 5.67' Cooling Water Supply Pumps	2 ea 3 ea			/ea /ea											
		Demister Eductor	2 ea 2 ea			/ea /ea											
		Filter	2 e#			/ea											
		Heater Ozone Diffuser	3 ea 2 ea			/ea /ea											
		Ozone Generator Skid 17' x 6.5' Ozone Injection Manifold 8'' x 10.75' long	2 ea 1 ea			/ea /ea											
		Ozone injection Water Supply Pumps	4 ea			/ea											
		Ozone Quench Manifold 30" x 11' long Particulate Filter	2 ea 1 ea			/ea /ea											
		43.10 Ozone Equipment 47.5 Ozone Facility	1 Is 1 gsf		3,575 9,127		118,706 326,505	500.00 310,707.09	500 310,707	694,235,95	\$94,236	31,005.98 41,216.11		3,301,500.00 3,301,500.00		3,451,712 4,674,164	
47.6		LOX Equipment			4,147		***,**3	÷.+/101103	+ 1v, r U f		062,FUU		41,210	0,001,000,00		-,0/-,104	,
0.	/a,UD	Subo Un Grade S.O.G. Edge Form 6" Strip & Oli Form	118 sf 118 sf	0,240 mh/sf		39,49 /mh 39,17 /mh	1,118	1,22	144	· · · ·	•	· ·····				1,262	1
		Rebar- SOG (125 #/cv)	2 tn	14,003 mih/th	1 32	39,17 /mm 43,53 /mh 43,53 /mh	23 1,371 15	997.70 0,26	2,245 46		:					3,616	6
		Mesh Support - bricks (, 12/sf)	175 ea	0,002 mh/ea												61	•

Page 27

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{nge 28} Page 50 of 105 Page 28 of 54

Page 50 of 105

WBS WBS WBS Lvi 2 Lvi 3 Lvi 4	4 Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Materiai Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand To Amoun
03.05	Slab On Orade Swr Crt S-Crd (Josh) Lipda Cuning Compounds Seal Thom 6 ML Vaper Bankin Grave Flat Linder Slab 6* 03.05 Slab On Grade	117 M 1,580 st 1,462 sf 1,600 st 18 cy 36 cy	0.030 mh/f 0.002 mh/sf 0.002 mh/sf 0.002 mh/sf 0.002 mh/sf	4 3 3 2 126	39.17 /mh 39.17 /mh 39.17 /mh 43.53 /mh 1.412.15 /cd	138 124 115 139 96 5,144	0,17 0,06 0,09 0,05 29,26 233,57	20 93 135 84 527 8,409	-		0,95 - - 3,84 8,68				269 217 250 223 892 13,866	
03.08	Pads & Curbs	350 st	0.180 mh/sf		39.49 /mb											
	LOX Tank Pad Form 24" LOX Vaporizer Pad Form 12"	78 st	0,160 mh/sf	63 12	39,49 imh	2,488 493	1.37 1,37	478 106	:	:		-			2,986	
	Charrfer Strip & Oil Equipment Pad Forms	191 H 428 sf	0.015 mh/bf 0.005 mh/sf	3	39.49 /mh 39.17 /mh 43.53 /mh	113 84	0.57 0.03	108 13 598	:	-	:				221 97	
	Rebar- Pads (100 #/cy) Finish- Fibal	5 In 223 sl	18.004 mh/th 0.017 mh/sf	18	39.17 imi	784 149	997.70		-		- 7.49	127		: :	1,781 149 1,253	
	Pump Place Pads 12" & 24" 4000 psi Concrete	17 cy 17 cy	1.600 mh/cy 0.003 mh/sf	27 2	41,39 /mh /cy 39,17 /mh	1,125	142.00	2,414		:	7,49	-			1,255 2,414 115	
	Liquid Curing Compounds 03.08 Pads & Curbs	651 sf . 17 cy	0.003 mn / st	131	39.17 mm	5,313	0.06 244.44	38 4,155			7.49	127		•	9,595	
25.01	Above Ground Electrical Electrical Work For Equipment (5% Equipment Cost)	1 ls			/Is				43,160.00	43,150				···· · · · ·	43,160	1
26.02	26.01 Above Ground Electrical Instrumentation & Controls	. 1 ls				• • • •			43,160.00	43,160					43,160	
20.02	Controls & Instrumentation Work For New Equipment (1.5% Equipment Cost)	1 ks			/h				12,948,00 12,948,00	12,948 12,948					12,948 12,948	
32,01		1 is														
	8' Chain Link Fence @ LOX Yanks 8' Fence Vehicle Gato 12' @ LOX Tanks	111 ¥ 1 sa			-	-	-	:	31.01 1,700.34	3,442	:			: :	3,442 1,700	
40.00	32.01 Fencing & Gates Under Ground Process Piping	1 Is							5,142.02	5,142					5,142	
40.00	Trench Excert & Lay Pipe 0-4' Stone Pipe Bedding	100 li 15 cy	600.000 B/cd 200.000 cy/cd	s =	2,539,31 /cd 2,896,43 /cd	423 217	23,29	349	-	:	1,88	188		: • •	\$12 567	
	Stone / De descong Di Filipa Puta - Class S2 4 Hydrostatic Testing	200 li 100 ii	0.190 mh/K 0.021 ch/li	38	51.34 /mh	1,951	14,54	2,908	-	-	-				4,859	
	DI 90 ell 4"	2 88	4.530 mh/ea	9	30.57 /mh	277	72.90	146	-	:	1,88	186			423 6,859	
40.01	40.00 Under Ground Process Piping Above Ground Process Piping	100 If		70		3,252	34.19	3,419			1.00	188				
	Paint & Stencil Exposed Piping <20" Pipe Supports	113 ¥ 5 ea	4.001 mil/ea	20	45.62 /min	- 619	250,05	1,250	10.00	1,130	· · -	· -	•	:	1,130 2,163	
	Hydrostatic Testing Gaskel/Nuts/Bolt Kit 3"	113 # 10 ea	0,021 ch/∦ 1.000 mh/ea	9 10	182,49 /ch 32,89 /mh	433 329	D,16 4.90	18 49				-			451 378	
	Gasket/Nuts/Boit Kit 4* DI Flanged Joint Pipe 3*	15 ea 50 lí	1.000 mh/ea 0.820 mh/ti	15 41	32,89 /m/n 30,57 /m/n	493 1,253	7,87	118 1,545							611 2,803	
	Di Flanged Joint Pipe 4" Di Flanged 90 eil 3"	63 # 20 ea	0,820 mh/lí 1,940 mh/ea	52 39	30.57 /min 30,57 /min	1,579 1,186	30.99 55.08	1,952 1,102	:	:		: :			3,531 2,288	
	Di Flanged 90 eil 4" Di Flanged Tee 3"	30 ea 3 ea	4.530 min /ea 1,940 min /ea	136 6	30.57 /mh 30,57 /mh	4,154 178	72.90 0.04	2,187	:	:					6,341 178	
	DiFienged Con Red 4x3" 40,01 Above Ground Process Piping	4 oa 113 If	4,530 mh/ea	18 346	30,57 /mh	554 11,072	107,62 76,60	430 8,656	10,00	- 1,130	-				984 20,858	
40.02	Valves, Meters, Etc. 3" Butterly Vaive, 125 bickss, Ci Body, Fb, w/ ElM elec actuator NEMA 4	8 aa	3.000 mh/ea	24	30,57 /mh	734	1.425.00	11,400			_				12.134	
	4 Butterly Valve, 125 bolss, Ci Body, Fig. w Elliviela actuator NEMA 4 40,02 Valves, Meters, Etc.	4 ea 1 is	3,500 mh/ea	14	30.57 /mh	428 1,162	1,900.00	7,600 19,000	-	-	-	· ·		· •	8,028 20,162	
43.17	LOX Equipment						15,000,00	18,000			·	1.525	209.000.0	0 418.000	423.093	
	Vaporizer 5.67'x5.67'x20' h, 6,000 lbs (Charter/Thermax #SG500) High Pressure Tank 10,960 gal, 9.6'da.x34' h, 46,700 lbs (Charter #VS-11000SC)	2 ea 2 ao	1,030 cd/ea 1,030 cd/ea	80 80	1,783,17 /cd 1,783,17 /cd	3,566 3,566	2,000.00	4,000	-		763.23 763.23		219,000.0	0 438,000	447,093	
	LOX Fo;; Station 43.17 LOX Equipment	1 ea 1 ls	1,000 m/n/ea	161	45.65 /mh	46 7,178	13,450,00 17,450.00	13,450 17,450	- -		3,052.90		7,200,0 863,200.0	D 863,200	20,696 890,881	
	47.6 LOX Equipment 3E Filtration - Construct New Gravity Filters & Ozone Facility	t ls 1 is		872 122,902		33,121 5,194,504	61,089,04 6,662,166.23	51,089 5,662,165	62,380,26 3,862,801,52		3,681.24 1,289,471,44		863,200.0 6,504,070.3		1,023,471 23,513,013	
	Filtration - Construct New Membrane Gravity System															1
00 03.00																
	Keyway 6" Mat Foundation Edge Form 30"	1,115 # 1,295 sf	0,050 mh/bř 0,350 mh/sf	56 	39,49 /mh 39,49 /mh	2,202	0.67 1.31	749 1,700							2,951 19,602	
	Mat Foundation Bulkhead Form Waterstop 6" Flat	375 sl 1,265 ll	0,350 mh/sf 0,110 mh/¥	131 139	39,49 /m/h 39,18 /m/h	5,183 5,452	1,52 2,10	571 2,657		:				: :	5,754 8,109	
	Strip & Oil Mat Found. Form Rebar- Foundation Mat (100 #/cy)	1,670 sf 66 tn	0.005 mh/sf 28.006 mh/th	8 1,848	39,17 /mh 43.53 /mh	327 80,454	0,03 997.70	50 65,848		:					377 146,302	
	Rebar Support - bricks (. 12/sf) Finish- Hard Trowel	1,695 ea 14,128 sf	0,002 mh/ea 0,023 mh/sf	325	43,53 /mh 39,17 /mh	148	0.26	445		-					593 12,730	1
	Pump Place Mat Foundation 30" 4000 psi Concrete	1,308 cy 1,308 cy	0.500 mh/cy	654	41.39 /mh /cy	27,058	142.00	185,736		:	4,59	6,001			33,070 185,736	
	Liquid Curing Compounds 6 MiL Vapor Barrier	15,798 sf 17,400 sf	0.003 mh/sf 0.002 mh/sf	47 35	39.17 /mh 43.53 /mh	1,857 1,515	0.06 0.05	929 914		:	-	: :			2,786 2,429	1
03.03	03.00 Foundation Mat Columns	1,308 cy		3,701		154,837	198.47	259,600			4,59	6,001			420,438	
55.00	Form Rectangle Columns 15'	2,520 s/ 1,580 l/	0.165.m/s/ 0.015.m///	416 25	39,49 /m/n 39,49 /m/n	16,419	1.60	4,023 953		:		: :		: :	20,442 1,849	
	Stirja & Otl Column Form. Superplasticizers (§; Columns	2,520 st 35 cy	0.005 mh/s/	13	39,17 /mh	494	0,03	76 294	-			: :		: :	569 294	1
	Solum Rest (20 #/oy) Finish-Finat	2 to 125 st	20,004 mml/to 0,017 mml/sf	42 2	43,53 <i>lmh</i> 39,17 <i>lm</i> h	1,829 84	997,70	2,095	-	-	-			-	3,924	
	Pump Piece Columns 28 ea 4000 pi Concrete	. 35 cy 35 cy	1,600 mh/cy	56	41.39 /m/h /cv	2,318	142.00	4,970		-	7.49	262			2,580	,
	Grind/Patch Columns Rub Columns	2,520 si 2,520 si	0,013 mh/sf 0,055 mh/sf	33	39.17 /m/h 39.17 /m/h	1,283 6,416	0.03	76		-				-	1,359	•
	Liquid Curing Compounds	2,520 sf	0.003 mh/s/	8	39,17 /mh	295	0.06	148 12.785		-	7.49	252			444 43,181	
	03.03 Columns	35 cy		758		30,134	365,30	12,785			7,49	, 262			+3,าชา	

<File name>

Report Date: 6/11/2020 1:19 PM

sville WTP Rehabilitation 6-1	FILED September 3, 2021 INDIANA UTH.ITY REGULATORY COMMISSION	 		EWSU Wa	iter Treatment Plar	nt- Advanced Fac	lity Plan					0000	Cause	nent JTP-5 No. 45545 251 of 105	C: OUCC DR 17-	ause No. 4554 6 Attachment Page 29 of 5
/BS WES WES viz Lviz Lviz	Description	Takeoff Quantily	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
03.04	Walls Keyway 6*	2,230 ff	0.050 mh/f	112	39.49 /mh	4,404	0,67	1,499				and and another states (, devel for	-		5,903	9,245
	Vertical Wall Keyway 6* Panel Form System 18' h	502 if 40,125 sf	0.110 mh/f 0.190 mh/sf	55 7,625	39.49 (mh 39.49 (mh	2,181 301,107	D.67 1.84	337	· · · -					1	2,518 374,851	3,964 588,469
	Waterstop 8 ⁻ Flat Strip & Cil Walt Forms	2,732 if 40,125 s!	0,110 mh/lí 0,905 mh/sť	7,625 301 201	39.18 /mh 39.17 /mh	11,776 7,859	2.10 0.03	5,738 1,204				·			17,514 9,063	27,34
	Superplasticizers @ Walls Rebar-Walts (125 #/cy)	 1,115 cy 70 in	15,003 mh/ln	1,050	icy 43.53 imb	45,712	8.40 997,70	9,367 69.839	-			-			9,367 115.551	14,21
	Finish- Top of Wali	3,345 sf	0.008 mh/sl	27	39.17 /mh	1,048		69,630	-					i,	1,048	1,65
	Pump Place Walls 18* 4000 psi Concrete	1,115 cy 1,115 cy	1.150 mh/cy	1,283	41.39 /mh /cy	53,082	142.00	15B,330			6.65	7,414		1	60,496 158,330	95,81 240,30
	GrindPatch Walls Rub Walls	. 40,125 si . 31,161 si	0.013 mh /sí 0.058 mh /sí	522 1,807	39.17 /m/n 39.17 /m/n	20,435 70,788	0.03	1,204							21,639 72,658	34,16
	Liquid Curing Compounds 03.04 Walls	43,470 sf 1,115 cy	0.002 mhisf	87 13,069	39.17 /mh	3,406 521,797	0.06 292.10	2,557 325,689			6.65	7,414			5,962	9,2
03.05	Slab On Grade			12,009			292.10	325,689			6,63	r,414			854,901	1,331,9
	Slab Edge Form 28* Rebar- SOG (125 #/cy)	172 sf 1 ln	0,350 mh/sf 14,003 mh/ln	60 8	39.49 /mh 43.53 /mh	2,378 366	1.31 997.70	226 599	-			·		: :	2,603 964	4,11
	Mesh Support - bricks (.12/sl) Finish- Hard Trowel	37 ca 304 st	0.002 mh/ca 0.015 mh/s1	. 0	43.53 /mh 39.17 /mh	3 179	0.26	10				-			13	2
	Pump Place Slab on Grade 8" @ Electrical & Blower Room	7 cy	0,500 mh/cy	4	41.39 /mh	145	-		-		3,67				171	2
	Pump Piece Thickened Slab 28" x 20" 4000 psi Concrete	2 cy 9 cy	0.500 mh/cy	1	41.39 /m/n /cy		142.00	1,278			3.67				49 1,278	1,9
	Saw Cut S-O-G (.08/sf) Liquid Curing Compounds	24 l/ 476 sf	0.030 m/n / f _0.002. m/n / sf	1	39.17 /mh 39.17 /mh	28 37	0.17 0.06	4 28			0.95	23			55 65	1
	Seal Floors 6 Mill Vagor Barder	304 sf 350 sf	0.002 mh/s/	1	39.17 /mh 43.53 /mh	24 30	0.09	28	-			·		•	52	
	Gravel FID Under Slab 4*	8 cy	0.004 cd/cy	1	1,412.15 /cd	43	29.26	234			3.84				308	4
03.06	03.05 Slab On Grade Suspended Flat Slab	9 cy		82		3,274	259.41	2,425			9.62	87			5,765	9,0
	Form Suspended Slab Bottom Slab Edge Form 12*	7,342 s/ 1,501 sf	0.180 m/s/ 0.250 m/s/	1,322 375	39.49 /m/n 39.49 /m/n	52,196 14,821	2.18 5.17	16,038 7,762							68,234 22,583	106,9 35,2
	Strip & Oil Suspended Slab Forms	8,843 sf	0.805 mh/s/	44	39.17 /mb	1,732	0.84	363						-	2,095	3,2
	Superplasticizers Rebar- Suspended Stab (225 #/cy)	272 cy 31 in	20.004 mh/ In	612	43.53 /mh	26,644	8.4D 997.70	2,285						: :	2,285 57,173	3,4 88,5
	Finish-Hard Trowel Pump Place Suspended Stab '2"	7,372 sf 272 cv	0.030 min/sf 1.800 min/cv	221 490	39.17 /m/n 41.39 /m/h	8,654 20,258	-				6,65	1.810		: · · · · · · · · · · · · · · · · · · ·	8,564	13,7
	4000 psi Concrete Liguid Curing Compounds	272 cy 16.215 sf	0.003 mb/sf	49	- 39.17 (mh	1.906	142.00	38,624			-				38,624 12,975	58,6 19,8
	03.06 Suspended Flat Slab	272 cy	5.000 (117) a	3,113	33.11	126,231	392.17	108,670			6,65	1,810		•	234,710	364,5
03.07	Suspended Beams Beam Side Forms	6.264 sf	0.210 mb/s/	1,316	39.49 /mh	51,954	2.21	13.815		· · ·	·	· · .			65,769	103,1
	Beam Bollom Forms Chamfer	1,814 s/ 2,418 l/	0.210 mh/si 0.015 mh/lf	381 36	39.49 /mh 39.49 /mh	15,046 1,433	2.21	4,001	-		· , ·	, , ,			19,046	29,8
	Strip & Oil Beam Forms	8,078 sf	0.005 mh/sf	40	39.17 /mh	1,582	0.03	242	-						2,804 1,825	4,3 2,8
	Superplasticizers @ Beams Rebar- Beams (250 #/cy)	174 cy . 22 to	15.003 mh/tn	330	/cy 43.53 /mh	14,367	8.40 997.70	1,462 21,949				2		: :	1,482 36,316	2,2
	Finish-Top of Beam Pump Place Beams & Roof	. 1,814 sf 174 cv	0.098 min /sí 2.001 min /cv	15 345	39.17 /mh 41.39 /mh	589 14,411					14.42	2.509			569 16.920	91 26.8
	4000 psi Concrete GrindPatch Beams	174 cy 8 078 sf	0.013 m/s/	105	/cy 39.17 /m/h	4.114	142.00	24,708						5	24,708 4,356	37,5
	Rub Beams	8,078 sf 9,892 sf	0.085 mh/sf 0.002 mh/sí	687	39.17 /mb	26,893	0.05	485		-		ļ		: :	27,378	43,3
	Liquid Curing Compounds 03.07 Suspended Beatns	9,892 si 174 cy	0.002 mn/si	3,276	39.17 /mh	775	0.06 395.73	582 68,857	-		. 14.42	2,509		-	1,357 202,509	2,1 316,0
03.08	Pads & Curbs Pad Form	1,267 sf	0.120 mh/sf	152	39,49 /mb	8,005	1,37	1,730							7.734	12.1
	Chamler	447 lf	0.015 mh/lf	7	39,49 /mh	265	0.57	254	·						518	8
	Strip & Oll Equipment Pad Forms Rebar- Pads (100 #/cy)	1,267 sf 2 tn	0.005 mh/sf 18.003 mh/ln	6 33	39,17 /mh 43,53 /mh	248 1,450	0.03 997.70	38 1,846		:					286 3,295	4 5,0
	Fisish-Float Pump Place Pads	1,444 sí 37 cy	0.017 mh/sf 1,601 mh/cy	25 59	39,17 /mh 41,39 /mh	951 2,451					7.49	217			951 2.728	1,5 4,3
	4000 psi Concrete Liquid Curing Concounds	37 cy 2.711 sf	9.003 mh/st	Å	/cy 39.17 /mb	319	142.00 0.06	5,254	-					t	5,254 478	7,9
	03.08 Pads & Curbs	37 cy		290		11,699	250.82	9,280			7.49	277			21,256	33,0
03.09	Pan Stair Fill Finish Stairs	415 sf	0.055 min / sf	23	39.17 /m/n	894				-		· _			894	1,4
	Pump Place Pan Stair Concrete 3000 psi Concrete	6 cy 6 cy	3,001 mh/cy	18	41.39 /mh	745	138.00	828			9.17	55		:	800 828	1,2
	03.09 Pan Stair Fill	6 cy		41		1,639	138.00	828			9.17	55			2,522	3,93
03.20	Precast Planks Precast Hollow Core Roof Planks 4" wide x 10"	14,596 sf	0.020 mh/sf	292	42.24 /mh	12,333	8.80	128,470			0.35	5,136			145,940	222.6
	03.20 Precast Planks	14,596 sf		292		12,333	8.80	128,470			0.35			14.4415	145,940	222,6
04.00	Masonry 8" CMU + Rigid Insulation Backup To Brick, 20" h	10,070 sf			/sf		-		18.00	181,296					181,296	275,15
	8" CMU + Rigid Insulation Backup To Brick @ Parapet 3.67" h 8" CMU interior Wall 15" h	2,500 sf 7.018 sf			ist ist				- 18.00 14.00	46,000	~	1 <u>-</u>		:	45,000 98,252	68,28 149,11
	8" CMU + Rigid Insulation Backup To Brick, 14" h @ Electrical & Slower Blogs Preciset Can 16" x 4"	2,352 sf			isi Ai		-		18.00	42,344					42,344	64,28
	Brick Veneer @ Block Wall Backup & Concrete Beam	671 l/ 16,448 sf			- 40	· ·	-		20.00 9.00	13,423 148,044		: 1		e	13,423 148,044	20,31 224,68
95.01	94.00 Masonry Misc Metals	23,454 sf							22,52	528,359					528,359	801,8
20101	Metal Stairs Concrete Pans	132 /s	0.067 mb/rs	9	42,08 /mh	370	60.02	10,562			· · · · ·				10,933	16,6
	Metal Statr Landing Concrete Pars Alum Statr Wall Hendrall	. 8 ea 112 lí	4.000 mh/ea 0.150 mh/lí	32 17	42,08 /mh 42,08 /mh	1,347 707	60D,80 15.80	6,400 . 1,882	-						7,747 2,589	11,8- 3,9
	Aburrinum 3 Line Rail @ Basins Aburrinum Handrall @ Pen Stolics	559 ď 112 ľr	0.234 mh/f 0.234 mh/f	131 26	42.08 /m/n 42.08 /m/n	5,506	44.11 44.11	24,657 4,940	-	:		1.1		: 23	30,163 6.043	46,13
	Aum Grate Cover .75" @ 4'x4' Sump Aluminum Hatch & Frame Over Pipe Gatlery 6.33' x 6.33'		0.600 .mh/ea 8,002 mh/ea	. 7	42,08 /mh 39,18 /mh	303 3,762	185.04	2,220	· . ·					-,?	2,523	3,65
	05.01 Misc Metals	12 ea 1 is	p,002 mm,/ea	96 318	39,10 /mh	3,762 13,098	5,001.00	60,012 110,674							63,774 123,771	97,0 188,7(
96,D0	Wood Misc Natlers & Blocking	15,596 st	0,010 m/n / s/	156	39,67 Imh	6,188	0,40	6,259							12,448	19,2

<File name>

1. I a 1

Page 29

ansville WTP Rehabilitat	ation 6-12	*-30			EWSU Wate	er Treatment Plan	t- Advanced Fac	ility Plan	<u></u>					Cause	nent JTP-5 No. 45545 e 52 of 105	OUCC DR 17	ause No. 455 -6 Attachmen Page 30 of
	WBS Lvi 4	Dëscription	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
andrah di menanan 		in the operation of the second s	t is	an a san san tana ana ara ara ara ara ara ara ara ara	156		6,188	6,259.15	6,259		. von nerenie wie	Re for transformation and an	t Menseen an ei Mentele en eeste		n mar a an ann an	12,448	19,25
07		Moisture Protection Cauling (Masony Wall Jointe-Extence (J49 Wsf) Cauling (Masony Wall Jointe-Intenter 70.00 Moisture Protection	1,349 K 1,349 K 1 Is			Rf At				4.00 4.00 10,794.17	5,397 5,397 10,794	- 1				5,397 5,397 10,794	8,19 8,15 16,38
07	7.01	Rooffing Mersbrane Soofing-60 mil EPDM Mechanically Allached w/ 3" Insulation	15,395 sl			101				3.00	46,194						79.1
		Aleminum Downspouls, 14 ee.	280 ll 14 ea			// /ea				18.00 50.01	5,041					5,041 700	7,8
		Aturienum Coping @ Roof Perapet 12* wide Roof Netch 4/0* x4/0* 07.0/1 Roofing	645 lí 1 ea 15,395 sf			Al /ea				15.00 2,200,44 4.15	9,677 2,200 63,813					9,677 2,200 63,813	14,6 3,3 96,8
08	8.00	Doors, Frames & Hardware HM Single Frames- 16 ga 3'x7'	8 ea	1.000 mh/es	8	39,18 /m/h	313	180.04	1,440	- - -	· · · · · · · · · · -					1.754	2.5
		HM Double Frames- 16 gs. 6x7 HM Door Leafs- 3x7 20 gs., het glass	3 ea 14 ea	1.500 mmì/oa 1.500 ea/mmì	5 9	25.39 /mh 39,18 /mh	114 366	210.00 450.89	630 6,301	i		2	-		: :	744 6,667	1,1: 10,1
		Overhead Coors- 10°x10°24 go siteel manval (1° insuellon 26 ga back-up panel Firish Hardware by Loaf- Albuxance 86.00 Doors, Frames & Hardware	. 2 ea 14 ea 16 ea	8.002 mh/ca	112 134	39.18 /mh	4,389 5,182	900.18 1,310.88	12,603 20,974	2,255.00 281,88	4,510		:			4,510 16,991 30,556	6,8- 26,0 46,8
09		Finishes Point HM Door Frames - primer (2) coats	11 ea			/ea			· · ·	100.02	1,100	· · · · · · · · · · · · · · · · ·				1,100	1,6
		Paint HM Doors – primer (2) coats Paint CMU Block – block filler & (2) coat	14 ea 28,958 sf			/ea -		:		- 140.03 - 1.35	1,950 39,093	:	-		-	1,960 39,093	2,9 59,3
		Palnt 2" Pipe Palnt 6" Pipe	194 M 373 M	0.035 mh/H 0.070 mh/H	26	27,53 /mh 27,53 /mh	187	0.23	45 256 73	8	· · · ·	2.12	411 1,581 300			643 2,558	1,0 4,0
		Point 12" Pipe Palet 16" Pipe Paint 20" Pice	53 17 340 1/ 0 1/	0.120 mh/ff 0.140 mh/ff 9.300 mh/ff	48	27.53 /mh 27.53 /mh 27.53 /mh	175	1.39 1.85 2.60	628		-	5.65 6.06 7.00	2,059			549 3,997	8 6,3
		Paint 24" Pipe Paint 24" Pipe	203 I/ 154 Jf	0.350 mb/f 0.438 mb/if	71 67	27,53 /mh 27,53 /mh	1,956	2.77	562		-	7.07	1,434			3,953	6,3 4,3
		Paint 72° Pipe 09.00 Finishes	183 I/ 1 ls	0.525 mh/lf	96 321	27.53 /mh	2,645 8,848	8.31 3,619,94	1,520	42,153.90	42,154	4.95 7,324.45	905 7,324			5,071 61,846	7,9
10	0.00	Specialty Nems Sions - Bulking ID	1 ea			14.9				3,000.60	3,001	, , , , , , , , , , , , , , , , , , , 				3,001	4,6
		sagas - bulkong (U Signs - Doors File Extinguisher CO2, 10 lbs	11 ea 12 ea			lea lea				30.01 225.05	330	· -				330	4,0 6 4,0
		10.00 Specialty items	1 ls							6 024 22	6,031					6,031	9,1
22		Plumbing Plumbing Subcontract	15.395 st			/st				4.00	51,592					61,592	93,4
23	3.00	22.00 Plumbing HVAC	1 is				in a construction of the second s		na an a	61,592.30	61,592				· · · · · · · · · · · · · · · · · · ·	61,592	93,4
		Ventibilion & Unit Heater System 23.00 HVAC	15,395 sf 15,395 sf			lst		•		- 45.00 45.00	692,775 692,775	-	•		• •	692,775 692,775	1,051,4 1,051,4
31		Dewatering – Well Point System Installation	1 sys	240.048 ch/sys	950	159.35 /ch	38,251	7,501.50	7,503	2 ·		33,599.22	33,599			79,352	125,4
		Dewatering - Weil Point System Monthly Rental Dewatering - Weil Point System Removal	4 mo 1 sys	13,288 mh/mo 60.012 ch/sys	53 240	39,17 /mh 159,35 /ch	2,082 9,563	5,704,89 2,600,50	22,820	· -	-	22,004.39 8,399.94	88,018 8,400		: :	112,919 20,463	178,0 32,2
31	1.02	31.01 Dewatering Piles	1 ls		1,253		49,896	32,821,55	32,821			130,016.73	130,017			212,734	335,7
		Augered Piles CIP 18" x @ 25 ft depth, 10" oc = 184 ea (1 per 77 sf) 31.02 Piles	4.600 vf 184 ea	0.002 cd/vf	515 515	2,146.97 /cd	19,756 19,755	35,16 878,91	161,720 161,720		-	2,58 64.51	11,869 11,869			193,345 193,345	295,6 295,6
31		Excavation Shoring Shoring System Design Engineer	1 ks							15,003.00	15,003	-				15,003	22,7
		Structure Sheeting (557' x 28' deep) Tis Backs (1 per 80 sf of Sheeting, 557' x 21'= 11,697 sf)	15,596 sf 146 ea	0.001 cd/s/	769	2,465.38 /cd	29,614	16,00	249,586	- 2,377.48	347,111	0.75	11,729			290,930 347,111	444,3 526,8
31	1.10	31.03 Excavation Shoring Structure Excavation	15,596 sf		769		29,614	16.00	248,588	3 23.22	362,114	0.75	11,729			653,044	993,9
		Exo Clay-Backhoe/Truck (16,774 sf x 21) 31.10 Structure Excavation	13,047 cy 13,047 cy	499,900 cy/cd	940 940	1,410.06 /cd	36,801 36,801	*		• •	-	6,58	85,902 85,902		•. •	- 122,703 122,703	194,9 194,9
31		Structure Backfill BackFill Earth-Backhoe/Truck	2,479 cy	495.000 cy/cd	160	1,327.72 /cd	6,649			-		4.69	11,61B			18,268	29,0
21		31,12 Structure Backfill Soil Disposal	2,479 cy		160		6,649					4.69	11,618			18,266	29,0
51		Spois to Waste 31,13 Soil Disposal	10,568 cy 10,568 cy	0.003 day/cy	951 951	1,410.06 /day	37,261	-		• •	•	8.23 8.23	86,975 86,975		•	124,236 124,236	197,3 197,3
31	1.20	Structure Stone Base Structure Stone Base	252 cy	0.003 cd / cy	32	1.609.56 /cd	1,278	28.28	7,410	·	÷	10.02	2,624			11,312	
		Sincture subpase sciencipatery increment, is its as x = 31.20 Structure Stone Base OB Building & Structure Construction	262 cy 262 cy 15,395 gsf	0.000 60769	32 32 30,172	Constant Page	1,278	28.28 97.03	7,410 7,410 1,507,665)	1,772,142	10.02	2,624 2,624 371,610			11,312	17,4 17,4 7,450,6
26		Electrical & Instrumentation	נפט פעיייי		30,772		1,201,009	01,03	1.907,665	(15611)	. 1,774,542	24,14	311,610			4,853,081	7,480,6
26		UG Electrical UG Electrical System	15,395 sf			/s/				16.00	246,389					246,369	373,9
26	6,01	26.00 UG Electrical Above Ground Electrical	1 ls							246,369.17	246,369					245,369	373,9
		Building Electrical Systems Electrical Work For Equipment (3% Equipment Cost)	15,395 sf 1 ls			/sf As				4,00 670,000.00	61,580 570,000					61,580 570,000	93,4 885,0
26		26.01 Above Ground Electrical Instrumentation & Controls	1 Is							631,580.00	631,580					631,580	958,5
		Controls & Instrumentation Work For New Equipment (1 % Equipment Cost) 26.02 Instrumentation & Controls	ils 1ls			As				190,000,00	198,000 190,000					190,000 190,000	288,3 288,3
40		28 Electricsi & Instrumentation Process Plainty	1 In							1,087,949.17	1,067,949					1,067,949	1,620,8
	0.00	Under Ground Process Piping		000 000 %1 · · ·	·							1,86			1994 A. 4		
		Trench Excev & Lay Pipe 0-4' Stone Pipe Bedding DI Pipe Push - Class 52, 20	491 II 37 cy 491 II	600.000 11/cd 199.900 cy/cd 0.380 mh/li	46 13 187	2,539.31 /cd 2,896.43 /cd	2,078 535	23.29 99.35		2 -		1,86	925		-	3,003	4,7 2,1

AECOM 20-018 Evansville WTP Rehabilitation 6-	12-20				EWSU Wəte	er Treatment Plan	it- Advanced Faci	ility Plan							No. 45545 53 of 105	OUCC DR 17-	-6 Attachment 2 Page 31 of 54
														Process			
WBS WBS WBS WBS WBS LVI1 LVI2 LVI3 LVI4	Description	Takeoff	Quantity Labor	r Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
40.00	Under Ground Process Piping Hydrostalic Testing 40.00 Under Ground Process Piping		491 # 491 If	0.021 ch/lf	41 287	182,49 /ch	1,862 14,875	0.16 101.26	79 49,719	-	-	-	- 925			1,361 64,719	3,098 99,208
40.01	Above Ground Process Piping Paint & Slancil Excess Piping		960 1							10.00	9,602	· · · · · · ·				9,602	14,573
	Paint & Stencti Exposed Piping >20" Pipe Supports			4.001 mb/ea	96	45.62 /mh	4,381	250.05	6,001	25.01	13,503				-	13,503 10,382	20,493 18,041
	Hydrostatic Testing Dresser Couplings 42		6 ea 2	0.021 ch/ll 24.000 mh/ea	126 144	182,49 /ch 40,79 /mh	5,749 5,873	0.16 3,500.00	240 21,000						2	5,990 26,873	9,464 41,159
	Dressler Couplings 72" 12" D) Wall Thimble 24" long		12 ea	35.000 mh/ea 1.250 ch/ea	6 48 60	40.79 /mh 182.49 /ch	26,429 2,737	5,000.00 430.09	108,000 5,161			301.00				134,429 11,510	205,743 17,914
	16" DI Weil Thimble 24" long 20" Di Weil Thimble 24" long		12 ea	1.670 ch/ea 2,508 ch/ea	80 120	182,49 /ch 182,49 /ch	3,657 5,475	575,00 733,60	5,900 8,796	-		402.14 900.35	10,804		la const	15,383 25,075	23,940 39,210
	24" DI Wall Thimble 24" long 72" DI Wall Thimble 24" long			2.500 ch/ea 10.000 ch/ea	120 80	182,49 /ch 182,49 /ch	5,475 3,650	860,00 2,600,00	10,320 5,200		•	1,200.24				30,198 12,050	47,250
1	GaskeVNuts/Bon Kit 6* GaskeVNuts/Bolt Kit 12*			1.000 mh/ea 1.000 mh/ea	38 5	32,89 /mh 45,62 /mh	1,250 228	15.87	603 225						: 	1,853 453	2,694 703
	Gaskel/Nuts/Bolt Kit 16* Gaskel/Nuts/Bolt Kit 24*			1,000 mh/ea 2,000 mh/ea	34 40	32,89 /m/s 45.62 /m/s	1,118	46,64 129,46	1,586 2,590	:			· .		::	2,704 4,415	4,177 5,819
	Gesket/Nuts/Bolt Kit 30" Di Flanged Joint Pipe 2"		16 ea	1.000 mh/ea 0.820 mh/il	16 159	32.89 /mh 30,57 /mh	526 4,863	175.0D 30.99	2,800				· · · · · · · · · · · · · · · · · · ·		· ·	3,326 10,874	5,083 18,819
	DI Flanged Joint Pipe 6" DI Flanged Joint Pipe 12"		373 11	0.908 mh/1 1.890 mh/1	336 100	30.57 /mh 45.62 /mh	10,261 4,571	47.39 112.94	17,675	-	·					27,936 10,557	43,058 16,319
	DI Flanged Joint Pipe 16		340 If	2.170 mh/lf 2.671 mh/ll	738	30.57 /mh	22,552	162.43 267.89	55,226 54,381	-			·		: · 22	77,778	119,510
	Di Flanged Johnt Pipe 24* Di Flanged Johnt Pipe 30*		154 /	3.050 mh/ fl	479	30.57 /mh 30.57 /mh	14,357	310.14	47,762	-	-					62,119	95,213
	DI Flanged John Pipe 72* DI Flanged 90 ell 16"		35 ea 1	6,600 mh/f 12,680 mh/ea	1,208 444	30.57 /mh	13,566	599.40	262,040 20,979	· · · · · · · · · · · · · · · · · · ·			- -			298,958 34,645	456,133 53,311
	Di Flanged 90 ell 20" Di Flanged 90 ell 24"		24 ea 1	14.650 mh/ea 15.730 mh/ea	337 378	30.57 /mh 30.57 /mh	10,299 11,540	939.60 1,458.00	21,611 34,992							31,910 46,532	49,100 71,372
	Di Flanged 90 all 30* Di Flanged Teo 12*			17.870 mli/ea 11.012 mli/ea	840 132	30,57 /m/n 45.62 /m/n	25,673 6,029	2,316,60 777,86	108,889 9,334	:						134,553 15,363	205,882 23,709
	Di Flanged Tee 18 Di Flanged Tee 30			12.680 mh/ea 17.874 mh/ea	152 393	30.57 /mh 45.62 /mh	4,651 17,940	0.00	0	-					: :	4,651 17,940	7,361 28,394
	DI Flanged Cross 72" Di Flanged Con Red 16x12"		6 es 7	72.800 mh/ea 12.680 mh/ea	432 152	30.57 /mh 30.57 /mh	13,205 4,651	39,000.00 890,40	234,000 10,685	:					: ?	247,205 15,336	376,045 23,578
	Di Flanged Con Red 30x16"		.12.ea . 1	17.870 mh/ea 28.520 mh/ea	214	30,57 /mh 30,57 /mh	6,555 1,254	2,721.60 5,224.80	32,659				. <u>.</u>			39,214 11,704	59,942 17,845
· ·	DI Blind Floring 48" Misc Piping & Accessories - ALLOWANCE	· · · · · · · · · · · · · · · · · · ·	.0 ca 2	23,590 mh/ea 0.240 mh/LF	0 120	30,57 /mh 45.62 /mh	5,476	7,186,00	72		-		. j -		-	79	120
	40.01 Above Ground Process Piping		1,500 If	0.240 mi/LP	8,795	45.62 (101	307,474	759.78	1,139,670	15.40	23,105	24,56	36,845			1,507,093	2,310,044
40.02	Valves, Meters, Elc. Water Solonold Valve		12 63	0.400 mh/ea	5	28.04 /mh	135	4,000,00	46,090	-	· ·· ·	-			- -	48.135	73,063
	Magnetic Flow Meter - Inline - 24" w/ transmitter 12" Butterfly Valve, 125 lb class, CI Body, Flg, w/ EIM elec actuator NEMA 4			26.000 mh/ea 9.600 mh/ea	312 230	43.67 /mh 30.57 /mh	13,626 7,043	12,000.00	144,000	-			·		:	157,626	240,117 485,131
	18" Butterfly Valve, 125 lb class, Cl Body, Fig. w/ ElM elec actualor NEMA 4 30" Butterfly Valve, 125 lb class, Cl Body, Fig. w/ ElM elec actualor NEMA 4			14.400 mh/ea 24.000 mh/ea	173 192	30.57 /mh 30.57 /mh	5,282 5,869	8,550.00	102,600 131,872	-			· · · ·		:	107,882 137,741	184,077 209,433
	42" Bullerly Valve, 75 lb class, CI Bedy, Fig. w/ EIM elec actuator NEMA 4			33.600 mh/ea	34 946	30,57 /mh	1,027	23,078.00 762,510,00	23,078		-		-		: :	24,105	36,651
40.04	40.02 Valves, Meters, Etc. Hydropneumatic Piping System		1 15		946		32,981	762,510,00	762,510							795,491	1,209,472
I	Hydropneumatic Piping, Fitting & Valve Allowance 40,04 Hydropneumatic Piping System		1 ls 1 ls	miti / Is		45.62 /mb				38,000.00 38,000.00	38,000					38,009	57,873 57,873
	40 Process Piping		1,091 10		10,028		354,530	980.35	1,951,898	30.69		15.97	37,770			2,405,303	3,676,398
41 41.22	Material Handling & Process Equipment Hoists & Cranes																
	Steet Bracket @ Column To Support Crane Rail Beam		28 ea 700 lí	0.200 mh/ca	6	42.40 /mb	237	726.47	20,341	-	-		. i			20,578	31,248
	W 18 x 156 Crane Rall Beam Erect Steel W 18 x 156 Beams (29' long)		24 ea	5.000 ch/ea	600	197.59 /ch	23,711	83.46	58,422	-		518.13	12,435			58,422 36,146	88,668 57,318
	Bridge Crane 5 ton 26 ft span, 175 ft runway beam 41,22 Hoists & Cranes		2 ea		605	-	- 23,948	-	78,763	-	-		12,435	160,000.00	0 320,000 320,000	320,000 435,147	485,669 662,903
	41 Material Handling & Process Equipment		9 lis		606		23,948	78,763.05	78,763			12,435.00	12,435	320,000.00	320,000	435,147	662,903
43 43.11	Process Equipment Membrane Filtration Equipment																
	Filter Equipment Start-Up @ Basins Suez-ZeetWeed Utrafilination Membrane System		24 ea 7 1 ks	75.000 ch/ea	12,600	350.77 /ch	631,379	2,500.00	60,000					18.594.595.00	18,594,595	691,379 18,594,595	1,090,356 28,221,307
	Install TripleStack Casselle 18' long w/144 Modules/Casselle @ (12) Basins		72 ca	9.000 mh/ea 1.000 mh/ea	648 10,368	30,57 /mih 30,57 /mih	19,807 315,917				÷	55,00		10,024,030.00		23,767	26,221,307 37,652 600,694
	2' x 2' Modules I(Included In Cassettes From Factory) Install Membrane Header Piping System @ Each Basin		12.cə6	64.000 mh / ca	768	30,57 /mh	23,475			:		400.00	4,800		F	28,275	44,794
	Install Air Scour Header Piping System @ Each Basin Install Sodium Hypochknife Dosing System @ Each Basin		12 ea 6	64.000 mh/ea 64.000 mh/ea	768 768	30.57 /m/s 30.57 /m/s	23,475 23,475				-	400.00 400.00	4,800			28,275 28,275	44,794 44,794
43,12	43.11 Membrane Filtration Equipment Air Scour Blowers		1 ls		25,920		1,038,529	60,000.00	58,000			80,568.00	80,568	18,594,595.00	18,594,595	19,773,692	30,084,290
43,1Z	Air Scour Blower 200 hp			40.000 mm\/sa	80	34.45 /mb	2,756			-	-		-	220,000.0		442,756	672,158
	43.12 Alt Scour Blowers 43 Process Equipment		1 ls 1 ls		80 26,000		2,756	60,000,00	60,000			80,560,90	80,568	440,000.00 19,034,595,00		442,756 20,216,447	672,155 30,755,445
	3F Fillration - Construct New Membrane Gravity System		1 Is		66,805		2,627,422	3,598,330,29	3,598,330	2,801,198.24	2,901,196	502,383.03	502,383	19,354,595.00	9 19,354,595	28,983,926	44,197,215
	03 Filtration		1 ls		427,663		17,325,729	18,251,624,26	18,251,624	15,943,385.68	15,943,386	5,025,962.05	5,025,962	52,923,108.51	52,923,109	109,469,809	167,641,124

OUCC Attachment JTP-5

Cause No. 45545 17-6 Attachment 2^{age 31} 54

 $-2c_{1} = 0$ (1)

sville WTP Rehabilitation 6-12			EWSU	Water Treatment Plan	t- Advanced Fac	ility Plan						Cause	ment JTP-5 No. 45545 e 54 of 105	OUCC DR 17	Cause No. 4554 -6 Attachment : Page 32 of 5
1BS WBS WBS VI2 LVI3 LVI4	Description	Takeoff Quantity	Labor Productivity Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Ргосевя Equip Amount	Total Amount	Grand Total Amount
	Chlorine Chlorine - Roplace Chlorine Gas Equipment	nan an bhliaint an stèinn a stèinn air tha an an an an tarta ann an tarta ann an tarta ann an tarta ann an tar	e land be de les le Angeles deux mét aux le présidente dans le Angeles de la Angeles de	nalise in in name (not short of 2)	a di kacamatan kacima ka ka ka ka ka	n na si	na na sera sera sera di seconda sera sera sera sera sera sera sera ser	in 'n broch word in 1985e	fer ang constant ang constant a sa cons		inale and territor and second		n den en ser son son son prese 	8	
	Building & Structure Construction Columns														
	Form Rectangle Columns 15' / Chander	720 st 480 M	0.165 m/h/si 11 0.015 m/h/ii	9 39,49 /m/n 7 39,49 /m/n	4,691 284	1.60	1,149						for each t	5,841 557	9,169 863
	Superdasticizaria @ Columns	720 sf 10 cv	0.005 m/n / s/	4 39.17 /mh	141	0,03	22	-					8000	163	258
	Colum Robar (120 Mon)	. 1 tn 66 st	20.004 mh/tn 1 0.017 mh/sf		522 44	997.70	599	-		: <u> </u>	-		Ş	1,121	1,73
	Pump Place Columns 8 ea	10 cy		1 39,77 /m/s 16 41.39 /m/s	662	· .				7.50	75		1. 11. 1	44	7 1,16
	4980 psi Concrete GrindPatch Columns	10 cy 720 sf	0.013 mih/sf	/cy 9 39.17 /m/h	367	142.00	1,420 22	:			2		1 1	1,420 388 1,878	2,15 51
	Rub Columna: Liquid Curing Compounds	720 sf 720 st	8.085 mil/si 4 0.003 mil/si	7 39,17/mih 2 39,17/mih	1,833 85	0.05 0.06	43 42	-		-	-		1	1,878	2,98
	03.03 Columns	10 cy	21	7	8,630	365.30	3,653			7.50	76			12,357	19,32
03.05	Slab Cn Grade Slab Edge Form 30*	378 sf	0.350 mh/sf 13	12 39,49 /m/h	5,225	1.31	496			<u>.</u>	ente est <u>.</u>		· · ·	5,722	9.02
	Rebar-SOG (125 #/cy) Mesh Support - bricks (12/st)	. 8 tn 165 ea	14.003 m/h/in 11 0.002 m/h/es	2 43,53 /m/h 0 43,53 /m/h	4,876	997.70 0.26	7,982	-			-		1 - 1	12,858	19,83
	Finish-Hard Trowel Pump Place Stab on Grade 3C*	1,372 sf 128 cy	0.015 mh/sf 2 0.500 mh/cy 8	21 39,17 /m/h	805					3.67	470			805	1,2
	4000 psi Concrete	128 cy		/cy	2,649	142.00	18,176	-		3.67	470		-	3,119 18,176	4,84 27,51
	Liquid Curing Compounds Seal Floors	1,750 sf 1,372 sf	0,002 mh/sf 0.092 mh/sf	4 39.17 /mih 3 39.17 /mih	137 108	0,05 0,09	103	· · · · ·]					: :	240 234	31 31
	6 Mil. Vapor Barrier Gravel Fill Under Slab 4"	1,500 sf 17 cy	0.002 m/s/ 8.004 cd/cy	3 43.53 /m/n 2 1,412.15 /cd	. 131 91	0.05	79 497	-	·	3.84	85		0 0	209 654	33
1	03.05 Slab On Grade	128 cy	34	н	14,038	214.87	27,503			4.18	535			42,076	64,8
	Suspended Bearns Bearn Side Forms		0.210, mh / sf 16		6,436	2,21	1,711	-					- · ·	8,148	12,7
	Beam Boltom Forms Chamler	291 sf 368 W	0.210 m/s/ 6	51 39.49 /m/n 6 39.49 /m/n	2,414	2.21	642 220			1	·		-	3,055	4,7
	Ship & Oli Beam Forms Superclast/cizers @ Beams	1.067 sf 22 cy	0.005 min / sf	5 39.17 /mih /cy	209	0.03	32	-		-	. •			241 185	3
	Rebar- Bearrs (250 #/cy)	3 tn	15,003 mh/ln 4	11 43.53 /mh	1,796	997.70	2,744							4,540	7,0
	Finish- Top of Beam Pump Place Beams @ Roof	. 281 sf 22 cy	0.098 mh/sf . 2.001 mh/cy 4	2 39,17 /mih 44 41,39 /mih	. 1,622		· · · · · · · · · · · · · · · · · · ·			14.42	317	· ·		88 2,139	1
	4000 psi Concrete Grind/Patch Beams	22 cy 1,067 sf	0.013 mih/sf 1	/cy 4 39.17/mah	543	142.00 0.03	3,124	-			· · · ·		1 2	3,124 575	4,7
	Rub Bearrs Llquld Curing Compounds	1,057 sf 1,067 sf	0.085 m//sf 9 0.002 m//sf	11 39.17 /m/h 2 39.17 /m/h	3,552 84	0,06 0,05	64 63	-						3,616	5,7
1	03.07 Suspended Beams	22 cy	43	10	17,174	400.75	8,817			14,42	317			26,308	41,0
	Precast Planks Precast Hollow Core Roof Planks 4' wide x 10"	1,283 sf	0.020 mih/sí 2		1,084	8,80	11,293			0,35	452			12,828	19,5
	03.20 Precast Planks	1,283 sf		16	1,084	8.80	11,293			0.35	462			12,828	19,5
	8' CMU + Rigid Insulation Backup To Brick, 22' h	2,820 sí		/s/			• • •	18.00	50,760					50,760	77,0
	Procest Cap 16" x 4" Brick Veneer	145 if 3,480 sf		- ni		-	-	20.00	2,901 31,326	-			: :	2,901 31,326	4,4 47,5
	04.00 Masonry FRP Items	3,480 sf						24.42	84,987					84,987	128,9
	FRP Stairs Grating Type Treads, 7 ea	0 rs	1,000 mh/rs	0 42.08 /mh		368.00				-	4		4	. 4	
	PRP Statrs Grating Landing 4' x 4' w/ Support Frame, 7 ea FRP Feed Pump Tables 6' x 2.5' x 3' h	D es O en	4.001 mh/ea 1.500 mh/ea	0 42.08 /mh 0 42.08 /mh		1,000.00 940.00	10						14	12 10	
	FRP 2 Line Safety Rali @ Pit Statis, 7 ea 05.02 FRP Items	0 # 1 /s	0.200 mh/li	0 42.08 /m/n	0 3	32.00 23.40	0 23	-	-	-	-			0 26	
	Wood														
	Misc Nallers & Blocking D6.00 Wood	1.372 st 1 ls	0,010 m/h/sí 1		544 544	0.40	551 551			-	-		• •	1,095	1,6 1,8
87.00	Moisture Protection Caulting @ Mascory Wall Joints- Exterior (.09 (//s1)	313 U		~				4.00	1,252					1,252	
	Ceufding @ Masonry Wail Joints- Interfor	313 //		. 10 M				4.00	1,252	-			2 1	1,252	1,9 1,9
	07.00 Moisture Protection Roofing	1 is						2,504.50	2,505				1	2,505	3,80
1	Membrane Rooling- 60 mil EPOM Mechanically Atlached w/ 3" Insulation Aluminum Downspouls, 2 ea x 20' each	1,372 sf 40 vf		/sf				3.00	4,117					4,117	8,2
	D7.01 Roofing	1,372 sf		~~~				3.53						720 4,837	1,01
08.00	Doors, Frames & Hardware FRP Single Door Frames- 16 oa 3'x8'	2 68	1.000 mmb/ea	2 39.18 /mb	78	350.07	700							779	1,4
	FRP Door Leads- 3'x7' 20 ga flush w/ Half Glass	2 eə	1,500 mh/ea		\$18	850.17	1,700				-		: :	1,818	2,76
	Overhead Doors- 12/x12' 24 ge steel manual 1" insuation 26 ga back-up panel FRP Framed Windows 14' x 15' h, 2 ea	2 ea 420 sf	6.002 mh/ea 1	-		-	-	3,800,00 105.02	7,600	:	:		- -	7,600	11,5
1	Install Hardware by Leaf- Allowance Finish Hardware @ FRP Deers	2 ea 2 ea		/ca	627	1,250.25	2,501	-		1	-		1 1	627 2,501	9: 3,7
	08.00 Doors, Frames & Hardware Finishes	4 ea		:1	823	1,225.25	4,901	12,927.21	51,709					57,433	67,2
	Palni Door Frames - primer (2) coats Palni Doors - orimer (2) coats	2 ea		/ea		-		100,02	200				2 - S - 2	200	30
	Paint Block Walls w/ Epoxy Coating	2 ea 2,820 sí		/ea /s/		:	· · · -	140.03 2.50	280	-				280 7,051	41
	Epoxy Coaling On Floor & Curbs 09:00 Finishes	1,379 st 1 ls		-		-	-	4.50	6,207		-			6,207 13,738	9,4 20,6
10.00	Specialty Items														
	Signs - Building (D	1, ea 2 sa		. /ea /ea	andra ann an a			3,000,60 30.01	50					3,001	4,5
	Fire Extinguisher CO2 10 lbs 10,00 Specialty Items	2 ea 1 ls		/ea				225.05 3.510.70						450 3,511	6: 5,3:
21.00	Fire Protection (Wet System)														
	Tap Onto Water Main to Provide Separate Water Feed for Suppression System Flow Test	1 ea 1 ca		/ea /ea		-		2,000.40	2,000				· ·	2,008	3,0 1,5

A () A ()

OM 3 Evansville WTP Rehabitation 6-	12-20			EWSU Wate	er Treatment Plant	t- Advanced Faci	lity Pian						Cause	ent JTP-5 No. 45545 <u>55 of 105</u>	Ci OUCC DR 17-	ause No. 45545 -6 Attachment 2 ^{ag} Page 33 of 54
S WBS WBS WBS 1 Lvl 2 Lvl 3 Lvl 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
21.00	Fire Protection (Wet System) Post indicator type & Bachlow Preventer Wet Pipe Fire Protection System Tassing of Fire Protection System 21.00 Fire Protection (Wet System)	1 ea 1,372 st 1,372 sí 1,372 sí 1,372 sf			/ea /sf /sf		-		5,001,00 8,00 2,00 15,83	5,001 10,978 2,745 21,724	-				5,001 10,978 2,745 21,724	7,590 18,662 4,165 32,971
22.00	Plumbing Plumbing Selecentract 22.00 Plumbing	1,372 sf 1 ls			/sf				11.00 15,092,00	15,092 15,092					15,092 15,092	22,905 22,905
23.00	HVAC Vertilation & Unit Heater System 23.00 HVAC	1,372 sf 1,372 sf			Isl		-		45.00 45.00	61,740	-	· -			61,740 61,740	93,784 93,704
31_02 26	Piles Augund Piles CIP 18'x & 20 St doph, 10' oc = 20 ee (1 per 70 sf) 31_02 Piles 00 Building & Structure Construction Electrical & Instrumentation	500 vf 20 sa 1,372 gsf	0.002 cd/vf	56 56 1,104	2,145.97 /cd	2,147 2,147 44,443	35.16 878.91 64.17	17,578 17,578 74,318	- 180,39	259,842	2.58 54.51 1.95	1,290 1,290 2,669		· ·	21,016 21,016 381,272	32,131 32,131 581,749
26.00	Le Glendrica Est Futures - Ees - ductank Conduit/CableWire Building Ekschical System 5.500 UG Electrical	100 lf 1,372 sf 1 ls	0.250 mih/∦í	25 25	45.53 /min /s/	1,138	2.72	212	16.00 21,956.38	21,956 21,955	5.00	500		-	1,910 21,955 23,867	3,010 33,324 36,334
26.01	Above Stound Electrical Budleng Electrical System Process Electrical System 25.01 Above Ground Electrical	1,372 st 1,372 st 1 is			ist Ist				16.00 60.01 104,292.81	21,956 82,335 104,293					21,956 82,336 104,293	33,324 124,963 158,287
26.02	Instrumentation & Controls Conciet & Instamentation 20 Eloctrical & Instrumentation & Controls 20 Eloctrical & Instrumentation	1 is 1 is 1 is		25	Λs	1,138	272.00	272	71,070.00 71,070.00 197,319.19	71,070 71,070 197,319	500.00	500			71,070 71,070 199,229	197,864 197,864 302,484
4D 40.01	Process Piping Above Ground Process Piping Chapter Ping & Accessates Mole Water Supp / Ping & Accessates 40.01 Above Ground Process Piping 40 Process Piping	200 LF 200 LF 400 lf 400 lf	0.240 mìr/LF 0.240 mìr/LF	48 48 96 95	45.62 /mh 45.62 /mh	2,190 2,190 4,381	55.01 55.01 55.01 85.01	11,002 11,002 22,004	-		Ţ.		:	· · · · · ·	13,192 13,192 26,385	20,165 20,185 40,330
41 41.22	Nor Flocks Flying Natrici Handling & Process Equipment Holpsis & Crane6 W 18 x 158 Bigge Care Columes 14 h x 4 ee W 18 x 158 Crane RallBeam Encd Suel W 54 K6 Bearrs & Columes Bridge Care 3 ton 24 S fi spar, 26 fi noway beam 41.22 Polists & Cranes	56 f 72, if 4 ea 1 eâ	5.000 ch/ea	100	197.59 <i>ic</i> h	4,381 - 3,952 3,952	83,46 83,46	22,004 4,674 6,009 10,683	· · · · · · · · · · · · · · · · · · ·	· · · · ·	518.13	2,073	96,000.00	96,600	26,385 4,674 6,009 6,024 95,000	40,330 7,093 9,120 9,553 145,701
43 43.13	al.22 noists & Unines 41 Material Handling & Processe Equipment Process Equipment Chemical System Equipment	1 18		100		3,952	10.682.88	10,683			2,072.50	2,873	06,000.00	96,000 96,000	112,707 112,707	171,487 171,467
45	Charlinstein Spare Chlorine Cylinder Rack 21" x 4.67" Solukon Tanels, 1" Chlorine Lark Detactor Chlorine Gale Educators Chlorine Sales Ad,13 Chomical System Equipment 43,13 Chomical System Equipment 43 Procens Equipment 44 Chlorine - Arbitenet	4 88 1 88 2 83 1 89 6 88 4 73 6 88 5 88 1 15 1 15	1,000 mà/ea 1,000 mà/ea 2,000 mà/ea 2,000 mà/ea 1,000 mà/ea 1,000 mà/ea 1,000 mà/ea	4 1 2 6 4 6 27 27 27 1,352	30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh 30.57 /mh	122 31 122 61 183 122 183 825 825 54,739	107,277,69	107,278	- - - 457,361,58	457,162	5,241.42	5,241	9,500.00 6,000.00 8,000.00 4,000.00 5,000.00 6,000.00 140,000.00 140,000.00 236,000.00	140,000	38,122 6,031 16,122 61 24,183 20,122 36,183 140,625 140,625 860,419	57,867 9,155 24,477 97 36,716 30,548 54,928 213,786 1,359,816
60 03,03	Building & Structure Construction Columns Form Reclarings Columns 15 h	1,080 sf 720 ⊯	0.165 m/h/s/ 0.015 m/h/f	178 11	39,49 /m/h 39,49 /m/h	7,037 427	1.60 0.57	1,724 408	:	· · · · ·	2		:		8,761 835	13,754 1,205
	Sirja & Gi Columo Form Supopaliatilizza & Columna Columo Relari (120 #/07). Finan-Flout Purce Pleve Columns 12 na 4000 psi Concrete	1,080 sf 15 cy 1 tn 99 sf 15 cy 1S cy	0.005 mih/sf 20.004,mih/m 0.017 mih/sf 1.600 mih/cy	5 20 2 24	39,17 /mh /cy . 43,53 /mth 39,17 /mh 41,39 /mth /cy	871 871 994	0.03 8.40 997.70 	32 126 998 			7,50	112			244 125 1,868 85 1,106 2,130	384 191 2,892 104 1,751 3,233
	GrindPatch Columo Rub Caharo Liquid Currag Compounds 8.0,30 Cahurana	1,080 sf 1,080 sf 1,080 sf 15 cy	0,013 mb/sf 0.065 mb/sf 0.003 mb/sf	14 70 3 328	39.17 /mh 39.17 /mh 39.17 /mh	550 2,750 127 13,031	0.03 0.06 0.06 371.95	32 65 64 5,579	-		7.50			1	582 2,814 190 18,723	920 4,450 297 29,272
03,05	Slab Cn Grade Slab Cn Grade Slab Cn (35 Mrg) Rebu-SOQ (125 Mrg) Rebu-SOQ (125 Mrg) Frisk-Heat Trond Frisk-Heat Trond Grade 30** 4000 mit Grade 30*	428 si 11 tn 218 ea 1,819 si 169 cy 169 cy	0,350 min /sf 14.003 min /sf 0.002 min /ea 0.015 min /sf 0,500 min /cy	150 148 0 27 85	39,49 /mh 43,53 /mh 43,53 /mh 39,17 /mh 41,39 /mh /cy	5,916 5,461 19 1,069 3,498	1.31 997.70 0.26	562 10,576 57 	- - - - -		3.67	820			6,478 17,036 76 1,069 4,118 23,998	10,217 26,275 117 1,692 6,524 35,422
	Liquid Curing Compounds Seal Poors 6 MR, Vapor Barrier Graved Fill Under Slab 4* Olau S Slab Cho Grade	2,247 sf 1,819 sf 2,000 sf 50 cy 169 cy	0.002 mih/sf 0.002 mih/sf 0.002 mih/sf 0.002 mih/si 0.004 cd/cy	4 4 4 6 429	39.17 /mh 39.17 /mh 43.53 /mh 1,412.15 /od	175 143 174 268 17,723	0.06 0.09 0.05 29.26 219.30	132 168 105 1,463 37,061	-		3.04 4,81	102 812			23,000 308 311 279 1,922 55,595	479 481 435 2,949 85,591
03.07	Suspended Bearns Hearn Sde Forms Hearn Bhoton Forms Chamfer Stup & Ol Bearn Forms Stup & Ol Bearn Forms	1,103 sf 414 sf 552 ii 1,517 sf 31 cy	0.210 mh/sf 0.210 mh/sf 0.015 mh/lí 0.005 mh/sf	232 87 8	39.49 /mh 39.49 /mh 39.49 /mh 39.17 /mh /cy	9,148 3,434 327 297	2.21 2.21 0.57 0.03 8.40	2,433 913 313 46 260	-					· · · · · · · · · · · · · · · · · · ·	11,581 4,347 640 343 269	18,171 8,820 993 539 395

OUCC Attachment ITP-5

3S WBS		Description	keoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Gran
	3.07	Suspended Beams	· · · · · · · · · · · · · · · · · · ·				na anna an Anna	ala sense a constante de la cons	نې وه. د د د د د منځنه د د د	in e monte heards	da richanos mansimilas prese (nalib	éreszteszerekszelere	maracentresson and a col	hadaan ka ahada ayaa tir is	n hanna an anna a suararaid T	hainda tha an	adaannaa
		Rebar-Beams (250 W/cy)	4 tn 414 sf	15.003 m//tn 0.008 m//sf	60 3	43.53 /mh 39.17 /mh	2,612	997.70	3,891	-		<u>.</u>	- N		: :	5,603	
		Pump Place Beams @ Roof	31 cy	2.001 mh/cy	62	41.39 /mh	2,567					14.42	447		-	3,014	
		4000 psi Concrete Grind/Patch Beams	31 cy 1,517 sf	0.013 mh/s1	20	/cy 39.17 /mh	773	142.00 0.03	4,402		-	ī				4,402	
		Rub Beams	1,517 sf	0,085 mh / sf	129	39.17 /mh	5,050	0.05	91				en na ĝ		Q - 1 - 2	5,141	11
		Liquid Curing Compounds	1,931 sf	0,002 mih/s/	4	39.17 imh	151	0.08	114	*	-		-	· · · · · · · · · · · · · · · · · · ·		265	
		03.07 Suspended Beams Pade & Curbs	31 cy		612		24,490	406.70	12,608			14.42	447			37,545	5
		Pads a Curbs Pad Form	150 sf	0.120 mh/st	18	39.49 (mb	711	1.37	205		-				21	916	in in
		Charder	150 li	0.015 mb/f	2	39.49 /min	89	0.57	85			-	-		2	174	
		Strip & Oli Equipment Pad Forms Rebar- Pads (100,#/cy)	150 sf 1 tri	0.005 mh/sf 18.003 mh/tn	1 18	39,17 /mh 43,53 /mh	29 784	0.03	5.098			-	•		••	1,781	
		Finish-Ficat	444 sf	0.017 mh/s/		39.17 (mh	296	-	-	-						296	
		Pump Place Pads	16 cy 16 cv	1.601 mh/cy	26	41.39 /mb	1,060	142.00				7.49	120		1	1,180	0
		4000 psi Concrete Liquid Curino Comecunds	16 cy 594 st	0.003 mb/si	2	/cy 39.17 /mb	70	142.00	2,272	1		-			1 1	2,272	2
		03.08 Pads & Curbs	16 cy		74		3,038	224.94	3,599			7.49	120			6,757	
.0		Precast Planks															
		Precast Hollow Core Roof Planks 4' wide x 10"	1.726 s!	0.020 mh/sť	35	42,24 /min	1,458	8.80	15,192		-	0.35	507			17,258	
		03.20 Precast Planks Masonry	1,726 sf		35		1,458	8.80	15,192			0.35	607			17,258	8
u		Masonry 8' CMU + Rigid Insulation Backup To Brick, 22' h	3,190 sf			ist.		2	· · · · · · · · · · · · · · · · · · ·	18.00	57.420					57.420	
		Precast Cap 16" x 4"	164 II			Al		·· · -		20.00	3,281	· · · · · · · · · · · · · · · · · · ·	· · · ·		. :	3,281	31
		Brick Veneer 94.00 Masonry	3,938 sf 3,938 sf			-		-	-	9,00 24,42	35,449				• •	35,449	
		04.00 Masonry FRP Items	3,938 51							24.42	98,150					96,150	0
u	10.02	FRP Stairs Grating Type Treads, 7 ea	10 ms	1.000 min / rs	10	42,08 /mh	421	367.57	3,676							4,091	17
		FRP Grating w/ Support Frame	522 SF	0.250 mh/SF	131	42,08 /mh	5,492	63.00	32,886	-		-	.			38,376	в
		FRP 2 Line Safety Rell 05.02 FRP Items	127 #	0.200 mh/11	25 166	42.08 /m/n	1,059	32.21	4,090			-	•	· · · · · · · · · · · · · · · · · · ·		5,159	9
~		US.02 FKF mems	1 Is		165		6,982	40,651.95	40,652						· · · · · ·	47,634	4
U		Mise Nations & Blocking	1.819 sf	0.010 mb/si	18	39.67 /m/h	722	0.40	730				· · · ·		2.1.1.1.1	1,452	12
		96.00 Wood	1 15		18		722	730.02	730							1,452	2
o		Moisture Protection															
		Caulking @ Masonry Wall Joints- Exterior (.09 l/sf)	354 W 354 W			NI				4.00	1,415		-		-/	1,416	6
		Cauking @ Masonry Wall Joints-Interior 07.00 Moisture Protection	354 a 1 ls			Ħ				4.00 2,832.56	1,416 2,633				-	2,832	
0		Roofing	. 15							2,002100						2,032	3
		Membrane Roofing- 60 mil EPDM Mechanically Attached w/ 3* Insulation	1,819 sf			/sf				3.00	5,45B					5,456	j6
		Aluminum Downspouls, 2 ea.x 20' each	40 ví			M				18.00	720					720	
		07.01 Roofing	1,819 sf							3,40	6,178					6,178	8
0	00.80	Doors, Frames & Hardware FRP Single Door, Frames- 16 ga 3x8°	1 ea	1.800 m/h/ea	,	39,18 /mh	39	350.67	350		-					385	
		FRP Double Door Frames- 16 ga 3'x8'	2 ea	1.250 mh/ea	3	39.18 /mh	98	650,13	1,300				· · ·		: :	1,396	96
		FRP Door Leats- 3'x7' 28 ga. Ilush w/ Hall Glass	5 ea	1.500 mh/ea	8	39.18 /mh	294	850.17	4,251			•			·	4,545	5
		Overhead Doors-, 14%14' 24 ga steel chain hoist 1' insualion 26 ga back-up panel FRP Framed Windows 14' x 15' h, 2 ea	2 ea 420 sf			-			<u>-</u>	5,975.00 105.02	11,950 44,109	· · · · · ·]				44,105	0
		Install Hardware by Leaf- Allowance	5 ea	8.002 mm/ea	40	39.18 /m/s	1,567									1,567	37
		Finish Hardware @ FRP Doors	5 ea			/ea		1,250.25	6,251		-	-	•			6,251	51
~		08.00 Doors, Frames & Hazdware Finishes	7 ea		51		1,998	1,738.06	12,152	8,008.40	56,059					70,216	0
0	/9.00	Paint Door Frames - primer (2) coats	3 ea			/ea		-		100.02	300				· · · ·	300	10
		Paint Doors - primer (2) coats	5 ea			/ea				140.83	700				÷	700	00
		Paint Block Wals w/ Epoxy Coaling Epoxy Coaling On Floor & Curbs	3,190 sf 1,819 sl			/st		-		2.50 4.50	7,977 8,187	-	•	· · · · · · · · · · · · · · · · · · ·		7,977 8,181	
		09,00 Finishes	1 ls			-	-	•		17,163.92	17,164	•	[*]		· ·	17,164	
1		Specially items							an a								•
		Signs - Bulking ID	1 ea			/ea			***	3,000.60	3,001					3,001	л
		Signs - Deors. Fire Extinguisher CO2, 10 lbs	3 ea 2 sa			/es /ca				30.01	90 450	-	•			90	
		10,00 Specialty Items	1 ls							3,540,71	3,541					3,541	
2		Fire Protection (Wet System)															
		Tap Onto Water Main to Provide Separate Water Feed for Suppression System	1 ea			/ea		-		2,000,40	2,000		•			2,000	
		Flow Test Post Indicator Valve & Back/Izw Preventer	1 ea 1 ea			/ea /ea		2		1,000.20 5,001.00	1,000			-	5	1,000	
		Wet Pipe Fire Protection System	1,372 sf			/sf	and the second second second	-		8.00	10,978	-			1 1	10,978	78
		Testing of Fire Protection System	1,372 sf			/st		-		2.00	2,745		•			2,74	
2		21.00 Fire Protection (Wet System) Plumbing	1,372 sf						and the second	15.83	21,724					21,724	.4
4		Plumbing Subcontract	1.819 sf			161				11.00	20,009					20,005	J9
		22,00 Plumbing	1 Is			-				20,009.80	20,009					20,005	
2		HVAC															
		Ventilation & Unit Heater System	1,819 sf			/sf		-:	.*	45.00	81,855		-			81,855	
		23.00 HVAC Piles	1,819 sf							45.00	61,855					81,655	5
3		Piles Augered Piles CIP 18" x @ 25 lt depth, 10' oc = 26 es (1 per 70 sl)	650 vl	0.002 cd / vf	73	2.146.97 /cd	2,792	35.16	22.852		· · · .	2.58	1.677			27,321	21
		31_02 Piles	26 ea	01002 00111	73	2,000000000	2,792	878.91	22,852	-		64.51	1,677		•	27,321	
		00 Building & Structure Construction	1,819 gst		1,785		72,235	82.70	150,425	167,96	305,512		3,776			531,948	
26		Electrical & Instrumentation															
2		UG Electrical							· · · · · ·								
		Ext Fixtures - Elec - ducibank Conduit/Cable/Wire Building Electrical System	100 lí 1.819 sí	0.250 mh/l	25	45.53 /min /sf	1,138	2,72	272	16.00	29.110	5.00	500			1,910	0
		Convergences Cystem	1,019 \$1			/51										29,110	
		26.00 UG Electrical	1 ls		25		1,138	272,00	272	29,109.81	29,110	500.00	500			31,020	9

Page 34

Report Date: 6/11/2020 1:19 PM

OUCC Attachment JTP-5 Page 56 of 105

Attachment JTP-5 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment $\mathcal{P}^{age 34}$ Page 56 of 105 Page 34 of 54

EWSU Water Treatment Plant- Advanced Facility Plan

1. I

AECOM 28-018 Evansville WTP Rehabilitation 6-12-20

nsvile WTP Rehabiliation	n 6-12-20	Wager Scare Name State		EWSU Wai	ler Treatment Plan	t- Advanced Fac	ility Plan						Cause	nent JTP-5 No. 45545 57 of 105	COUCC DR 17	ause No. 4554 -6 Atlachment Page 35 of 9
NBS WBS WB LVI2 LVI3 LVI		Takeoff Quantity	/ Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
26.01	Process Electrical System	1,819 st			/s/				60.01	109,162				the state of the state of the state	109,162	165,67
26.02		1 Is							138,271,60	138,272					138,272	209,8
	Controls & Instrumentation 25.02 Instrumentation & Controls	1 ls			Лs				94,224.00 94,224.00	94,224 94,224					94,224 94,224	143,0 143,0
40	26 Electrical & Instrumentation Process Piping	. 1 fs.		25		1,138	272.00	272	261,605.41	261,605	500.00	500			263,516	400,05
40.01	Chlorine Piping & Accessories	200 LF	0.240 mh/LF	48	45.62 /mh	2,190	55.01	11,002		ан сайн сайн Сайн сайн сайн сайн сайн сайн сайн сайн с		· · · · · ·			13,192	20,11
	Motive Water Supply Piping & Accessories 40,01 Above Ground Process Piping	200 LF 400 If	0,240 mh/LF	48 96	45.62 /mh	2,190 4,381	55.01 55.01	\$1,002 22,004		-	•	•			13,192 26,385	20,11
43	40 Process Piping Process Equipment	400 lf		96		4,381	55,01	22,004							26,385	40,33
43.00	Transfer Pumps 3 hp, 100 gpm		35.000 mh/ea	140		5,688	1,500.30	6,001					20,000.00	80,000	92,690	141,11
	Sollened Water Pumps < 1 hp. 65 gpm Metering Pump	4 ee 8 ca	12.080 mh/ea 10.000 mh/ea	48 80	47.77 /mh 34.45 /mh	2,293 2,756	200.00	800			:		5,000.00 2,448.00	20,000	23,093 22,340	35,15 34,08
	Hose Pumps 43.00 Pumps	8 e9 1 ls	10.000 mh/es	80 348	34.45 /mh	2,756 14,493	6,801,20	6,801		-	-	-	19,500.00 275,584.00	156,000	158,756 296,878	241,12 451,51
43.13	Water Softnar 100 GPM	4 ea	54.000 mh/ea	216	24.89 /mh	5,375							1,800.00	7,200	12,575	19,43
	Fiberglass Tanks 10.000 gal, r2 Olameter x 11.41'h Hydrochorite) Day Tank 5.67' diameter, 1000 galkn Wall M Residual analyzer		1,420 cd/ea 1.000 mh/ea 1.000 mh/ea		1,757,90 /cd 41,79 /mh 30,57 /mh	2,496 125 122			1.1		1,056.45	1,056	13,500.00 3,500.00 7,000.00	10,500	17,053 10,625 25,122	26,12 16,13 42,69
	Chlorine evaporator Soluion Panels 1*	4 ea 2 ca	2.000 mh/ea 2.000 mh/ea		30.57 /mh 30.57 /mh	245				· · ·	-	1 - E	4,000.00		28,122 16,245 16,122	42,61 24,61 24,41
	Chlorino System Testing Chlorino Leak Detector	1 ca 4 ca	2.000 mh/ea 1.000 mh/ea	2	30.57 /mh 30.57 /mh	61 122			:		:	-	4,000.00		61 16,122	24,4
	Chlorine Gas Educators Chlorine Scales	4 ea 1 ea	1.000 m/h/ea 1.000 m/h/ea	4	30,57 /mh 30,57 /mh	122				-	:	:	5,000,00 6,000.00	20,000 6,000	20,122 6,031	30,5
	43.13 Chemical System Equipment 43 Process Equipment	1 is 1 is		303 651		8,822 23,315	6,801,20	6,801			1,056.45	1,058 1,056	133,200.00 408,704.00	133,200	143,079 439,957	217,80
;	4B Chlorine - Add New Liquid Hypochforlte Feed Chforine - Add New Onsite Generation of Hypochlorite Facility	t is		2,557		101,069	179,502.10	179,502	567,117.72	567,118		5,333	408,784.00		1,261,805	1,922,02
90 03.03	Building & Structure Construction															
43.05	Form Rectangle Columns 15"h Chamfer	1,350 s/ 900 t/	0.165 mh/s/ 0.015 mh/ff	223	39.49 /mh 39,49 /mh	8,796 533	1.60 0.57	2,155 510		, ·		, .	-		10,951	17,1
	Strip & Oil Column Form Superplasticizers @ Columns	1,350 si 19, cy,	0.005 mh/s/	7	39.17 /mh /cv	284	0.03 8.40	41	-		-	-			1,044 305 160	1,61 48 2-
	Column Rebar (120 #/cy) Finish- Float	1 tri 68 si	20.004 mh/tn 0.017 mh/sf	23	43.53 /mh 39.17 /mh	1,001 45	997.70	1,147	<u>-</u>			· · · · ·			2,149	3,32
	Pump Place Columns 15 es 4000 psi Concrete Gindeffacton Columna	19 cy 19 cy 1 350 sf	1.600 m/t/cy 0.013 m/t/sf	30	41.39 /mh /cy 39.17 /mh	1,258	142.06	2,698			7.50	142			1,401 2,698	2,21 4,09 1,15
	Ginboratin Louinne Rub Columnis Liquid Curing Compounds	1,350 Sr 1,350 Sf 1,350 Sf	0.065 mh/sl 0.003 mh/sl 0.003 mh/sl	88	.39,17 /m/n .39,17 /m/n .39,17 /m/n	687 3,437 159	0.06	41 81 79		-		:			728 3,518 238	5,56
03.04	03.03 Columns	. 19 cy		407	33.11 HIN	16,182	363,78	6,912			7.50	142			238 23,236	37 36,33
03.04	≪ vanis Keyway 6* Job Bulk with Phylonn 0–4*	48 W 383 sf	0.050 _ mh / # 0.120 _ mh / sf	2	39,49 /mh 39,49 /mh	95 1,815	0.67 1.34	32 515				1.1	-		127 2.330	15
	Waterstop 6" Fish Strip & Oil Wail Forms	48 lí 383 sí	0.110 mh/ff 0.005 mh/sf	5 2	39.18 /mh 39.17 /mh	207	2.10	101	-		-		-		2,330 308 87	3,65 48 13
	Superplasiicizers @ Walls Rebar- Walls (125 #/cy)	5 cy Dia	. 15.003 , mh / tn	5	/cy 43.53 /mh	202	8.40 997,70	42			:				42 512	7
	Finish- Top of Wall Pump Place Walls 12*	48 sf 5 cy	0.008 mil/sf 1.150 mil/cy	0 6	39,17 /mh 41.39 /mh				1		6.65	33			15 271	2 43
	4000 pai Concrete Grind/Patch Walks Rob Walks	5 cy 383 s/ 383 s/	0.013 mh/sí 8.058 mh/sí	5 22	/cy 39,17 /m/n 39,17 /m/n	195 870	142.00 0.03 0.06	710 11 23					-		710 207	1,01
	Liquid Crimg Compounds 03.04 Walls	431 s/ 5 cy	0.002 mh/s1	1 94	39,17 /mh	34 3,746	0.05 355.09	23 25 1,780	:		- - 6.65	33	-		893 59 5,560	1,41 £ 8,65
03.05	5 Siab On Grade Siab Edge Form 30*	1,555 s/	0,350 mml/sf	544	39,49 /mh	21,486	1,31	2.041			0.05					
	Rebar-SOG (125 #/cy) Mesh Support - bricks (.12/s/)	13 th 264 ea	14.003 mh/tn 0.002 mh/ea	182	43.53 /mh 43.53 /mh	7,924	997.70 0.26	12,970			-		-		23,537 20,894 92	37,1: 32,2: 14
	Finish- Hard Trowel Pump Place Stab on Grade 30*	2,200 sf 203 cy	0.015 min /st 0.500 min /oy	33 102	39,17 /mh 41,39 /mh	1,293 4,202		:			3.67	745	-	-	1,293 4,947	2,04
	4000 psi Concrete. Liquid Curing Compounds	203 cy 3,755 sf	0.002 mit/sf	a	/cy 39,17 /mh	294	142.08 0,05	28,825 221						I	26,826 515	43,75
	Seal Floors 6 Mil Vapor Barrier Gravel Fill Under Stab 4"	2,200 sl 2,400 sl 27 cy	0.002 m/n /sf 0.002 m/n /sf 0.004 cd /cy	. 5	39.17 /mh 43.63 /mh 1.412.15 /cd	172 209 145	0.09 0.05 29.26	203 128 790			3,84	104			376 335 1,038	58 52 1,59
03.07	03.05 Slab On Grade	203 cy		881		35,757	222.89	45,247			4.19	849			1,038 81,852	1,59 128,61
03.07	/ Suspended Beams Beam Side Forms Beam Battom Forms	1,329 st 498 st	0.210 mh/si 0.210 mh/si	279	39,49 /mh 39,49 /mh	11,023 4,130	2.21	2,931		· · ·	-				13,954 5,229	21,89 8,20
	Chanfer Sulp & Oil Beam Forms	664 ď 1.827 sí	0.015 mit/st 0.005 mit/st	10	39,49 /mh 39,49 /mh 39,17 /mh	4,130 393 	0.57 0.03	377 65	-						5,229 770 413	1,19 65
	Superplasticizers @ Beams Robar- Beams (250 #/cy)	. 37 cy 5 in	15.003 mh/tn	63	/cy 43,53 /mh	3,024	8.40 997.70	311 4,619	-		-	ŝ			311 7,643	47 11,79
	Finish Top of Beam. Pump Place Beams @ Roof	496 sf 	0.008 mh/sf 2.001 mh/dy	4 . 74	39.17 <i>lmh</i> 41,39 <i>lm</i> h	156 3,064	-	•	-		14.42	534			156 3,598	24 5,69
	4000 psi Concrete Grind/Patch Beams Rub Beams		0.013 m/n/s/	24	/cy 39.17 /mh	930	142.00 0.03	5,254	· · · · ·	1			·········		5,254 985	7,97
	Liquid Guring Compounds	1,827 sf 2,325 sf	0.085 mh/sf 0.002 mh/sf	155	39,17 /mh 39,17 /mh	6,082 182	0.06 0.05	110. 137							6,192	9.71

Page 35

<File name>

and the second sec

ville WTP Rehabilitation 6	112:20			EWSU Wa	ater Treatment Plan	t- Advanced Fac	ility Plan					OUC			OUCC DR 17-	ause No. 4554 6 Attachment Page 36 of 5
35 WBS WBS 12 Lv13 Lv14		Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Arnount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Totel Amount	Grand Total Amount
maarin oo ahaa oo a	03.07 Suspended Beams	37 су		734	and a second	29,344	403.95	14,948	yn e'r e'r ar eryn yr felyndafol		14.42	și	ha haaraa ahaanaa a	 Material Million for Parameters 2 	44,823	69,97
63.08	Pads & Curbs Pad Form	398 sf	0.120 mh/sf	48	39,49 /mh	1,885	1.37	543		·	-	· .			2,430	3,8
	Chamler Strip & Oil Equipment Pad Forme	408 II 398 sf	0.015 mh/lí 0.005 mh/si	6 2	39.49 /m/n 39.17 /m/n	242 78	0.57	. 231 12	:		-	·		1	473	7
	Rebar-Pads (100 #/cy) Finish-Float	2 tn 1,011 sf	18.003 mh/to 9.017 mh/si	38 17	43.53 /mh 39.17 /mh	1,646 673	897.70	2,095	:					1	3,741 673	5,7 1.0
	Pixing Place Pads 4000 psi Concrete	42 cy 42 cy	1.601 mh/cy	67	41,39 /m/n /cy	2,782	- 142.00	5,964			7.49	315			3,097 5,964	4,9 9,0
	Liquid Curing Compounds	1,409 sf	0.003 mh/si	4	39.17 /mh	166	0.06	83	:			, i i i		2 1	248	3
03.20	03,08 Pads & Curbs Precast Planks	42 cy		182		7,473	212.59	8,929			7.49	315			16,716	25,8
00.20	Precast Hollow Core Roof Planks 4' wide x 10"	2,078 st	0.020 mh/s1	42	42,24 /mh	1,756	8.60	18,290			0,35				20,777	31,7
04.00	03.20 Precast Planks Masonry	2,078 sf		42		1,756	8.60	18,290			0.35	731			20,777	31,7
04.00	8' CMU + Rigid Insulation Backup To Brick, 22' h	3,614 sf			. Ist		-	. 4	18.00	65,053	-				65,052	98,7
	Precast Cap 16" x 4" Brick Venser	185 M 4,460 sf			. Al	· · · -	-	1		40,148	· · · · ·	-			3,721 40,145	5,6 60,9
	84.00 Masonry	4,460 sf							24,42	108,921					108,921	165,3
05.02	FRP Items FRP Stairs Grating Type Treads, 7 ea	12 rs	1.000 mh/rs	12	42.08 /mh	505	367.57	4,411		1997 - 19	-	· · · · · · · · · · · ·			4,916	7,4
	FRP Graling w/ Support Frame FRP 2 Line Safety Rail	164 SF 112 K	0.250 mh/SF 0.200 mh/ii	41 22	42.08 /mh 42.08 /mh	1,725 943	63.00 32.21	10,332 3,607						2 1	12,057 4,550	18,4 6,9
	05.02 FRP Items	1 ls		75		3,173	18,350.00	18,350							21,523	32,8
06.00	Wood Mise Nallers & Blocking	2,200 sf	0.010 min / sf	22	39.67 /mh	873	0.40	. 883							1,756	2,7
	06,00 Wood	1 Is		22		873	882,93	883							1,756	2,7
07.00	Moisture Protection Caviling @ Masonry Wall Joints- Exterior (.09 II/sf)	401 W			41				4.00			· .			1,604	2,4
	Caulking @ Mesonry Wall Joints- Interior 07.00 Moisture Protection	481 l/ 1 ls			nt				4.00 3,208.64	1,604					1,604	2,4
07.01	Roofing															4,0
	Membrane Rooling- 60 ml EPOM Mechanically Attached w/ 3* Insulation Auminum Downspouts, 3 ea x 20° each	2,20D st 60 vf			lst M				3.00 16.00	5,601					6,601 1,080	10,0 1,6
	07.01 Roofing	2,200 sf							3.49	7,683					7,682	11,6
08,00	FRP Double Door Frames- 16 os 3'x8'	2 ев	1.250 mb/ea	3	39.18 /mh	98	650.13	1,300	-						1,398	2,1
	FRP Door Leafs- 3x7' 20 ga. flush w/ Half Glass Overhead Doors, 12'x12' 24 ga steel manual 1' insustion 26 ga back-up panel		1,500 mh / ea	. 6	39,18 /mh	235	850,17	3,401	3,800.00	3.600					3,636	5,5
	FRP Framed Windows 14' x 15' h, 4 ea	840 sf	8.602 m/h/ea	32					105.82						88,218	133,6
	Install Hardware by Leaf-Allowanco Finish Hardware @ FRP Doors	4 ea 4 ea	0.002 mm/ea		39,18 /mh /ea	1,254	1,250.25	5,601							1,254	1,9 7,5
09.00	08.00 Doors, Frames & Hardware Finishes	5 ea		41		1,587	1,940.39	9,702	18,403.53	92,016					103,307	156,8
00.00	Paint Deor Frames - primer (2) coals	2 ca			/ea			-	100,02	200	· · · -	· ·		-	209	3
	Paint Doors - primer (2) coats Paint Block Wells w/ Epoxy Coating	. 4 ea 3,614 sf			. /ea /sf			· 1	140.03 2,50	9,037					560 9,037	8 13,7
	Epoxy Coaling On Floor & Curts 09.00 Finishes	2,200 sf 1 ls			-			•	4.50 19.698.93	9,902 19,695		-			9,902 19,699	15,0 29,6
10.00	Specialty Items															
	Signs - Building (D Signs - Doors	1 ea 2 es			lea /ea				3,000.60	\$(-				3,601	4,5
	Fire Extinguisher CO2 10 8as 10.00 Speciality items	2 eə 1 is			/ea				225.05 3,510.70	450 3,511					450 3,511	6 5,3
21.00																
	Tap Onto Water Main to Provice Separate Water Feed for Suppression System Flow Test	1 es			/ев /ез		·	- 10 - E	2,000.40	2,000	-	(.		20 1 2	2,000 1,000	3,0 1,5
	Post Indicator Valve & Backbow Preventer Wet Pipe Fire Protection System	1 ea 2,200 si			/ea iel		-		5,001.00 8.00	5,00	-				5,001	7,5 26,7
	Testing of Fire Protection System	2,200 sf			/sf				2.00	4,401	-	-			4,401	6,8
22.00	21.00 Fire Protection (Wet System) Plumbing	2,200 sf				1999 - 1999 - 1994 1997 - 1997 - 1994 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1			13.64	30,000					30,006	45,5
22.00	Plumbing Subcontract	2,200 sf			/sf	-			11.00	24,208					24,200	36,7
23.00	22.00 Plumbing HVAC	1 Is						•••••	24,200.00	24,200					24,200	36,7
	Ventilation & Unit Heater System	2.200 sf			/si	and a grand d	- '	····· <u>·</u>	45.00						99,000	150,2
31_02	23.00 HVAC Piles	2,200 sf							45.00	99,000					99,000	160,2
	Augered Piles CIP 18" x @ 25 ft depth, 10" oc = 32 ea (1 per 70 sf)	1v 008	0.002 cd/vf	90	2,146.97 /cd	3,436	35.16	28,125			2.58				33,625	51,4
	31_02 Piles 00 Bullding & Structure Construction	32 ea 2,200 gs!		90 2,558		3,435 103,325	878.91 £9,62	28,125 153,164		388,244	64.51 2.12				33,625 649,402	51,4 892,6
26	Electrical & Instrumentation															
26.00	UG Electrical Ext Fixtures - Elec - ductbank /Condul#CableWire	100 #	0.250 mh/il	25	45.53 /mh	1,138	2.72	272			5.00	500		1.	1,910	3,0
	Bulding Electrical System 26,00 UG Electrical	2,200 si 1 ls		25	/sf		272.00		16.00	35,207					35,207	53,4
26.01	Above Ground Electrical			25		1,138	×12.00	272				505			37,117	58,4
	Building Electrical System Process Electrical System	2,200 sf 2,200 sf			ist Ist	5 5 5 5 S		sa sa sa si	16.00	35,20					35,207 132,026	53,4 200,3
	26.01 Above Ground Electrical	1 ls				· · · · · · · · · · · ·			100 000 00			· · ·			167,233	253,8
26.02	Instrumentation & Controls Controls & Instrumentation	1 ks			ás.			ha shararan	113,960.00	113,98		a			113,960	172,9
	26.02 Instrumentation & Controls	1 Is							113,960,00	113,96					113,960	172,9
40	28 Electrical & Instrumentation Process Piolna	t lu		25		1,138	272.00	272	316,400.41	316,40	60 0. 80	500			318,311	483,2
40	Above Ground Process Piping									and the second second						

the second se

Page 36

A Vansville WTP Rehabilitation 6-1	12-20			EWSU Wa	ter Treatment Plant	- Advanced Faci	lity Plan					OUC	Cause	nent JTP-5 No. 45545 259 of 105		Cause No. 45545 7-6 Attachment 2 ^{ag} Page 37 of 54
WBS WBS WBS LVI2 LVI3 LVI4	Description		Labor Productivily		Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
40.01	Above Ground Process Piping					nan organisation organi			e transmissionen anderen a	dite sociale estructures		nant an china china da bada da ana da a				
	Chlorine Piping & Accessories	300 LF 300 LF	0.240 mh/LF 0.240 mh/LF	72 72	45.52 /mh 45.52 /mh	3,285	55.01 55.01	16,503 16,503	•	-		-			19,789 19,789	
	Motive Water Supply Piping & Accessories Brine Maker Piging & Accessories	300 LF	0.240 mh/LF	72	45.62 /mh	3,265	55.01	16,503	-						19,769	
	40.01 Above Ground Process Piping	900 If	0.240 1117 67	216	40.02 //10	9,856	55.01	49,510						-	59,366	90,742
	40 Process Piping	N COC		215		9,656	55.01	48,510							59,366	90,742
	Process Equipment	240 11		210		5(000		40,010								
43.00	Pumps Transfer Pumps 3 hp, 100 gpm	4 ea	35,000 mb/ea	140	47,77 Imh	6,688	1,500.30	6,001					20.000.0	0 80,000	92,690	141,111
	softened Water Pumps ≤ 1 hp, 65 gpm	4 ea 4 ea	12.000 mh/ea	48	47.77 /mb	2,293	200,00	800					5,000.0		23,093	
	Melering Pump	8 ea	10.000 mh/ea	80	34.45 /mh	2,756			-	-						
	Hose Pumps	8 ea	18,000 mh/ea	80	34.45 /mh	2,756					-	-	19,500.0	0 156,800	158,756	241,125
	43.00 Pumps	1 ls		348		14,493	6,801.20	6,801					275,584.0	0 275,584	295,878	451,518
43.13	Chemical System Equipment															
	Water Soliner 100 GPM	4 ea	54.000 mh/ea	216	24.89 /mh	5,375			-			:	1,800.0	0 7,200	12,575	19,435
	Fiberglass Tanks 10,000 gal, 12' Diameter x 11.41' h Hydrochlorita)	3 ea	1.420 cd/ea	170	1,757.90 /cd	7,489			-				13,500.0		51,158	78,354
	Fiberglass Tanks 10,000 gal, 14 Diameter x 11.41 h Brine Maker)	2 ea	1.420 cd/ea	114	1.757.90 /cd	4,992			-	-	1,056.45	2,113	16,750.0			
	Day Tank 5,67' diameter, 1000 gation	3 ea	1.000 mh/ea	3	41.79 /mh	125			-	-	-	•	3,500.0			
	Wali Mt Residua) analyzor	4 ea	2.000 mml/ea 2.000 mml/ea	8	30.57 /m/n 30.57 /m/n	245 245			-		-		7,000.0 4,000.0			
	Chlorine evaporator Solution Panets 1"	4 ca 2 ca	2.000 mm/ea		30,57 /m/n	122							8,000.0			24,670
	Chlorine System Testing	2 ca 1 ea	2.000 mh/ea	2	30.57 /mh	61						1	0,000.0		61	
	Chlorine Leak Delector	4 cə	1.000 mh/ea	4	30,57 /mh	122			-	-			4,000.0		16,122	24,477
	Chiorine Gas Educators	4 ea	1.000 mh/ea	4	30.57 /mb	122				-			5,000.0		20,122	30,548
	Hypochlorite Generators	2 ea	2,000.000 mh/ea	4,600	30.67 /mb	122,267	-	-	-	-			906,384.0			
	43.13 Chemical System Equipment			4,533		141,165						5,282		1,993,466		
	43 Process Equipment	1 In		4,881		155,659	6,601,20	6,801			8,282.25	5,282	2,274,052.0	0 2,274,052	2,441,794	3,716,457
	4C Chiorine - Add New Onsite Generation of Hypothiorite Facility	1 in		7,690		269,979	209.747.09	209,747	704,644,60	704,645	10,450.26	10,450	2,274.052.0	0 2,274,052	3,468,873	5,283,082
	04 Chlorine	1 Is		11,599		425,786	496,525.88	495.527	1,728,923.90	1,728,924	21,024.20	21,024	2,918,836.0	2,918,536	5,591,097	8,514,922

insville WTP Rehabilitation 6	642-20			EWSU Wat	er Treatment Plan	t- Advanced Fac	llity Plan							No. 45545 e 60 of 105	OUCC DR 17	ause No. 455 6 Attachment Page 38 of 1
WBS WBS WBS Lviz Lviz Lviz		Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
	Clearwell	ata sala mana anta tantan ka	ana ang kana kalang kana kana kana kana kana kana kana k		alatetaa ee aaratat ee see - ar	a da sasalan wata a sas	ala an aith tha	and a second starts	, s. e.		eternerikenen in letern	inne einer mente		har an ann an thailte an tha	ter en et derendenden	Arran
40	New Large Clearwell 275' x 137' x 24'h ID Dinensions Concrete Clearwell Construction															
40 03.00																
	Keyway 6"	872 V	0.050 mh/f	44	39,49 /mh	1.722	0.67	586	-		-	. .			2,308	3,6
	Mai Foundation Edge Form 30" Waterstop 6" Fiat	2,180 sf 872 lí	0.359 mh/st 0.110 mh/f	763 96	39,49 /m/h 39,18 /m/h	30,135 3.759	1.31	2,862		···· ··· · · · · · · · · · · · · · · ·					32,997 5,590	52,0 8.7
	Skip & Oli Mat Found. Form Rebar- Foundation Mat (100 #/cy)	2,180 si 200 tr	8.005 mh/st 28.006 mh/ta	11 5,612	39.17 /mh 43,53 /mh	427 244,267	0.03 997.78	65 199,939	-						492 444,225	7 690,0
	Rebar Support - bricks (-12/sf)	5,132 ea	0.002 mh/ea	10	43,53 /mh	. 447	0.26	1,347	-		-				1,794	2,7
	Finish-Hard Trowel Pump Place Kist Foundation 30"	42,763 st 3,950 cy	0.023 mh/s/ 0.500 mh/cy	984 1,980	39.17 /mh 41.39 /mh	38,530 81,950	-	· · · · 2	-		4.59	18,169		2	38,530	60,91 158,61
	Pump Place Thickened Mat @ Columns 6'x25'x2.5' deep, 36 oa	120 cy 4,080 cy	0.500 mh/cy	60	41,39 /mh	2,484	- 142.00	579,360	-	·	3,67	440			2,924 579,360	4,6; 879,30
	4800 psi Concrete Liquid Curing Compounds	44,943 st		135	/cy 	5,282	0.05	2,643	-		-			-	7,825	12,3
	6 MiL Vapor Banter 03.00 Foundation Mat	47,000 s1 4,080 cy	0.002 min / sf	94 9,789	43.53 <i>im</i> h	4,092 413,116	0.05 193.90	2,468 791,103	-		4.56	18,609			6,560 1,222,828	10,23 1,884,13
03.03	Columns											10,009				
	Form Square Columns 24" h Charden	6,912 sf 3,456 #	0.165 m/r/s/ 0.015 m/r/≋	1,140	39,49 /min 39,49 /min	45,035 2,047	1.60 0.57	11,034			-				56,069 4,007	88,0
	Strip & Oli Column Form	6,912 sf	0.015 mit/s/	52 35	39.17 /min	1,354	0,03	207	-		-				1,561	6,2 2,4
	Superplasticizers @ Columns Column Rebar (120 #/cy)	128 cy 8 in	20.004 mh/ta	154	/cy 43.53 /mh	6.687	8.40 997.70	1,075	-					1 - 3	1,075 14,349	1,8 22,2
	Finish-Float	288 st 128 cy	0.017 mh/sf	5	39.17 /mh	192	•	-	-		-			•	192	31
	Pump Place Columns 36 ea 4000 psi Concrete	128 cy	1.600 mh/cy	205	41.39 /mln /cy	8,478	142,00	18,176	-		7.49	959			9,437 18,176	14,9- 27,6
	Grind/Patch Columns Rub Columns	6,912 sf 6,912 sf	0.013 mh/sf 0.065 mh/sf	90 449	39.17 /mh 39.17 /mh	3,520 17,597	0.03	207 415				:			3,728	5,8 28,4
	Liquid Curing Compounds	6,912 sf	0.003 min/st	21	39.17 /mh	812	0.06	407	-			-		-	1,219	1,9
03.04	D3.03 Columns	128 cy		2,150		85,723	321,43	41,143			7,49	959			127,825	199,6
03.04	Keyway 6"	832 W	0.050 min/11	42	39.49 Imh	1,643	0.67	559		· · ·	-	. ÷			2,202	3,4
	Vertical Wall Keyway 6" Papel Form System 24' h	580 (f 39,936 sf	0,110 m///f 0,190 m//sf	55 7.589	39.49 /mh	2,172	0,67	336 73,397	-		-			1 1	2,508 373,086	3,9 685,7
	Waterstop 6* Flat	1,332 If	0.110 mih/#	7,589 147 200	39,18 /m/h 39,17 /m/h	5,741 7,822	2,10	2,798	-		-	-			8,539	13,3
	Strip & Cil Wall Forms Superplasticizers @ Walls	39,936 sf 1,479.cy	0.005 mh/sf		lcy		0.03 8.40	1,198 12,425	1			:			9,021 12,425	14,1
	Rebar-Walls (125 #/cy) Finish- Top of Wall	92 tri 3,328 sf	15.003 mh/tn 0.008 mh/st	1,367	43.53 /min 39.17 /min	50,367 1,843	997,70	92,227	-			<u>-</u> -		1 1	152,594 1,043	235,5 1,6
	Pump Place Foundation Walls 24*	1,479 cy	1.150 mh/cy	1,701	41,39 /mh	70,410		-		· · · · · · · · · · · · · · · · · · ·	6,65	9,835		-	80,245	127,0
	4000 psi Concrete Geind/Patch Walls	1,479 cy 39,936 sf	0.013 mit/sf	519	/cy 39,17 /mh	20,338	142.00 0.03	210,018 1,198	-		-			· · · · ·	210,018 21,537	318,7- 34,0
	Rub Walls	40,808 sf 39,936 sf	0.058 mh/sf	2,367	39.17 /mh	92,703	0.06	2,448	-			-			95,151	150,4
	03.04 Walls	1,479 cy	0.002 1117 2	14,113	34.11 ////	565,058	269,75	398,954	-		6,65	9,835			973,847	0,5 1,515,4
03.05			0.180 m/n /sf		39.49 /mh		.									
	Form Suspended Stab Bottern Stab Edge Form 12*	39,335 st 840 sf	0.250 mh/s/	7,082 210	39.49 /mh	279,650 8,294	2,16 5.17	85,927 4,344			-	-			365,577 12,638	573,01 19,73
	Strip & Oil Suspended Stab Forms Superplasiticizers	40.176 st 1,462 cy	0.005 min/sf	201	39.17 /mh	7,869	0.64 8.40	1,548 12,282						5. A 5	9,517	14,9 18,6
	Rebar- Suspended Slab (225 #/cy)	164 in	20.004 min / tn	3,290	43.53 inth	143,215	997.70	164,102	-			-			307,317	475,7
	Finish-Hard Trowel Pump Place Suspended Stab 12*	39,336 sf 1,452 cy	0.030 mh/sf 1.800 mh/cy	1,180 2,632	39.17 /m/n 41.39 /m/n	46,229		· · · · ·			6.65	9,728		1. 1. 1.	46,229 118,669	73,1 187,9
	4000 psi Concrete Llavid Curina Compounds	1,462 cy 79,512 st	0.003 mb/sf	239	39.17 /m/h	- 9.345	142.00	207,604 54,278			-			* <u>6</u> *	207,604	315,0 97,1
	03.06 Suspended Flat Slab	1,462 cy	0.000 1111 37	14,834	22.07 /40	603,544	382.64	530,184			6.65	9,728		-	1,143,456	1,775,3
05.01	Misc Metals	80 ff	0.750 mit/lf	60			65.25	5.460							5,460	8,2
	Ladder Bolted to Concrete, wo cage- aluminum, 4 ea x 20° Goose Neck Air Venis 24° Dismeter	10 ea	3.200 mh/ea	32	36,09 /mh	1,155	2,500.00	25,000	-		-			1 - 1	5,460 25,155	8,2 39,7
	Aluminum Access Hatch 4' x 6' 05.01 Misc. Metails	4 ea 1 ls	5.000 mh/ea	20 112	36.09 /mh	722	1,750.00 37,460.00	7,000	-						7,722 39,336	11,7
31.01	Dewatering															
	Remove Dewatering System 24* Wells, well casing, pea gravel	1 ks 70 i/	2.000 cd/ls	96	2,249,33 /cd Al	4,499			227.27 150.00	22		1,296		1	6,022 10,500	9,5 15,9
	Set & Wire Pumps Maintenance/Operation	2 en 2 ea	2.000 es/cd 1.000 es/cd	48 96	2,249.33 /cd 2,249.33 /cd	2,249	25,000.80 1,000.00	50,000	-		323.92 647.84	548 1,296		•	52,897 7,794	60,4 12,2
	Suction Ploing	00 H	110,000 if / cd	35	2,249,33 /cd	1,636	15.00	1,200	-		5.09	471		T (1	3,307	5,1
	Header Piping	200 if 1 ls	200.000 / f/cd 1.000 /s/cd	48 46	2,249.33 /cd 2,249.33 /cd	2,249 2,249	35.00	7,000			3.24 647.84	645 648			9,897	15,2 12,1
	Run Temp Power to Pumps Electric Consumption	2 ea 4 mo	1,000 ea/cd 1.000 mo/ls	84	1,439,45 /cd	2,879	2,090.00	4,000			226.08	452		5	7,331	11,3 5,0
	31.01 Dewatering	1 ls		435		20,260	73,200.00	73,200	10,727.27	10,721	5,458.20	5,458			109,646	168,1
31.02	Piles Augered Piles CIP 18*x @ 25 ft depth, 1079 ea (1 per 36.46 sf)	26,975 vf	0.002 cd / vf	3.022	2.146.97 /cd	115.845	35.16	949,347			2.58	69,602			1,133,796	1.733.4
	31.02 Piles	1,079 ea		3,022		115,846	878.91	848,347			64.51	69,602			1,133,796	1,733,4
31.03	dhuden Guden Buden Stations	1 is						-	15,002,99	15,003		· · ·			15.003	22,7
	Structure Sheeling (890' x 36' deep)	32.040 st	0.001 cd/sf	1,579	2,465.38 /od	60,823	16.00	512,742			0.75	24,110			597,675	912,8
	Tie Backs (1 per 80 st of Sheeting, 890'x 28'= 23140 st) 31,03 Excavation Shoring	289 ea 32,040 sf		1,579	-	50,823	16.00	512,742	2,377,47 21,91	687,090 782,093		24,110		· ·	687,090 1,299,768	1,042,8 1,978,4
. 31,10						وببووتحداده				· .						
	Backhos/Truck (44,523 sf x 28') 31,10 Structure Excavation	46.172 cy 46,172 cy	499.900 cy/cd	3,325	1,410.06 /cd	130,236 130,236		-	•		. 6.58 6.58	303,997 303,997			434,233 434,233	689,9 689,9
31,12	Structure Backfill															
	BackFill Earth-Sackhoe/Truck 31.12 Structure Backfill	5,376 cy 5,376 cy	0.00.2 cd/cy	348 348	1,327.72 /cd	14,418 14,418			-		4.69	25,198			39,614 39,614	82,9 62,9

Page 38

Report Date: 5/11/2020 1:19 PM

vansvijle WTP Rehabilitaë	ation 6-12	20			EWSU Wa	ter Treatment Plan	t- Advanced Fac	lity Plan							No. 45545 e 61 of 105		ause No. 455 -6 Attachmen Page 39 of
	NBS _vi4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
and dependence and the		31.13 Soil Disposal	40,796 cy	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	3,672	and contraction of the	143,840		and the second	n na sanana na katala	lander der seinden och anderen anderen	8.23	335,769		 A construction of a construction of a construction 	479,609	762,04
31.:		Structure Stone Base Structure Subhase Slone-Loadyrs/Truck - 41895 sf x 4"	90 cy	8.003 cd/cy	11	1.609.56 /cd	439	26.26	2,545	-		10.02	901		., i	3,885	5,9
		31.20 Structure Stone Base 49 Concrete Clearwell Construction	90 cy 38,339 pet		11 53,389		439 2,155,181	28.28 84.70	2,545 3,335,679	18.12	712,820	10.02 20.44	901 804,164			3,886 7,007,844	5,9 10,635,3
		5A New Large Glearwell 275' x 137' x 24'h ID Dinensions	1 15		53,389		2,155,181	3,335,678.76	3,335,679	712,820.39	712,820		804,164			7,007,844	10,835,3
49		New Small Clearwell & UV Generals Clearwell Construction															
	3.00	Foundation Mat															
		Keyway 6" Mat Foundation Edge Form 30"	262 If 655 st	0.050 mh/lí 0.350 mh/st	13 229	39,49 /m/h 39,49 /m/h	517 9,054	0.67	. 176			:			2	694 9.914	1,0 15.8
		Waterstop 6" Flat	262 lf 655 s(0.110 mh/f 0.005 mh/si	29	39,18 /mh	1,129	2.10	550	-			· · ·			1,680	2,6
		Strip & Dil Mat Found. Form Rebar-Foundation Mat (100 #(cy)	20 tn	28.006 mh / In	550	43.53 /mh	24,380	997.70	19,954	-			1 . ji			44,334	68,8
		Rebar Support - bricks (.12/sf) Finish- Hard Trowel	516 ea 4,298 sf	0.002 mh/ea 0.023 mh/si	1	43.53 /mh 39.17 /mh	3,873	0.26	135			:	<u>.</u>		5 - 1	180 3,873	2 6,1
		Pump Place Mat Foundation 3.)" Pump Place Thickened Mat @ Columns 6"x26"x2.5" deep, 36 ea	398 cy 3 cy	0.500 mmh/cy 0.500 mmh/cy	199 2	41.39 /mh 41.39 /mh	8,236 62	2	. :		-	4.59 3.67	1,826 11		1 1	10,062	15,9 1
		4000 psi Concrete	401 cy 4,953 sf	8.003 mh/sl	15	/cy 39.17 /mh	582	142.00 0.06	56,942	-		-				56,942	86,4 1,3
		Liquid Curing Compounds 6 MaL Vapor Barrier	10,200 sf	0.002 mh/st	20	43.53 /mh	888	0.05	291 536	-	- 1		· · ·		i,	873 1,424	2,2
		03.00 Foundation Mat	401 cy		1,170		48,895	198.17	79,464			4.58	1,837			130,197	200,9
03.		Columns Form Square Columns 24" h	192 sf	0.165 m/s/	32	39.49 /mh	1,251	1.60	306 54			· · · ·	÷			1,557	2,4 1
		Chamler Strip & Oll Column Form	96 lf 88 sf	0.015 m//// 0.005 m//s/	. 1	39,49 /mh 39,17 /mh	57 17	0.57	. 54	:		:	19 D			111 20	1
		Superplasticizers @ Columns Column Robar (120 M/cy)	4 cy D to	20.004 mh/ln	i.	43.53 /mh	209	8.40 997,70		:						34 448	đ
		Finish- Float	4 sf	0.017 mh/sf	ů,	39.17 /mh	3	-		-	· · · ·		-		-,	3	
		Pump Place Columns 1 8a 4000 pal Concrete	4 cy 4 cy	1.600 mml/cy	6	41.39 /mit /cy	265	142,00	568			7.49	30		-	295 568	4
		Grind/Patch Columns Rub Columns	192 sf 192 sf	0.013 mml/sí 0.065 mml/sf	2	39.17 /mh 39.17 /mh	96 469	0.03	6 12	-	··· _		1		: 	104 500	1
		Liquid Curing Compounds	192 sf	0.003 mh/sf	1 60	39.17 /mh	23	0.05	11	-	-	- 7.49	30			34 3,674	
03.		03.03 Columns	4 cy		60		2,411	308.30	1,233			7,49	30			3,674	5,7
		Kayway 6* Vertical Wali Kesway 6*	232 M 48 M	0.050 mh/f 0.110 mh/lí	12	39,49 /m/n 39,49 /m/n	458	0.67	156			-			-	614 241	9
		Panel Form System 24'h	11,144 sf	0.190 mh/s1	2,118	39.49 /mh	83,627	1.84	20,481		: -	-			2	104,108	163,4
		Waterstop 6" Filat Strip & C/l Wall Forms	280. W 11,144 sf	0.110 mh/li 0.005 mh/sf	31 56	39,18 /m/h 39,17 /m/h	1,207 2,183	2.10	588 334				-		-	1,795	2,8 3,9
		Superplasticizers @ Wells Rehar-Wells (125 #/ov)	413 cy 26 l0	15.003 mb/lo	390	/cy 43.53 /mb	16.979	8.40 997.70	3,470 25,940	:						3,470 42,919	5,2 66,2
		Finish-Top of Wall	464 sl 413 cy	0.008 mh/s1	4 475	39.17 /mh 41.39 /mh	145			-						145	2
		Pump Place Foundation Walls 24" 4000 psi Concrete	413 cy	1.150 mh/cy		/cy	19,662	142,00	58,646			6.65	2,745		I. (1	22,408 58,646	35,4 89,0
		Grind/Patch Walls	11,144 sf 5,804 sf	0.013 mh/s/ 0.058 mh/s/	145 337	39.17 /mh 39.17 /mh	5,675 13,186	0.03	334 348						: :	6,010 13,533	9,4 21,3
		Liquid Curing Compounds 03.04 Walls	11,144 sf 413 cy	0.002 mh/s1	22 3,594	39,17 /mb	873 144,293	0.85 258,73	655 110,986	-	•	6.65	2,746			1,529 257,935	2,3 401.0
03.		Suspended, Flat Slab									- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	0.00	2,740			237,935	-
		Form Suspended Slab Bottom Slab Edge Form 12"	3,605 s/ 240 s/	0.180 mh/si 0.250 mh/si	649 60	39.49 imh 39.49 imh	25,629 2,370	2.18 5.17	7,875							33,504 3,611	52,5 5,6
		Sirip & Oil Suspended Slab Forms	3,845 st 134 cy	0.005 mh/s/	19	39.17 /mb	753	0.04	156 1,126			-	-			911 1,126	1,4
		Superplasticiters Reber-Suspended Slab (225 #/cy)	15 In	20.004 mh/lin	300	43.53 /mh	13,061	997.70	14,966	· -			· · · · · ·			28,026	43,3
		Finish-Hard Trowel Pump Place Suspended Stab 12*	3,605 sf 134 cy	0.030 mh/sl 1.800 mh/cy	108 241	39.17 /mh 41.39 /mh	4,237 9,985		-			6.65	892			4,237	5,7 17,2
		4000 psi Concrete Liquid Curing Compounds	134 cy 7,450 sf	0.003 mh/s/	22	39.17 /mh	875	142.00 0.68	19,028 5,086			:	÷		-	19,028 5,961	28,8
		03.06 Suspended Flat Slab	134 cy		1,400		56,910	359.24	49,478			6,65	892			107,280	166,5
05.		Misc Metals Ladder Bolled to Concrete, w/o cage- abuminum, 2 ea x 20°	40 VF	0.750 mh / VF	30	/min		68.25	2,730	-	· · · · .	···· ··· ··· ·	· · · ·			2,730	4,1
		Goose Neck Air Vents 24* Diameter Aluminum Access Hatch 4' x 6'	2 ea 2 ea	3.200 mh/ea 5.000 mh/ea	6 10	36.09 /mh 36.09 /mh	231 361	2,500,00 1,750.00	5,000 3,500	:					1	5,231 3,861	7,9
		05.01 Misc Metals	1 is		46		592	11,230.00	11,230							11,822	17,9
31.	1.01	Dewatering Semue Devatoring System	1 5	2.000 od/is	95	2,249.33 /cd	4,499			227.27	227	1,295.68	1.296			6.022	9.5
		24* Wells, well casing, pea gravel	35 1	2.000 ea/cd	74	// 2.249.33 /cd	1.175	25.000.00	25.000	150.00	5,250	323.62	324		•	5,250	7,9
		Set & Wire Pumps Addintenance/Opptation	1 ea 1 ea	1,000 ea/cd		2,249.33 /cd	2,249	1,000.00	1,000.			647.84	648			26,449 3,897	40,2 6,1
		Suction Piping	80 if 200 if	110.000 lf/cd 200.000 lf/cd	35 48	2,249.33 /cd 2,249.33 /cd	1,635 2,249	35.00	1,200 7,000		•	5,89 3,24	471 545			3,307 9,897	5,1 15,2
		Valving Run Temp Power to Pumps	ils 1 ea	1.000 ls/cd 1.000 ea/cd	48 32	2,249.33 /cd 1,439.45 /cd	2,249 1,439	5,000,00 2,000,00	5,000 2,000	-		647.84 226.08	548 225		: 2	7,897 3,565	12,1 5,5
		Electric Consumption 31.01 Dewatering	2 mo 1 ls	1.000 mo/ls	331	As	15,447	1,000.00	2,000	5,477.27	- 5,477	4,260.36	4,260		-	2,000	3,0 106,1
31,	1.02	Piles								uter (i El	9,911						
		Augered Piles CIP 16" x @ 25 ft depth, 119 e# (1 per 38,46 #) 31.02 Piles	2,975 vf 119 ea	0.002 cd/vf	333 333	2,146.97 /cd	12,776	35.16 878.91	104,591 104,591			2.58 64.51	7,676 7,676			125,043	191,1 191,1
31.	1.03	Excavation Shoring			333		14,175	010'01	104,001				1,016				
		Shoring System Design Engineer Structure Sheeting (286' x 36' deep)	1 is 10,296 sf	0.001 cd/sf	507	- 2,465.38 /cd	19,545	16.00	164,769	15,002,99	15,003	0.75	7,748			15,003 192,062	22,7 293,3
		The Backs (1 per 80 sf of Sheeling, 285'x 26'= 7436 sf)	93 ea		507	-	-	16.00	-	2,377,48	221,105		7.748			221,105 428,170	336,5
31.		31.03 Excavation Shoring Structure Excavation	10,296 sf		507		19,545	10.00	164,769	22.93	236,108	0.75	r,748			426,170	\$51,6
		Backhoe/Truck (5129 sf x 28')	5,319 cy	499.900 cy/cd	383	1,410.06 /cd	15,003	-	•		•	6.58	35,020			50,024	79,4
31		31,10 Structure Excavation Structure Backfill	5,319 cy		383		15,003					6.58	35,629			50,024	78,4
• •		BackFig Earth-Backhoe(Truck	1,648 cy	0.002 cd/cy	. 107	1,327,72 /cd	4,420		÷			4,69	7,724			12,144	19,1

a i 4 1

nsville WTP Rehabilitation 6-1	2-20			EWSU Wat	er Treatment Plan	t- Advanced Fac	ility Pian						Cause	nent JTP-5 No. 45545 2 62 of 105	COUCC DR 17	ause No. 45545 -6 Attachment \mathcal{L}^{ag} Page 40 of 54
VBS WBS WBS VI2 LVI3 LVI4	Description	Takeoff Quantity - L	abor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Ат ount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
	an initial drawn geograf a statistical and the second statistic of the second statistic drawn and the second statistic and the second statistic drawn and the second st	1,648 cy	en el com co ¹ contrar e constatativas	107	a ala ya afala da sakis yakis akkana kunga	4,420	er anvestellen er er sona hannet er han da	harman en rate - 13 L		er e endad að eðurðe fræskan ækna -	4.59	7,724		chana na marana na mara. T	12,144	19,288
	Soil Disposal Spoils to Waste	3,671 cy	0.003 day / cy	330	1,410.05 /day	12,943	-		-	•	8.23	30,214			43,157	6B,572
	31.13 Soil Disposal Structure Stone Base	3,671 cy		330		12,943					8.23	30,214			43,157	68,672
	Structure Subbase Stone-Loaders/Truck - 41895 sf x 4* 31.20 Structure Stone Base	80 cy 80 cy	0.003 cd/cy	10	1,609,56 /cd	390 390	28,28 28,28	2,262 2,262	-		10.02 10.02	601 801			3,454 3,454	5,327 5,327
	49 Concrete Clastwell Construction UV Facility	3,540 yaf		8,272		333,536	160.23	567,214	68.24	241,585	27.05	96,948			1,241,283	1,912,897
	Foundation Mat			17		671	0.67									
	Keyway 6* . Met Foundation Edge Form 30*	348 H 850 sf	0,050 mh/il 0,350 mh/sf	298	39.49 /mh 39.49 /mh	11,750	1.31	229 1,116		:	-				900 12,866	1,410 20,290
	Waterstop 6" Fial Strip & Oll Mat Found, Form	340 K 850 si	0.110 mh/lí 0.005 mh/sf	37 4	39,18 /mh 39,17 /mh	1,466 166	2.10	714 26	-	-	· · · · · · · · · · ·	•		: :	2,180 192	3,403 302
	Rebar- Foundation Mat (100 #/cy) Rebar Support - bricks (,12/sf)	33 tn 859 ea	28.005 mh/tn 8.002 mh/ea	928 2	43,53 /mh 43.53 /mh	40,410 75	997.70 0.26	33,074 226	-		· .	. · ·			73,484 300	114,154 461
	Finish-Hard Trowel Pump Place Mat Foundation 30*	7,156 sf 663 cy	8,023 mh/sf 0,500 mh/cv	165 332	39,17 /mh 41.39 /mh	6,448 13,720	:		-	:	4.59	3.642		::	6,448 16,762	10,205
	4000 psi Concrete Liquid Curing Compounds	653 cy 8.006 st	0,003 mm/si	24	/cy 39.17 /m/h	941	142.00 0.05	94,146 471	:					: :	94,146 1,412	142,887
	6 Mil Vapor Barrier 03.00 Foundation Mat	16,700 sf 653 cy	0.002 mh/sf	33 1.840	43.53 /mh	1.454 77,101	0.05	877	-		4.59	3.042			2,331 211,020	3,832
	Columns										4,59	3,042				
	Form Rectangle Columns 9.33" Form Rectangle Columns 26"	872 sr 2,288 sf	0,165 m/t/s/ 0,165 m/t/s/	111 378	39.49 /m/n 39.49 /m/n	4,378 14,908	1.60 1.60	1,073 3,652	-		-				5,451 18,550	8,558 29,135
	Chamler Strip & Oil Column Form	1,480 ff 2,960 sf	0.015 mm/l≝ 0.005 mm/sí	22 15	39,49 /mh 39,17 /mh	877	0.57 0.03	839 89							1,716 669	2,852
	Superplasticizers @ Columns Column Rebar (120 #/cy)	54 cy 3 to	20.004 mh/tn	65	/cy 43.53 /mh	2,621	8.40 997.70	454 3,233	-						454 6,054	689 9,371
	Finish- Float	80 s/ 54 cv	0.017 m//s/ 1.600 m//cv	1 86	39,17 /m/n 41,39 /m/n	53 3.577				an ang	7.49	404		: · · · ·	53 3.981	84 6.305
	4000 psi Contrite GilpdPatch Columns	54 cy 2.950 sf	0.013 mh/st		icy 39.17 /mh	1.507	142.00 0.03	7,668	-	<u>.</u>	-	-		-	7.668	11,636 2,521
	Rub Columns	2,960 sf	0.065 mh/sf	192	39.17 /mh	7,536	0.05	178				·			1,596 7,713	12,196
	Liquid Curing Compounds 03.03 Columns	2.950 sf 54 cy	0.003 mh/sf	9 918	39.17 /mh	348 36,585	0.05 323.11	174 17,448		-	7,49	404		-	522 54,437	815 85,026
03.04	Walls Brick Ledge Forms	161 s/	0.300 mit/s/	48	39,49 /m/h	1,908	2.21	365				2			2,263	3,568
	Keyway6 Vorticel Wall Keyway 6*	188 H 80 M	0.058 mm/H 0.110 mm/H	9	39.49 /mh 39.49 /mh	371	0.67	126	-			-			498	779 632
	Volician Ywar Keyway D. Panel Form System 17* h.	6,392 sf 268 ff	0.190 mh/sf 0.110 mh/sf	1,215 29	39,49 /mh 39,18 /mh	47,967 1,155	1.84	11,748				· · ?		: :	59,715	93,748
	Strip & Oil Weil Forme	6,392 sí 237 cy	0.005 mh/si	32	39.17 /mh	1,252	0.03- 8.40	563 192			· · · · ·	-			1,718 1,444	2,683 2,273
	Superplasticitiens @ Walls Rebar- Walls (125 #/cy)	237 cy 18 ln 376 sf	15.803 mh/tn 0.008 mh/sf	270	/cy 43.53 /mh 39.17 /mh	11,755 118	997.70	1.991 17,959	-	· · · · · · · · · · · · · · · · · · ·				1	1,991 29,713 118	3,022 45,850 187
	Finish- Top of Wall Pump, Place Foundation Walls 24*	237 cy	1.150 mh/cy	273	41.39 /mh	11,283		1. 1. P		с. на с	6,65	1,576		: :	118 12,859	20,366
	Pump Place Brick Ledge 4000 psi Concrete	1 cy 238 cy	2.001 mh/cy	2	41,39 /mh /cy	83	142,00	33,795				14			97 33,796	154 51,293
	Grind/Patch Walls Rub Walls	5.392 sf 3,196 sf	0.013 min /s/ 0.058 min /s/	83 185	39.17 /mh 39.17 /mh	3,255 7,260	0.03	192	-	-				-	3,447	5,443 11,782
	Liquid Curing Compounds 03.04 Walls	6.392 sf 238 cy	0.002. min / sf	13 2,172	39.17 /mh	501 87,255	0.06 283.79	376 67,543	-	-	5,58	1,590		-, -	877 156,388	1,363 243,142
03.07	Suspended Beams Beam Side Forms	3,181 sf	0.210 mh/sf	568	39,49 /m/h	25,384	2.21									1
	Beam Bottom Forms	1,050 st	0.210 mh/sf	223	39,49 /mh	8,792	2.21	7,016 2,338				· · · ·		1 1 1	33,399 11,130 2,458	52,405 17,483
	Chamler Strip & Oll Beam Forms	2,120 W 4,241 sf	0.015 mh/lf 0.005 mh/sf	32 21	39.49 /mh 39.17 /mh	1,256 831	0.57	1,202 127		.		·			958	3,813
	Superplasticizers @ Bearns Rebar- Seams (250 #/cy)	118 cy 15 th	15,003 mh / In	221	/cy 43.53 /mh	9,632	8.40 997.70	991 14,716	-			<u>-</u>		1	991 24,348	1,605 37,580
	Finish- Top of Beam Pump Place Beams @ Roof	1,050 sf 118 cy	0.008 mh/sf 2.801 mh/cy	8 235	39.17 /m/n 41.39 /m/n	332 9,773				÷ • • • • • • •	14,42	1,702			332 11,474	526 18,176
	4000 psi Consrete Grind/Patch Beams	118 cy 4,241 sf	0.013 m/h/sf	55	/cy 39.17 /mh	2,160	142.00 0.03	16,756	· · · · · · · · · · · · · · · · · · ·		••••••	-		1 - 1	15,756 2,287	25,431 3,612
	Rub Seans Liquid Coring Compounds	4,241 sf 5,301 sf	0,085 m/t/sf 0,002 m/t/sf	360	39,17 /mih 39,17 /mih	14,119 415	0.06	254 312		·	:			-	14,374 727	22,733 1,131
03.08	03.07 Suspended Beams Pads & Curbs	118 cy		1,635		73,694	371,52	43,840			14.42	1,702			119,235	185,890
03.08	Roof Parapet Curb Forms 48" h	3,876 sf	0.200 min/sf	775		30,617	1.52	5,902							36,520	57,417
	Charrfet Strip & Oil Equipment Curb Forms	968 lf 3,876 sf	0.015 mh/f 0.005 mh/sf	15 19	39,49 /mh 39,17 /mh	573 759	0.57	549 116	· · · · · · · · · · · · · · · · · · ·		:			-	1,122 876	1,741
	Rebar- Pads (160 #/cy) Finish- Float	4 tn 484 sf	18.004 mh/tr. 0.017 mh/sf	65 8	43.53 /m/h 39.17 /m/h	2,821 322	997.70	3,592	-	:				-	6,413 322	9,918 510
	Pump, Place Curbs 12" 4000 psl Concrete	72 cy 72 cy	2.501 mh/cy	180	41.39 /mh /cy	7,452	142.00	10,224		-	9.86	710			8,151 10,224	12,923 15,517
	Liquid Curing Compounds 03,08 Pads & Curbs	4,360 si 72 cy	0.003 min /s/	13 1,075	39.17 /mh	512 43,057	0.06 285.66	256 20,640	-	-	9.86	710			769 64,407	1,200 100,602
03.09	Pan Stair Fill															
	Finish Stains Pump Place Pan Stair Concrete	562 sf 4 cy	0.055 mh/st 3.001 mh/cy	31 12	39.17 /m/h 41.39 /m/h	1,211 497	-		-		9,18	37			1,211 533	1,916 845
	3000 psi Concrete 03,09 Pan Stair Fill	4 cy 4 cy		43	•	1,708	138.00 138.00	552 552		-	9,18	37		- ·	552 2,295	838 3,599
	Misc Metals															
	Work Platform Frame & Floor Grating Structural Support (13 #/st) Metal Statis, Concrete Pans	1 tn 53 rs	8.002, ch/tn 0.067 mh/≀s	40 4	214.54 /ch 42.08 /mh	1,734 177	1,200,25 80.02	1,212	:		829.21	838		: :	3,784 5,218	5,917 7,931
	Metal Stairs Grating Type Akun Stair Wall Handrail	18 rs 32 ff	1.000-mh/rs 0.150-mh/f	18 5	42,08 /mh 42,08 /mh	758	367,57 16.80	6,616 538	-		·· :				7,374	11,241
	Atuminum 3 Line Rail Atuminum Handrati @ Work Platform	84 M 60 H	0.234 mml/li 0.234 mml/li	20 14	42.08 /m/h 42.08 /m/h	827 591	44.11 44.11	3,705	:		:				4,532 3,237	6,933 4,952
	Alunirum Handrail @ Pan Stairs Alun Graje Cover .75* @ 4%4* Sump	92 lf 2 ea	0,234 min / f 0.600 min / ea	22	42.08 /mh	906	44,11	4,058						· · · · · · · · · · · · · · · · · · ·	4,964	7,593

999 B. (1997)

OUCC Attachment JTP-5

PM Evansville WTP Rehabilitatio	lon 6-12	20	.,		EWSU Wa	ter Treatment Plan	t- Advanced Fac	ility Plan							No. 45545 63 of 105	OUCC DR 17	ause No. 4554 -6 Attachment Page 41 of 5
	/BS vi4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
05.0	÷.,	Misc Metals Aum Grating Work Platform @ UV Reactor 12" x 6.5" x 6" h, 2 ea	156 sł	0.835 mh/sf	5	42.08 Imh	230	12.39	1,933	-			n the set			2,163	3,298
		Alum Grating Banding Aluminum Hatch & Frame Over Pipe Gallery 6.33" x 6.33" 65.01 Mise: Metala	74 // 0 ea 1 ls	6.000 mh/ea	0	/il 39.18 /mh	3 5,478	23.70 5,001.00 27.924.05	1,754 50 27,924	-		837.50	- 838		1 1	1,754 53 34,240	2,652 81 62,384
06.0	00	Wood Mise Nellers & Blocking	7.071 sí	0.010 mh/s1	71	39.67 /min	2,896	0.40	2.838							5.644	8.74
		PT Roof Blocking @ Top Of Massenry Well PT Roof Blocking @ Skylight Curb	332 If 156 If	0.035 mh/ff 0.035 mh/ff	12	39.67 /mh 39.67 /mh	461 217	1.82	604 284	:			e	· . · · · ·	: • • :	1,065	1,64
97.0		96,09 Wood Moisture Protection	1 is		88		3,483	3,725.66	3,726							7,209	11,16
		Caubing & Masonry Wall Joints-Exterior (J99 Wst) Caubing & Masonry Wall Joints-Interior 7.00 Moisture Protection	1,223 W 1,021 W 1 Is			76 76				4.00 4.00 8,977.80	4,893 4,085 8,978	i -				4,893 4,085 6,978	7,42 8,20 13,62
07.0		Roofing Membrane Roofing- 60 mil EPDM Mochanically Attached w/ 3* Insulation	5,800 sł			/sf			•	3.00	17,403					17,403	26,41
		Alurritum Downspouls, Z en x 32 esch Scuppens Alurritum Coping @ Roof Parapent 12 wide Transichen Paraje Skright Farare & Parets				ivi ice Al isi			•••••	18.00 50.01 15,00 38.01	1,152 100 4,981 53,135) [بني. جند جاري	1,152 100 4,981 53,135	1,74 15 7,55 80,54
08.0		07.01 Roofing Doors, Frames & Hardware	1 sf							76,771.31	76,771					76,771	116,5
		HM Single Frames - 16 ga 3'x7' HM Coulde Frames - 16 ga 6'x7' HM Cool Lade 3'x7' 20 ga, hair glass	5 ea 1 ea 7 ea	1.000 mm\/ea 1.500 mm\/ea 1.500 ea/mm\	5 2 5	39.18 /mh 39.18 /mh 39.18 /mh	198 59 183	180.04 210.00 450.09	\$00 210 3,151	-		• • • •		•		1,096 269 3,333	1,67 41 5,07
09.0		Overhead Doors- 101:10'24 ja steel manual 14' finualion 26 ge tack-up pnel Finish Narkave by Leef-Alevence 98,00 Doors, Frames & Hardware Finishes	1 ea 7 ea 1 ea	8.002 mil/ea	56 67	39.18 /mmh	2,194 2,632	900.18 10,562.07	6,301 10,562	2,255.00 2,255.00	2,255 - 2,255					2,255 8,496 15,449	3,42 13,03 23,61
09,0		Paint HM Door Frames - primer (2) coats Paint HM Doors - primer (2) coats Paint CAU Block - block filter & (2) coat	7 ea 7 ea 10,186 sf			lea lea		-	: : : : : : : ; : : : : : : :	100.02 140.03 1.35	700 980 13,751) i -			2	700 980 13,751	1,0 1,4 20,8
10.0	.00	09.00 Finishes Specialty Items	1 Is						nagan na sa	15,431.44	15,431					15,431	23,4
		Signs - Builking ID. Signs - Doors File Entinguenter CO2 10 lbs 10.06 Speciality Henns	.1 sə 4 es 4 cə 1 ls			lea lea lea				3,000.60 30.01 225.05 4,020.81	3,001 120 900 4,021) -)				3,001 120 900 4,021	4,5: 1: 1.3: 5,1:
22.0	00	Plumbing Subcontact 22.00 Plumbing	7.071 sf 1 ls			/sf				6.00 42,434.47	42,434	1				42,434 42,434	64,44 64,4
23.0		HVAC Vendbatton & Unit Heater System 23.00 HVAC	7,071 sf 1 sf			/sf	۰* ۱ ۱۰۰۰ ما ما ما ما ۱	-	· · · · · · · · · · · · · · · · · · ·	45.00 318,195.00	318,195 318,195	i -	·····			318,195 318,195	482,93
26.0		UG Electrical Bulding Electrical System 25,00 UG Electrical	7,071 sf 1 ls			faf				16.00 113,158.59	113,155 113,155					113,159 113,159	171,74
26.0		Above Ground Electrical Building Electrical System Process Electrical System	7,071 sf 7,071 sf			ist ist				8.00 30.01 268.751.64	56,579 212,173 268,752	2				56,579 212,172 259,752	85,8 322,0 407,8
26.0	.02	25.01 Above Ground Elactrical Instrumentation & Controls Controls & Instrumentation 26.20 Instrumentation & Controls	1 (s 1 is 1 is			As.				366,278,00 365,278,00	266,752 365,278 355,278	1				265,752 366,278 366,278	407,01 555,91 555,91
31.0	.01	Dewatering Remove Devalering System	1.6	2.000 cd/ls	96	2,249.33 /cd	4,499			227.27	221		1,296			6.022	9.5
		24" Wells, well casing, pea gravel Set & Wiro Pumps	35 lí 1 ea	2.000 ea/cd	24	/il 2,249.33 /cd 2,249.33 /cd	1,125	25,000.00	25,000	150.00	5,250) - 323.92	324		. ji	5,250 26,449	7,9
		Maintenance/Operation Suedon Piping Header Piping	1 ca 80 ¥ 200 ¥	1.000 ea/cd 110.000 lf/cd 200.000 lf/cd	48 35 48	2,249.33 /cd 2,249.33 /cd 2,249.33 /cd	2,249 1,636 2,249	15.00	1,000 1,200 7,000			- 647.84 - 5.89 - 3.24	648 471 648			3,897 3,307 9,897	6,11 5,11 15,2
		Valving Run Temp Power to Pumps	1 is 1 ea	1.000 (s/cd 1.000 es/cd	48 32	2,249.33 /cd 1,439.45 /cd	2,249 1,439	5,000.00 2,000.00	5,000 2,000	:		- 647,84 - 226.08	548			7,897 3,656	12,11
		Electric Consumption 31.01 Dewatering	4 mo 1 is	1.000 mo/ls	331	As	15,447	1,000.00 45,200.00	4,000 45,200	- 5,477.27	5,477	•			-	4,000	6,0 108,1
31.0		Piles Augenst Påss CiP 18 x ⊗ 26 k depth, 10° oc = 104 ce (1 per 68 si) 31.02 Piles	2,600 vf 104 ea	0.002 cd/vf	291 291	2.146.97 <i>l</i> cd	\$1,166 \$1,166	35.16 878.91	91,407 91,407	-		- 2.58 64.51			-	109,262 109,282	187,0 167,0
31.(Excavation Shoring Shonig System Design Engineer Shuckma Sheeling (87: 42 Sheelin, 87: 41%-1566 af)	1 /s 1,914 sí 20 ea	0.001 cd/sf	94	2,465.38 /cd	3,633	16.00	30,630	15,002.99	15,001	- 0.75	1,440		- 	15,003 35,704 47,549	22,7 54,5 72,1
31.1	.10	la taska († par šo ti of shakalna), sr × tis≕ toba sr) 31.05 žrovanika († par šo ti of shakalna) Structure Excavation Exc Lav-Backador/fux(f / 31 d) sr († 8.33)	20 es 1,914 sf 4.963 cv	499.800 cv / cd	94 357	1.410.06 /cd	3,623	16.00	30,630	32.58	47,545 62,552					47,549 98,256 46,676	74,17
31.1	.12	31,10 Structure Excevation Structure Backfill	4,963 cy		357		13,999					8.58	32,676	i,		46,675	74,1
31.1	.13	BackFillEarthBackhopTruck (87' x 4' x 18.33') 31.12 Structure Backfill Soli Disposal	236 cy 236 cy	0.002 cd / cy	15 15	1,327.72 /cd	633 633			-		- 4.69 4.69	1,100		-	1,739 1,739	2,71
31.3		Spoils to Waste 31.13 Soil Disposal Structure Stone Base	4,727 my 4,727 cy	0.003 day/cy	426 426	1,418,06 /day	16,667 16,667		-	-		- 8,23 . 8,23				55,572 55,572	88,2 88,2
		Structure Stone Base Structure Stones Sione-Loaders/Truck - 7.310 sf x 4* 31.20 Structure Stone Base Under Ground Process Piping	90 cy	0.003 cd/cy	11 11	1,609.56 /cd	439 439	28.28 28,28	2,545 2,545	-		- 10.02 10.02	901 901	1		3,886 3,886	5,9: 5,9:

OM 8 Evensville WTP Rehabilitation 6	12-20			EWSU Wat	er Treatment Plan	t- Advanced Fac	ility Plan		<u></u>		·				OUCC DR 17	Cause No. 455 7-6 Attachmen Page 42 of
S WBS WBS WBS 1 Lvi 2 Lvi 3 Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
40,00	When a memory and a standard a second and a second standard of the second standard of the second standard sta Standard Standard stan	na senten and an and an	200.000 cy/cd	e	2,896.43 /cd	- na	23,29			aran shulat kini ki utabu ki	ann an ann a carlinacha T	الحديد مور معاقدهم والبرك. -	e conser conference e	n an an an an an a' starain an An	15	
	Stone Pipe Bedding DI Pipe Push - Class 52 36	28 if	0.500 mh/li	14	\$1,34 /mb	719	225.44	6,312							189	29
	Hydrostatic Testing Di Tee 36"	28 if 4 ea	0.021 ch/il 20.524 mh/ea	2 82	182.49 /ch 45.62 /mh	107 3,745	0.16	. 4. 76.000		1. Sec. 1997		·			112 79,745	17
	Di Blind Flange 36*	1 ea	19.230 mh/ea	19	45.62 /mh	877	3,840.90	3,841							4,716	7,21
	40.00 Under Ground Process Piping	28 lf		122		5,640	3,081.22	86,274			1.88	53			91,967	139,95
40.01	Above Ground Process Piping Peini & Stendi Exposed Piping >20*	204 1							25.01	5,101					5.101	7.74
	Paid & Stencil Excessed Pieing <20*	800 1				· · · · ·	250.85	1. I.I.I.	10.00	8,002	ni di si s	•			6,002	12,1
	Pipe Supports DI RJ Std Wat Cap 36	17 ca 1 ea	4.001 mh/ea 5.068 mh/ea	68 5	45.62 /mh 45.62 /mh	3,103 231	250.85 4,020.80	4,251 4,021				-			7,364	11,36
	Hydrostatic Testing Dresser Countinos 36"	204 lf 4 ea	0,021 ch/iĭ 20.804 mb/ea	17	182.49 /ch 45.62 /m/n	752	0.16	33	-						815	1,26
	35" Di Wall Taimhe 24" long	1.08	5.001 ch/ea	20	182.49 /ch	3,797 913	1,286.25	1,286			1,200,15	1,200			8,678	5.3
	Gaskel/Muts/Boti Kii 30" Gaskel/Muts/Boti Kii 35"	4 ea 14 ea	2.501 mh/ea 3.001 mh/ea	10 42	45.62 /mh 45.62 /mh	456 1,917	175.04	700	-			. i i i i i i i i i i i i i i i i i i i		-	1,155	1,7
	Gaskel/Nuts/Boll Kit 48*	18 ea	1.000 mh/ea	18	45.62 /mh	821	425.09	7,652							8.473	7,8
	Di Flanged Joint Pipe 30* Di Flanged Joint Pipe 36*	6 M 70 M	3.051 mh/li 3.471 mh/li	18 243	45.62 /mh 45.62 /mh	835 11,084	310.21 426.62	1,861 29,864	-			. •		· •	2,696	4,1
	Dt Flanged Joint Pipe 48*	128 If	4.371 mb/8	559	45,62 /mh	25,524	711.68	91,096							116,620	178,6
	Di Flanged 90 ell 48* Di Flanged 90 ell 48*	5 ea 4 ea	17.874 m//ea 25.715 m//ea	89 103	45.62 /mh 45.62 /mh	4,077 4,693	2,317.06 6,635.22	11,585 26,541	-			2			15,662	24,0
	DiFlanged Tee 36 DiFlanged Tee 36	4 ea 4 ea	28.524 m/r/ea 25.715 m/r/ea	82 103	45,62 /mh 45.62 /mh	3,745 4,693	19,000.00 24,821,92	76,000	-			-			79,745	121,2
	Di Flanged Con Red 48x32*	4 ea 4 ea	25.715 mh/ea 25.715 mh/ea	103	45.52 /mh 45.62 /mh	4,693	24,821,92 9,913,98	59,288 39,656				:		3 1	103,980 44,349	158,1 67,5
	Di Flanged Con Red 48x36* Di Blind Flange 48*	2 ea 1 ea	25.715 mh/ea 23.595 mh/ea	51	45.62 /mh 45.62 /mh	2,346 1,076	11,157.43 7,187.63	22,315	-		· .	۰.		- , -	24,661	37,5
	Chemical Piping & Accessories- ALLOWANCE	800 LF	0.240 mh/LF	192	45.62 /mh	8,761	55.01	44,009							8,264	12,6
	40.01 Above Ground Process Piping	1 1/		1,831		83,547	475,575.26	475,575	13,102.62	13,103	1,200.15	1,200			573,425	875,8
40.02	Valves, Meters, Etc. Magnetic Flow Meter, Iräne - 48° w/ transmiller	2 es	52,000 mh/ea	104	48.85 Imh	5.080	28.000.00	56.000		· ·					61,080	93,0
	30" Butterfly Valve, 125 to class, Cl Body, Fig, w/ EIM elec actuator NEMA 4	4 sa	24.805 mh/ea	96	45.62 /mh	4,381 7,009	16,487.29	65,949	-						70,330	107,0
	48" Butterfly Valve, 75 lb class, Cl Body, Fig. w/ Ell/li eleo actuator NEMA 4 40.02 Valves, Meters, Etc.	4 ea 1 15	38.408 mh/ea	154	45.62 /mh	7,009	26,380.26 227,470.23	105,521 227,470				· · ·		-, -	· 112,530 243,940	
49.04	Hydropneumatic Piping System														245,546	31 1,51
	Hydropneumatic Piping, Fitting & Valve Allowance	1 Is	mh / Is		45.62 /mh				17,000.00	17,000					17,000	25,8
41.22	40.04 Hydropneumatic Piping System Hoists & Cranes	1 bs							17,000.00	17,005					17,000	25,8
41.22	Steel Bracket @ Column To Support Crans Rali Beam	10 ea	0.200 mh/ea	2	42,40 /mh	85	726.47	7,265	-					÷ .	7,349	11.1
	W 18 x 116 Crane Rall Beam Erect Steel W 18 x 116 Beams (20' long)	162 // 8 ea	5.000 ch/ea	200	- 197,59 /ch	7,904	86.88	14,075			518.13	4,145		-,	14,075	21,3
	Bridge Crane 3 ton 21 ft span, B1 ft runway beam. Equipment and installation. @ Maint Bldg	1 ea	stoo on ea		-		-	-	-				110,000.0	0 110,000		
43.07	41.22 Hoists & Cranes	1 ea		202		7,988	21,339,87	21.340			4,145.00	4,145	110,009.0	0 110,000	143,473	218,51
43.07	UV Disinfection Equipment Centrifugal Blowers, 51-100 hp (Air Scour Blowers 1-4)	4 ea	40.008 mh/ea	160	47.77 /mb	7,645	1,500.30	6,001			150,029,95	600,120			613,765	976,30
	UV Reactor #1, 2, 3 & 4	4 ca	60.012 mh/ea	160 24D	45.62 /mh	10,951	5,001.00	20,004					250,950.0		1,034,755	1,671,17
	43.07 UV Disinfection Equipment 50 UV Facility	1 is 7,071 get		400 12,603		18,597 525,218	26,005.19 188.01	26,005 1,329,558	185.80	1,314,406	600,119.78 98.97		1,003,800,0		1,646,522 4,982,821	
	5B New Small Cloaiwell & UV	1 is		20,875		858,754	1,896,771.69	1,896,772		1,555,992			1,113,800.0			
5C	New Small Clearwell & UV w/ Oxidation												.,,		-,	
49	Concrete Claarwell Construction															
03.00	Foundation Mat	262 if	0.050 mh/f	13	39.49 /mb	517	0.67	176		· .		·		· · ·	694	1,0
	Keyway 6" Mai Foundation Edge Form 30" Watersteo 6" Fiai	655 st 262 if	8.350 mh/s1 0.110 mh/lí	229 29	39,49 /mh 39,18 /mh	9,054	1.31 2.10	860	-					-	9,914	15,6
	Strip & Oil Mat Found, Form	655 sf	0.005 mh/st	3	39.17 /mh	1,129 128	0.03	550 20	1			· -			1,680	2,6
	Rebar-Foundation Mat (100 Micy) Rebar Support - bricks (.12/sf)	20 tn 516 ea	28.006 mh/ln 0.002 mh/ea	560	43.53 /mh 43.53 /mh	24,380	997.70 0.26	19,954 135						•. •	44,334	68,8 2
	Finish-Hard Trowe!	4,298 st	0.023 mh/st	99	39,17 /mh	3,873	0.20		· · · · · · · · · · · · · · · · · · ·			·			3,673	
	Pump Place Mat Foundation 30" Pump Place Thickneed Mat (b) Columns 6"x26"x2.5" deep. 35 ea	398 cy 3 cy	0,500 mh/cy 0,500 mh/cy	199	41.39 /m/h 41.39 /m/h	8,236 62					4.59			-	10.062 73	15,9 1
	4000 psi Concrete	401 cy		-	/cy		142.00	56,942							56,842	86,4
	Liquid Curing Compounds 6 MiL Vapor Bentler	4,953 s/ 18,200 s/	0.003 mh/s/ 0.002 mh/s/	15 20	39.17 /mh 43.53 /mh	582 885	0.05	291 536	-			:		: :	. 873 1.424	1,3
	03.00 Foundation Mat	401 cy		1,170		48,896	198.17	79,454			4.58	1,837			130,197	
03.03	Columns Form Square Columns 24' h	192 sf	0.165 mh/sl	32	39.49 /mh	1,251	1.60	306								
	Chanfer	96 lf	0,015 mh/≝	32	39,49 /mh	1,251	0.57	- 54						1, 11	1,557	2,4
	Strip & Oli Column Form Superplasticizers @ Columns.	88 sf	0.005 mh/st	0	39.17 /mh /cv	17	0.03	. 3		-		•			20 34	
	Column Rebar (120 #/cy)	0 th	20.004 mh / In	5	43.53 /mh	209	997.70	239	-						448	
	Finish-Float Pump Place Columns 1 ea	4 sf 4 cy	0.017 mh/sf 1.600 mh/cy	0	39,17 /mh 41.39 /mh	3 255	· -	1			7.49	30			. 3 295	4
	4000 psi Concrete	4 cv			/cv	96	142.00	568	-			-			568	8
	Grind/Patch Columns Rub. Columns	192 sf 192 sf	0.813 m/s1 0.865 m/s1	2	39.17 /mh 39.17 /mh	96 489	0.03	5	-					1,1	104	
	Liquid Curing Compounds 03,03 Columns	192 sf	0.003 mh/si	1	39.17 /mh	23	0.06	11	-			-			34	
03.04	03.03 Columns Walls	4 cy		60		2,411	308,30	1,233			7.49	30			3,674	5,7
55.04	Keyway 6"	232 #	0.050 mh/ll	12	39.49 /mh	458	0.67	156	1. j. j			· .		.	614	9
	Vertical Wall Keyway 6" Panel Form System 24" h	48 f 11,144 st	0.110 mh/l/ 8.190 mh/sf	5 2,118	39.49 /mh 39.49 /mh	299 83,627	0.67 1.84	32 20,481				•			241	3
	Waterstop, 6" Flat	280 ff	0.110 mh/li	31	39.18 /mh	1.207	2.10	588				-			104,108 1,795	2,8
	Strip & Oli Wall Forms Superclasticizers @ Wells	11,144 sl 	0,005 mh/st	56	39,17 /mh	2,183	0.03	334 3,470				-		-	2,517 3,470	3,9 6,2
	Rebar- Walls (125 #/cy)	26 to	15.003 mh/tn	390	43,53 /mh	16,979	997.70	3,470 25,940	1			· · · · ·		2001	- 3,470 - 42,919	6,2 68,2
	Finish-Top of Wall Pump Place Foundation Walls 24*	464 sf 413 cv	0.008 mh/sf 1.150 mh/cy	4 475	39.17 /m/h 41.39 /m/h	145 19.662			-		6.65	2.746		: :	145	2
	4000 psi Concrete	413 cy			41.35 /mil	1-1,002	142.00	58,646			0.03	4,740		· · · · ·	58,545	35,4
	Gind/Patch Walls	11,144 sf	0,013 m/hsf	145	39.17 /mh	5,675	0.03	334							6,010	9,

h i 4 1

M Evansville WTP Rehabilitation 6-12-2	20	<u></u>	<u></u>	EWSU Wat	er Treatment Plan	t- Advanced Fac	llity Plan							No. 45545 e 65 of 105	C OUCC DR 17	ause No. 455 -6 Attachmen Page 43 of
WBS WBS WBS Lvi 2 Lvi 3 Lvi 4	Desctiption	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equíp Amount	Total Amount	Grand Total Amount
R	na orangen en selen en e	5,804 st	0.058 mh/st	337	39.17 /mh	13,185	0.06	348		· · · · · · · · · · · · · · · · · · ·			- 62.2 20.2.2.4 2.8 2.84	-	13,533	21,39
Ľ	.lquid Curing Compounds 33.04 Wallis	11,144 sf 413 cy	0.002 mh/sf	22 3,594	39.17 /mh	873 144,203	0.06 268.73	655 110,986	-		5,65	2,748			t,529 257,935	2.37 401,04
03.06 S	Suspended Flat Slab	-										1				
	Form Suspended Slab Bottom Slab Edga Form 12*	3,605 sf 240 sf	0.180 mh/sf 0.250 mh/sf	649 60	39,49 /mh 39,49 /mh	25,629 2,370	2.18 5.17	7,875			-	· · :		3	33,504	57,51 5,63
	Strip & OA Suspended Stab Forms Superplasticizers	. 3,845 sf . 1341 cy	0.005 m//sf	. 19	39.17 /mh	753	0.04	158			-				911	1,43
R	Rebar- Suspended Slab (225 #/cy)	15 in 3,605 sf	20.004 mh/tn 0.030 mh/s1	300	43.53 /mh 39.17 /mh	13,061 4,237	997.70	14,966						2 3	28,026 4,237	43,38
P	Finish- Hard Trowel Pump Place Suspended Slab 12*	134 cy	1.800 mh/cy	241	41.39 /mh	9,985		10 C - 1			6,65	692		1	10,877	17,22
	1000 psi Concrete .lquid Curing Compounds	134 cy 7,450 sf	0.003 mh/s1	22	39,17 /mh	- 876	142.00 0.68	19,028 5,086				·			19,028 5,961	28,67 9,10
0	03.06 Suspended Flat Slab	134 cy		1,400		56,910	369.24	49,478			6.65				107,280	166,58
	Misc Metals "adder Bolled to Concrete, w/c cage-aluminum, 2 ea x 20"	40 VF	0.750 mh/VF	30	(mb		68.25	2,730							2,730	4,14
G	Soose Neck Air Vents 24" Diameter	2 ea	3.200 mh/ea	6	36.09 /mh	231	2,500.00	5,000	-	- 1 - L - L - L - L - L - L - L - L - L					5,231	7,95
	Numinum Access Hatch 4'x 6' JS.01 Misc Metals	2 ea 1 Is	5.000 mh/ea	10 46	35.09 /mh	351	11,230.00	11,230							3,861	5,88 17,98
	Dewatering								227.27	227						9.57
2	Remove Dewatering System 24" Weits, well casing, des gravel	1 E 35 F	2.000 cd/ls	96	2,249.33 /cd /ff	4,499			227.27	227 5,250	.,				6,022 5,250	7,98
s	Set & Wire Pumps Maintenance/Operation	. 1 ea . 1 ea	2,000 ea/cd	. 24	2,249.33 /cd 2,249.33 /cd	1,125	25,000.00 1.000.00	25,000			323.92				26,449	40,23
8	Suction Piping	80 M 200 M	110.000 #/cd 200.000 #/cd	35	2,249.33 /cd	1,635	15.00	1,200	-		5.89	471		-	3,307	5,11
v	Hender Piping Yalving	200 # 1 bs	1.000 ts / cd	48	2,249.33 /cd	2,249 2,249	5,000,00	5,000			647.84	648		-	7,897	15,21
	Run Temp Power to Pumps Stearing Consumption	1ea. 2 mo	1.000 ea/cd 1.000 mo/ls	32	1,439.45 /cd	1,439	2,000.00	2,000			226,08	225		2	3,666	5,57
3	31.01 Dewatering	1 Is		331		15,447	43,208.00	43,208	5,477.27	5,477	4,260.36	4,260			68,384	105,10
	Piles Augered Piles CIP 18" x @ 25 k depth, 119 ea (1 per 36.46 si)	2,975 ví	0.002 cd/vf	333	2,146,97 /cd	12,776	35.16	104,591			2.58	7,676		· ·	125,043	191,17
	adgened Files	119 ea	0.002 007 11	333	1,140,07 100	12,776	878.91	104,591	-		64.51			·	125,043	191,1
	Excavation Shoring Storing System Design Engineer	1 15							15,002.99	15,003					- 15,003	22,77
s	Siructure Sheeling (286' x 36' deep)	10,296 sf	0,001 cd/sf	507	2,465.38 /cd	19,545	16.08	164,769	-		0.75	7,748		- -	192,062	293,33
	Tie Backs (1 per 80 sf of Sheeting, 286' x 26'= 7436 sf) 31.03 Excavation Sheeting	93 ea 10,296 sf		507	-	19,545	16,00	164,769	2,377.48 22,93	221,105		7,748		•	. 221,105 428,170	335,57 651,68
31.10 S	Structure Excavation															
	BackhoefTruck (5129 sf x 28') 31,10 Structure Excavation	5,319 cy 5,319 cy	499.900 cy/cd	383	1,410.06 /cd	15,003		-	-		6.58			-, -	50.024 50.024	79,41 79,41
31.12 S	Structure Backfill															
	BackFill Earth-Backhoe/Truck 31.12 Structure Backfill	1.648 cy	0.002 cd/cy	107 107	1,327.72 /cd	4,420			-		4.69				· 12,144 12,144	19,28
	Soli Disposal	1,648 cy		. 101		4,420					4.05	7,724			12,144	18,20
s	Spojis to Waste	3,671 cy	0.003 day / cy	330	1.410.06 /day	12,943	•	-	-		8.23			-	43,157	68,57
	31,13 Soli Disposel	3,671 cy		330		12,943					8,23	30,214			43,157	68,57
S	Structure Subbase Stone-Loaders/Truck - 41695 sf x 4"	80 cy	0.003 cd/cy	10	1.689.56 /cd	390	28,28	2,252	-		10.02				3,454	5,33
	31,20 Structure Stone Base 49 Concrete Clourwell Construction	80 cy 3,540 gsf		10 8,272		39D 333,536	28,28 160,23	2,262	60.24	241.585	10.02				3,454	5,32
50 U	UV Facility	.,		-,												10-12,00
	Foundation Mat Keyway 6°	340 1/	0.050 mh/#	17	39,49 /mih		0.67	220							900	1,4'
N	Mat Foundation Edge Form 30*	850 sl	0.350 mh/sf	298	39.49 /mh	11,750	1.31	1,418	-	·					12,866	20,24
s	Waterstop 6* Ffat Strip & Oil Mat Found, Form	340 // 850 sf	0.110 mh/// 0.005 mh/sf	37 4	39.18 /mh 39.17 /mh	1,465	2.10 0.03	714	1					2 3	2,180	3,40
R	Rebar-Foundation Mat (100 #/cy) Rebar Support - bricks (.12/sf)	33 in 859 ea	28.006 mh /tn 0,002 mh /ea	928 2	43.53 /mh 43,63 /mh	40,41D 75	997.70 0,26	33,074 226	-			-		-	- 73,484	114.1
F	Finish- Hard Trowel	7,156 st 663 cv	8.023 mh/st 0.500 mh/cv	165	39.17 /mh 41.39 /mh	6,448 13,720	-		-		4.59	3.042		:	- 6,448 - 16,762	10,20
4	Pump Place Mat Foundation 30" . 4000 psi Concrete	663 cy			lcy		142.60	94,146			4.59	3,042			94,146	142,88
L	Liquid Curing Compounds 5 Mil. Vacor Barrier	8.006 st 16.700 sf	0.003 mh/s/ 0.002 mh/s/	24 33	39.17 /mh 43.53 /mh	941 1,454	0.06	471	-						1,412	2,20
0	D3.00 Foundation Mat	663 cy		1,840		77,101	197,40	130,877			4.59	3,042			211,020	325,50
03.03 C	Columns Form Rectangle Columns (9.33)	672 51	0.165 mb/st	111	39.49 /mh	4.378	1.60	1.073				· · ·			5.451	8.55
F	Form Reclangle Columns 28"	2.288 sf 1,480 K	0,165 mh/sf 0,015 mh/ff	378	39,49 /m/h 39,49 /m/h	14,908 877	1,60	3,652	-					-1. S	18,560 1,716	29.13
s	Chamfer Slip & Oil Column Form	2,960 sf	0.005 mh/s	15	39,17 /mh	560	0,03	83	-					-	669	1,05
. c	Superplasiicizers @ Columns Column Rebar (120 #/cy)	54 cy 3 ln	20.004 mh / In	65	/cy 43.53 /mh	2,821	8.40 997.70	454							454	66 9,31
F	Finish-Float Purce Place Columns 20 ca	80 sf 54 cy	0.017 mh/sf 1.600 mh/cy	1 86	39.17 /m/n 41.39 /m/n	53 3,577			-		7.49	404			- 53 - 3,981	8 6,30
4	4000 psi Concrete	54 cy			/cy		142,00	7,668	÷.					- 1	7,658	11,63
G . R	Grind Patch Columns	2,960 sf 2,950 sf	0.013 mh/sf 0.065 mh/sf	38	39.17 /mh 39.17 /mh	1,507 7,536	0.03	89 178						: :	- 1,596 - 7,713	12,15
L	Liquid Curing Compounds	2,960 sf	0.003 mh/sf	9 918	39.17 /mh	348	0.06 323.11	174 17,448	-		7,49	404		-	- 522	8
	03.03 Columns Walls	54 cy		มาช		36,585					7.45	404			54,437	
e	Brick Ledge Forms	161 st 180. W	0.300 mh/sí 0.050 mh/lí	48	39.49 /mh 39.49 /mh	1,908 371	2.21	355				- -		-	2,263	3,5
v	Keyway 6* Vertical Wall Keyway 6*	80 H	0.110 mh/1	9	39.49 /mh	348	0.67	54	-	· · · · · · · · · · · · · · · · · · ·					401	63
F	Panel Form System 17" h Waterstop 6" Flat	6,392 sf 268 ∦	0.190 m/i/s/ 0.110 m/i/∜	1,215 29	39,49 /mh 39,18 /mh	47,987	1.84 2.10	11,748. 563	-					1 1	59,715 1,718	2,65
	Strip & Oil Wall Forms	6,392 s/	0.005 mh/st	32	39.17 /mh	1,252	0.03 8.40	192	-	· · · · · · · · ·					- 1,444	2,23

Page 43

<File name>

and the first second
f ivansvite WTP Rehabilitation 6-1:	220			EWSU Wa	er Treatment Plan	t- Advanced Fac	lity Plan					<u></u>		No. 45545 e 66 of 105	OUCC DR 17	ause No. 455 -6 Attachmen Page 44 of
WBS WBS WBS Lvi 2 Lvi 3 Lvi 4	Descriptión	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
	Walls Finish- Top of Wall	376 sf	0.008 min/s/	3	39.17 /mħ	118	· · · ·					-			118	18
	Pump Place Foundation Waits 24" Pump Place Book Ledon	237 cy 1 cv	1.150 mh/cy 2.001 mh/cy	273	41.39 /mh 41.39 /mh	11,283 \$3	:				6,65 14.42	. 1,576 14		1	12,859	20,31
	4000 psi Concrete	238 cy 5,392 sf	0.013 mb/st	83	/cy 39,17 /mh	3,255	142.00 0.03	33,796	•			•			33,796	51,2 5,4
	Grind/Patch Walls Rub Walls	3,196 sf	0.058 mm/s/	185	39,17 /mh	7,260	0.06	192							7,452	11.7
	Liquid Curing Compounds	6,392 sf	0.002 mh/s/	13	39.17 /m/h	501	0.05	376	-	-	5,6B	·		-, -	877	1,3
	03.04 Walls Suspended Beams	238 cy		2,172		87,255	283.79	67,543			0,00	1,580			156,388	243,1
	Beam Side Forms	3,181 sf	0.210 mt/s/	668	39.49 /m/h	26,384	2.21	7,016	-	· ·				· ·	33,399	52,4
	Beam Bottom Forms Chamfer	1,050 sf . 2,120 lf	0.210 mih/sf 0.015 mih/ff	223 32	39.49 /mh 39.49 /mh	8,792 1,255	2.21 0.57	2,338	1					1	11,130 2,458	17,4 3,8
	Strip & Oll Beam Forms	4,241 st	0.005 mh/s/	21	39.17 /m/h	831	0.03 8.40	127	-	-	-	•			958 991	1,5
	Superplasticizers @ Bearrs Rebar- Bearrs (250 #/cy)	. 118.cy 15 th	15.003 mh/tn	221	43.53 /mh	9,632	997.70	14,716	· 1			· ·			24,348	1,5 37,5 5
	Finish- Top of Beam Pump Place Beams @ Roof	1,060 sf 118 cy	0,008 mh/s/ 2.001 mh/cy	8 236	39.17 /mh 41.39 /mh	332 9,773	1		2		14.42	1,702		1	332 11,474	5 18,1
	4000 psl Concrete	118 cy			/cy		142.00	16,756	-	-					16,756	25,4
	Grind/Patch Bearrs Rub Bearns	4,241 sf 4,241 sl	0.013 mh/sf 0.085 mh/sf	55 360	39.17 /mh 39.17 /mh	2,160 14,119	0.03	127	-			<u></u>		· · · · ·	2,287 14,374	3,6 22,7
	Liquid Curing Compounds	5,301 sf	0.002 mh/sf	11	39.17 /mh	415	0.06	312	-	-	-	-		-	727	1,1
03.08	03.07 Suspended Beams Pads & Curbs	118 cy		1,835		73,694	371.52	43,840			14.42	1,702			119,235	185,8
	Roof Parapet Curb Forms 48" 3	3,876 sf	0.200 mh/s1	775	39.49 /mh	30,617	1.52	5,902	-			·			35,520	57,4
	Chamler Sirip & Oil Equipment Curb Forms	968 ff 3,876 sf	0.015 mh/lf 0.005 mh/sf	15 19	39,49 /mh 39,17 /mh	573	0.57	549 116	-			÷		2	1,122 876	1,7
	Rebar- Pada (100 #/cy)		18.004 mh/tn	65	43,53 /mh	2,821	997.70	3,592	-	· •	-				6,413	0,9
	Finish-Float Pump Place Curbs 12*	484 si 72 cy	0.017 mh/sf 2.501 mh/cy	6 180	39.17 /mh 41,39 /mh	322 7,452		· 1	-		9,86	710		1 1	322 8,161	5 12,9
	4000 psi Concrete Liauid Custra Compounds	72 cy 4,360 sf	0,003 min / sf	13	/cy 39,17 /mh	512	142.80 0.86	10,224 256	-		· -				10,224	15,6
	Liquid Compounds 03.08 Pads & Curbs	4,360 sr 72 cy	0,003 mil/si	1.075	39,17 /mm	43.057	286.66	20.640	-		9.86	710		• •	64,407	1,2 100,6
03.09	Pan Stair Fill															
	Finish Stairs Pumo Piace Pan Stair Concrete	552 st	0.055 mh/si 3,001 mh/cy	31 12	39.17 /mh 41,39 /mh	1,211 497		-			9,18	37		: :	1,211 533	1,9
	3060 psi Concrete	4 cy			-	· · · · · -	138.00	552	-	-	-	-			552	8
	03.09 Pan Stair Fill Misc Metals	4 cy		43		1,708	138.00	552			9,18	37			2,296	3,5
	Work Platform Frame & Floor Grating Structural Support (13 #/s/)	1 tn	8.002 ch/th	40	214,54 /ch	1,734	1,200,25	1,212			829,21	838			3,784	5,6
	Metal Stairs Concrete Pans Metal Stairs Grating Type	63 /s 18 m	0.057 m/rs 1.000 m/rs	4 18	42.08 /mh 42.08 /mh	177 758	80.02 367 57	5,041 6,618	-		• • •				5,218 7,374	7,9
	Alum Stair Wa'll Handrail	32 #	0.150 mh//il	5	42.08 /mh	202	16.80	538	-			- 1			740	1,1
	Auminum 3 Line Rail Auminum Handrall @ Work Patform	84 lí 60 M	0.234 mh/li 0.234 mh/li	20 14	42.08 /mh 42.08 /mh	827 591	44.11 44.11	3,705							4.532 3.237	6,9 4,9
	Aluminum Handrali @ Pan Stairs	92 W	0.234 mh/li	22	42,08 /mh 42.08 /mh	905	44,11	4,058	-	· · · ·					4,964	7,5
	Alum Grate Cover.75° @ 454' Sump Alum Grating Work Piktform @ UV Reactor 12' x 8,5' x 5' h, 2 ea	2 ea 156 sf	0.600 mm\/ea 0.035 mm\/sf	1	42.08 /m/h 42.08 /m/h	51 230	185.04 12.39	370 1,933	-					-	421 2,163	6 3,2
	Aum Grating Banding Alumnum Hatch & Frame Over Pipe Gallery 6.33' x 6.33'	74 lf 0 ca	8.000 mh/ea	G	11 39.18 /min	3	23.70 5,001.00	1,754 50	-		· -	-			1,754	3,2 2,6
	05.01 Misc Metals	1 is	0.000 (110) 24	129	39,10 mm	5,478	27,924.05	27,924			837.50	636		·	34,240	52,3
	Wood															
	Mişe Nailers & Blocking PT Roof Blocking @ Top Of Nisserry Wall	7,071 si 332 W	0.010 mh/sf 0.035 mh/ll	71 12	39.67 /mih 39.67 /mih	2,806	0.40	2,638 604	:						5,644	8,7 1,6
	PT Roof Blocking @ Skylight Curb	156 #	0.035 mh/ll	5	39.67 /mh	217	1.82	284	-						500	7
	06,00 Wood Mojsture Protection	1 Is		88		3,483	3,725.66	3,726							7,209	11,1
	Caulking @ Masonry Wall Joints- Exterior (.09 If/sf)	1,223 #			đ				4.00	4,893		Carlor an an			4,893	7,4
	Caulking @ Masonry Wall Joints- Interior 07.00 Moisture Protection	1,021 lí 1 la			11				4.00 8,977.80	4,085		•			4,065	6,2 13,6
07,81	Roofing															
	Membrana Rooling- 60 mit EFDM Mechanically Attached w/ 3* Insulation Auminum Downspouls, 2 ea x 32* each	5,800 sf .64 vf			ist M				3.00 18.00	17,403 1,152					17,403 1,152	26,4
	Scuppers	2 ea			/ea				50.01	100					100	1
	Auminum Coping @ Roof Parapet 12" wide Translucent Panel Skylight Frame & Panels	332 ff 1.398 sf			Ali ISE				15.00 38.01	4,981 53,135					4,981	7,5
	07.01 Roofing	1 sf							76,771.31	76,771					76,771	116,5
	Doors, Frames & Hardware HM Single Frames- 16 ga 3'x''	5 ea	1.000 mh/ea		39.18 /mh	196	180.04	900							1,096	1,6
	HM Double Frames- 16 ga, 6'x7'	1 ea	1.500 mh/ca	2	39,15 /mh	59	210.00	210							269	4
	HM Door Leafs- 3'x7' 20 ga, half glass Overhead Doors- 10'x10' 24 us steel manual 1" insustion 26 ga back-up panel		1.500 ,ea / mh	5	39.18 /m/h		450.09	3,151	2,255.00	2,255				1 1	3,333	5,0 3.4
	Finish Hardware by Leaf- Allowance	7 es	8.002 mh/ea	56	39.18 /min	2,194	90D.18	6,301			• -			-, · · ·	8,496	13,0
09,00	θ8.00 Doors, Frames & Hardware Finishes	1 ea		67		2,632	10,562.87	10,562	2,255.00	2,255					15,449	23,6
	Paint HM Door Frames - primer (2) coats	7 ca			162		-	-	100.02	700					700	1.0
	Paint HM Doors - primer (2) costs Paint CMU Block - block filler & (2) cost	7 na 10,166 sf			/ea	·	-	1999 - 19 <u>1</u>	140.03 1.35	980		· · _			980 13,751	1,4 20.8
	09,00 Finishes	1 ls							15,431,44	15,431					15,431	23,4
10.00	Specialty Items	1 ea			Pa. 4				3,000.60	3,001					3,001	
	Signs - Building ID Signs - Doors	4 ca			/6a /6a				30.01	120	-	· · · · · ·		2	120	4,5
	File Extinguisher CD2 10 Rs	4 ea			/ea				225.05	900					900	1.:
22.00	10.00 Specialty items Plumbing	1 ls							4,020.81	4,021					4,021	6,7
	Plumbing Subcontract	7,071 sf			/si				6.00	42,434					42,434	64.4
	22.00 Plumbing	1 Is				1 4 4 4 4 4 4 4 4			42,434,47	42,434					42,434	84,4
23.00	HVAC															

Page 44

<File name>

64 A 1 1

DM E Evansvillo WTP Rehabilitation 6-1	220	<u></u>		EWSU Wat	er Treatment Plan	t- Advanced Faci	ity Plan	••••••••••••••••••••••••••••••••••••••	1		1987 H	0000	Cause	nent JTP-5 No. 45545 e 67 of 105		ause No. 45546 -6 Attachment 2 Page 45 of 54
S WBS WBS WBS 1 LVI2 LVI3 LVI4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
26.00	23.00 HVAC UG Electrical	1 sf							318,195.00	318,195					318,195	482,930
	Building Electrical System 26,00 UG Electrical	7,071 sf 1 js			isl				16.00 113,158.59	113,159 113,159					113,159 113,159	171,743 171,743
26.01	Above Ground Electrical Bullding Electrical System	7,071 sf			isf				8.00	56,579					56,579	85,871
	Process Electrical System 26,01 Above Ground Electrical	7,071 sf 1 is			isi				30.01 268,751.64	212,172 268,752					212.172 268,752	322,017 407,889
28.02	Instrumentation & Controls Controls & Instrumentation	1 ls			As				365,278,00	356,278					366,278	555,906
31.01	26.02 Instrumentation & Controls Dewatering	1 ls							366,278.00	366,278					365,278	555,906
	Remove Deviatering System 24* Wells, well casing, pea gravel	1 is .35 #	2.000 cd/ks	96	2,249.33 /cd	4,499			227.27	227 5,250	1,295.68	1,296		: :	6,022 5,250	9,527 7,968
	Set & Wire Pumps Maintenance/Operation Suction Pelling	1 ea 1 ea	2.000 ea/cd 1.000 ea/cd 110.000 lf/cd	24 48	2,249.33 /cd 2,249.33 /cd	1,125 2,249	25,000.00 1,000.00	25,000 1,000			32 3 .92 647.84	324 648		: I	25,449 3,897	40,238 6,109
	Suction Mpting Heador Piping Valving	80 # 200 # 1 Is	110.000 lf/cd 200.000 lf/cd 1.000 ls/cd	35 48 48	2.249.33 /cd 2.249.33 /cd 2.249.33 /cd	1,636 2,249 2,249	15.00 35.00 5.000.00	1,200 7,000 5,000) -	-	5.89 3.24 647.84	. 648 648		1 - 1	3,307 9,897 7,897	5,160 15,215 12,180
	Run Temp Power to Pumps Electric Consumption	1 ea 4 mo	1.000 ea/cd 1.000 mo/ls	32	1,439.45 /cd	1,439	2,000.00	2,600		-	226.08	225			3,666 4,000	5,573 6,071
31.02	31.01 Dewatering Piles	1 Is		331		15,447	45,200.00	45,200	5,477.27	5,477	4,260,36	4,260			70,384	105,142
	Augered Piles CIP 18" x @ 25 It depth, 10" oc = 104 ea (1 per 68 sf) 31.02 Piles	2.600 vf 104 ea	0.002 cd/vf	291 291	2,146.97 /cd	11,165 11,165	35.16 8 78.91	91,407 91,407			2.58 64.51	6,709 6,709		-	109,282 109,282	167,079 167,079
31.03	Excavation Shoring Shoring System Design Engineer	1 is					070101	51,441	- 15.002.99	15,003	04.51	0,100			15 003	22,770
	Structure Stealing (37: x22 ceep) The Backs (1 pcr B0 sf of Sheeting, 87: x 18'= 1586 sl)	. 1,914 sf . 20 ca	0.001 cd/si	94	2,465.38 /cd	3,633	16.00	30,630	2.377.48	47,549	0.75	1,440			15,003 35,704 47,549	22,770 54,531 72,167
31.10	31.03 Excavation Storing Structure Excavation	1,914 sf		94		3,633	16.00	30,630	32,68	62,552	0.75	1,440			98,256	149,468
51.10	Exc Clay-BackhoefTruck (7.3:0 sf x 18.33') 31.10 Structure Excavation	4,963 cy 4,963 cy	499.900 cy/cd	357 357	1,410,06 /cd	13,999 13,999				-	6.58 5 .58	32,678 32,675		. ÷	46,676 46,676	74,162
31.12	Structure Backfill Backfill Earth-Backhou/Tuck (87' x 4' x 18.33')	236 cy	0.002 cd/cy		1,327,72 /cd	633										74,162
31.13	Securi Earth-Seculio (10 x 4 x 16.33) 31.12 Structure Backfill Soil Disposal	236 cy	0.002 Bd7 Cy	15	(,32).12 100	633			-	. •	4.69 4.69	1,106			1,739 1,739	2,762 2,762
31.13	Sdir Usposal Spoks to Waste 31,13 Sol(Disposal	4,727 cy 4,727 cy	0.003 day/cy	426	1,410.06 /day	16,667		· -	· ·	•••• •	8.23	38,905			55,572	88,297
31.20	Structure Stone Base Structure Stone Base Structure Subbase Stone-Loaders/Truck-7,310 sf x 4*	4,727 Cy 90 Cv	0.003 cd/cv	426	1,509,58 /cd	16,667	28.28	2.545			8.23	38,905			\$5,572	88,297
40.00	31.20 Structure Stone Base Under Ground Process Plaina	90 cy	0.003 687 69	11	1,009,00 /00	439	28,28	2,545			10.02	901 901		· ·	3,886 3,886	5,992 5,992
40,00	Under Ground Process Piping Trench Excav & Lay Pipic 0 - 4* Stone Pipe Bedding	28 # 5 cy	600.000 If / cd 200.000, cy / cd	3	2,539,31 /cd 2,896.43 /cd	119 72	23,29	116		· .	1,86	53			171 189	272
	Hydrostalic Testing Gasket/Hydrostalic Testing	28 lí 6 na	0.021 ch/li 3.001 mh/ca	2	182,49 /ch 45,62 /mh	107	0.16	4	۰. ·			·		-	112 2,172	291 177 3,349
	Di Flanged Joint Pipe 36* Di Flanged Tae 36*	28 N 4 ea	3.471 mh/6 20.524 mh/ea	97 82	45.62 /mh 45,62 /mh	4,434 3,745	426.62 19,000,00	11,945			E E	<u>.</u>			16,379 79,745	25,147
	DI Bind Flange 38" 40.00 Under Ground Process Piping	1 ea 1 lf	19.230 m//ea	19 223	45.62 /mh	877 10,176	3,840.90 93,257,54	3,841 93,258			52,74	53		• •	4,718 103,485	7,218 157,728
40.01	Above Ground Process Piping Paint & Stendi Exposed Piping >20*	204 8							25.01	5,101	-				5,101	7,742
	Paint & Stendt Exposed Plping <20* Pipe Supports	800 li 17 ca	4.001 mh/ea	68	45.62 /mh	3,103	250.05	4,251		6,002		•			6,002 7.354	12,144
	DI RLI si di Wgt Cap 36 Hydostalta Testing Dresser Couplings 38*	1 ea 204 lí 4 ea	5.058 m/n /ea 0.021 ch /lf 20.804 m/n /ea	5 17 83	45.62 /mh 182,49 /ch 45,62 /mh	231 782 3,797	4,020.80 0.16 1,270.26	4,021 33 5,081		: :	-	Ę.		- 	4,252 815 8,878	6,458 1,287
	36" DI Wall Thimble 24" long. Gasket/Nuts/Bolt Kil 30"	1. ea. 4. ea	5.001 ch/ea 2.501 mh/ea		182,49 /ch 45,62 /mh	913 455	1.286.25	1,285	s		1,200,15	1,200		1 1	3,399	13,720 5,307 1,785
	Gasket/Nuts/Bolt Kit 36" Gasket/Nuts/Bolt Kit 48"	14 ca 18 ea	3.001 mh/ea 1.000 mh/ea	42 18	45.62 imh 45.62 imh	1,917 821	225.05 425,09	3,151 7,652	- 2	•	•				1,156 5,067 8,473	7,815 12,913
	Dt Flanged Joint Pipe 30* Dt Flanged Joint Pipe 36*	6 M 70 M	3.051 mh/8 3.471 mh/8	18 243	45.62 /mh 45.62 /mh	835 11,084	310.21 426.62	1,861 29,864		·· · · · :	1	:		: :	2,696 40,947	4,147 62,887
	Di Faraged Join Pipe 46". Di Faraged 90 ell 30" Ci Faraged 90 ell 43".	128 # 5 ea 4 ea	4.371 mh/lf 17.874 mh/ca 25.715 mh/ea	559 89 103	45.62 /mh 45.62 /mh 45.62 /mh	25,524 4,077 4,693	711.68 2,317.06 6,635.22	91,096 11,585 26,541	÷ -,		· · · · ·	1		: :	116,620 15,662 31,234	178,655 24,036 47,709
	Di Flanged Tee 48"	4 es 4 es	20,524 mh/ea 25,715 mh/ea	82 103	45,62 /mh 45,62 /mh	4,653 3,745 4,693	19,000.00 24,821.92	76,000	- 1						31,234 79,745 103,960	47,709 121,274 156,118
	DI Flanged Con Red 48x32" DI Flanged Con Red 48x36"	4 ea . 2 ea	25.715 mh/ea 25.715 mh/ea	103 51	45.62 /mh 45.62 /mh	4,693 2,346	9,913.98 11,157.43	39,656 22,315	i -	:	·	:		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	44,349 24,661	67,614 37,581
	DI Bind Flange 48" Chemical Piping & Accessories- ALLOWANCE	1 ea 800 LF	23.595 mb/ea 0.240 mb/LF	24 192	45,62 /mh 45,62 /mh	1,076 8,761	7,187.63	7,188 44,009). – ¹	:	1 - E.	:		: :	8,264 52,770	12,613 80,659
40.02	40.01 Above Ground Process Piping Valves, Meters, Etc.	1 lf		1,831		83,547	475,575.26	475,575		13,193	1,200.15	1,200			573,425	875,815
	Magnetic Flow Meter, Inline - 48" w/ transmitter 30" Butlently Valve, 125 to citas, OI Body, Fig. w/ EIM elec aclustor NEMA 4	2 ea 4 ea	52.000 mh/es 24.005 mh/ea	104 96	48.85 /mh 45.62 /mh	5,080 4,381	28,000.80 16,487.29	56,000 65,949	й —		1			•	61,080 70,330	93,033 107,025
	48" Butlenty Valve, 75 lb class, CI Body, Fig. w/ ElM elec actuator NEMA 4 40,02 Valves, Meters, Etc.	4 ea 1 Is	38.408 mh/ea	154 354	45.62 /mh	7,009	26,380.26 227,470.23	105,521 227,470		-	-	•			112,530 243,940	171,244 371,302
40.04	Hydropneumatic Piping System Hydropneumatic Piping, Filting & Valve Allowance	1 is	mh / Is		45.52 /mh				17,000.00	17,000					17,000	25,601
41.22	40.04 Hydropneumatic Piping System Hoists & Cranes	1 ls							17,000.00	17,000					17,000	25,801
	Steel Bracket @ Column To, Support Crane Rail Beam	10 ea 162 ir	0.200 mh / ea	2	42.40 /mh	85	726.47 86.88	7,265		-					7,349 14,075	11,480 21,352

3.0 i I I

COM D18 Evansville WTP Rehabilitation 6-1	12-20			EWSU Wat	er Treatment Plan	t- Advanced Faci	lity Plan									ause No. 45545 -6 Attachment 2 Page 46 of 54
BS WBS WBS WBS 11 Lv12 Lv13 Lv14	Description	Takeoff Quantity		Hours	Labor Price	Labór Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process quip Amount	Total Amount	Grand Total Amount
	41.22 Hoists & Cranes	1 ca	 Contract of the second of the second of the base 	202	antat datus at souths of the top	7,988	21,339.87	21,340		e per la terreta estador estado	4,145.00	4,145	110,000.00	110,000	143,473	218,577
43.07	UV Disinfection Equipment															
	Centrifugal Blowers, 51-100 hp (Air Scour Blowers 1-4)	4 ca	40.068 mh/ea	160	47.77 /mh	7,645	1,500.30	6,001			150,029.95	600,120			613,766	976,309
	UV Reactor #1, 2, 3 & 4	4 ea	60.012 mh/ea	240	45.62 /mh	10,951	5,001.00	20,004					250,950.00	1,003,809	1,034,755	1,571,176
	43.07 UV Disinfection Equipment	1 Is		400		18,597	26,005.19	26,005			600,119.78	600,120	1,003,800.00	1,003,800	1,648,522	2,547,485
	50 UV Facility	7,071 gat		12,704		529,755	180.02	1,336,541	185.89	1,314,406	08.97	699,838	157.52	1,113,600	4,994,341	7,666,071
51	Oxidation flystem															
03.06	Pads & Curbs															
	Pad Form 14" LOX Tank Pad Form 24"	447 sf 288 sf	0.160 mh/s/ 0.180 mh/s/	72 52	39,49 /min 39,49 /min	2,825	1.37	510 393	•	· · · ·	•	-	•		3,435	5,397 3,837
	LOX tark red Form 24" LOX Vaportzer Pad Form 12"		0.160 mil/s/	12	39,49 /min	493	1.37	106							599	942
	Chamler	821 ff	0,015 mh/li	12	39,49 /mh	486	0,57	466		· · · · ·	•		•		952	1,476
	Strip & Oll Equipment Pad Forms	222 sf	0,005 mmt/sf	1	39.17 /min	43	0,03	7	-	-	-	·	•.	-	50	78
	Rebar- Pads (180 #/cy)	3 tn	18.004 min/to	59	43.53 /mh	2,586	997.70	3,292		•	÷.	-	-	-	5,878	9,090
	Finish-Float	1,321 sf 27 cy	0,017 mml/s/ 1,600 mml/cy	22	39.17 /m/h 41.39 /m/h	880 1.788	-	-	-	•	7.49	202	•}	·	680 1,991	1,392 3,152
	Pump Place Pads 12" 8, 14" Pump Place Pads 24"	2/ cy 32 cy	1.600 mm/cy 1.600 mm/cv	43	41.39 /min	2,120					7.49	202	-		2,359	3,152
	4000 psi Concrete	59 GV	node min ey	•.	/cy		142.00	8,378					-1	14	8,378	12,715
	Liquid Curing Compounds	1,543 sí	0.003 mh/sf	5	39.17 /mh	181	0.06	91	-				-	-	272	425
	03.08 Pads & Curbs	59 cy		330		13,450	226.16	13,343			7.49	442			27,235	42,242
26,01	Above Ground Electrical															
	Electrica) Work For Equipment (5% Equipment Cost)	1 /s			As				42,977.00	42,977				1	42,977	65,227
	26.01 Above Ground Electrical	1 ls							42,977.00	42,977					42,977	65,227
26,02	Instrumentation & Controls													4		
	Controls & Instrumentation Work For New Equipment (1.5% Equipment Cost)	1 ks 1 ks			ńs				12,893.00 12,893.00	12,893					12,893	19,558
	26.02 Instrumentation & Controls	1 15							12,693.00	12,693					12,893	19,558
32,01	Fencing & Gates 8' Chain Link Fence @ LOX Tanks	125 .17							31.01				•.		3,876	5,882
	8 Fence Vehicle Gate 12'@ LOX Tanks	1 68							1,700.34	1,700	-		-	2	1,700	2,581
	32.01 Fencing & Gates	1 ls							5,576,11	5.576					5,576	6,463
40.01	Above Ground Process Piping															
10101	Process Piping Work For Equipment (10% Equipment Cost)	1 /s			As				86,000.00	86,000				11	86,000	130,524
	40.01 Above Ground Process Piping	1 16							85,000.00	86,000				1	86,000	130,524
43.17	LOX Equipment															
	Vaporizer 9'x9'x20" h, 6,000 lbs (Charter/Thermax #SG500)	1 ea	1.000 cd/ea	40	1,783.17 /cd	1,763			-	•	763.22	763	209,000.00	209,000	211,546	321,239
	High Pressure Tank 10,960 gal, 9.5 dia.x34' h, 46,700 bs (Charter #VS-1100DSC)	1 ea	1,000 cd/ea	40	1,783.17 /cd 47.77 /m/h	1,783	2,000.00	2,900		•	763.22	763	219,000.00	219,000	223,546 48	
	Tanks - Unload Tanks - Move-Uncrate	1 m/n 1 m/n		1	47.77 /m/n	48		:							48	76 76
	Tanks - Movembridget	1 mh		1	47.77 /mh	48	-		-		-	-	2		48	76
	Tank Water 19000 Gal	1 ea	1.000 mmt/ea	1	47.77 /mh	48	13,450.00	13,458	-	-	*.		7,200.00	7,200	20,698	31,416
	Carbon Dioxide Storage & Feed System (10MGD), 50ton liquid CO2 storage, feed panel, vaporizers, heater, regulator,	1 ea	1,000 mh/ea	1	42.40 /mh	42	-	-	-	-			403,555.00	403,565	403,507	612,564
	diffusers, controls	1 Is		85		3,500	15,450.00	48.000			1,526,44		838,765,00			4 804
	43.17 LOX Equipment	1 is 1 te		65 415		17,250	28,793,39	15,450 28,793	147,448,11	147,446	1,068,46	1,525	038,765.00	838,765	859,541	1,304,809
	51 Oxidation System	1 04 1 IS					1,932,548.42		147,448,11		1,068.40 800,755.24	1,968		838,765	1,034,223	1,570,922
	5C New Small Clearwell & UV w/ Oxidation			21,391		880,540		1,932,548		1,703,438		800,755	1,952,565.00	1,952,565	7,269,847	11,149,891
	05 Clearwell	1 is		95,656		3,894,475	7,164,998.87	7,164,999	3,972,250.14	3,972,250	2,403,706.20	2,403,708	3,066,365.00	3,066,365	20,501,796	31,546,429

A 1 1 1 1 1

ansville WTP Rehabilitation 6-1	12-20				EWSÜ Watı	er Treatment Plan	- Advanced Faci	uty Plan							No. 45545 69 of 105	OUCC DR 17	-6 Attachment Page 47 of 5
WES WES WES LVI2 LVI3 LVI4		Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subconfract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
A	High Service Pump Station High Service Pump Station (Retrofit) Process Equipment																
	Pumps Pump Ingenciion HSPS Ven Turbins Can Pump - 1250 hp 43.00 Pumps 43.07 poetas: Equipment 6A High Service Pump Station (Retrofit)		5 ca 5 ea 1 ls 1 ls 1 ls	24,000 mh/ca 240,000 mh/ca	120 1,200 1,320 1,320 1,320	42,40 /mb 47.77 /mb	5,087 57,329 62,416 62,416 62,416	2,500.00 12,500.00 12,600.00 12,500.00	12,500 12,500 12,500 12,500 12,500	2,200.00 11,000.00 11,000.00 11,000.00	11,000 11,000 11,000 11,000	· · · · ·	:	562,500.00 2,812,500.00 2,812,500.00 2,812,500.00	2,812,500 2,812,500 2,812,500 2,812,500 2,812,500	15,087 2,882,329 2,898,415 2,898,416 2,898,416	24,74 4,376,28 4,403,02 4,403,02 4,403,02
8 00 03.00	High Service Pump Station (New) Hulfding & Structure Construction Foundation Mat								• • • • •								
	Keyway 6" Mal Foundation Edge Form 12" Mal Foundation Edge Form 30" Waterstop 5" Flat Stirlp & Cill Mal Found, Form Rebar-Foundation Mat (100 #/cy) Rebar Support – bricks (;12fs)		504 lf 250 sf 1,870 sf 504 lf 2,130 sf 17 ln 608 ea	0.050 mh / K 0.358 mh / K 0.350 mh / s 0.110 mh / K 0.005 mh / s 28.006 mh / in 0.002 mh / a	25 91 655 55 11 489 1	39,49 /mh 39,49 /mh 39,49 /mh 39,18 /mh 39,17 /mh 43,53 /mh	995 3,594 25,860 2,172 417 21,272 53	0.67 1.31 1.31 2.10 0.03 997.70 0.26	339 341 2,455 1,059 64 17,410 160	-		-				1,324 3,935 28,305 3,231 481 38,681 213	2,0 6,2 44,6 5,0 7 80,0 3
	Firlish- Hard Trowel Pump Place Mal Foundation 12" Pump Place Mal Foundation 30" Pump Place Thickened Mat 36" x 12" 4000 pal Concrete Liquid Curing Compounds		5,057 sf 81 cy 268 cy 14 cy 353 cy 7,197 sf	0.023 mih/s/ 0.500 mih/cy 0.500 mih/cy 0.500 mih/cy 0.500 mih/cy	117 41 134 7 22	39.17 /mh 41.39 /mh 41.39 /mh 41.39 /mh /cy 39.17 /mh	4,565 1,676 5,546 290 846	- 142.00 0.06	51,546 423		- - - - - -	4.59 4.59 4.59	372 1,230 64	- 	· · · · · · · · · · · · · · · · · · ·	4,555 2,048 6,776 354 51,546 1,269	7,2 3,2 10,7 5 78,2 1,9
03.03	6 Mil. Vapor Barrier 83.00 Foundation Mat Columns Form Reclangle Columns 9.33" & 9.58"		5,600 si 363 cy 1,128 si	0.002 mh/st 0.165 mh/si	11 1,658 186	43.53 <i>im</i> h 39.49 <i>im</i> h	488 67,765 7,350	0.05 204.11 1.60	294 74,090 1,601		-	4.59	1,665	:		782 143,520 9.150	1,2 222,3 14,3
	Charrier Stop & Oli Columo Form Stopenjasticitans @ Columns Column Rebar (120.#/cy) Finish-Float Pump Place Columns 15 ea		565 tf 1,128 sf 21 cy 1 tn 44 sf 21, cy	0.015 mm/f 0.005 mm/sf 20.004 mm//m 0.017 mm//sf 1.609 mm/cy	8 6 25 1 34	39.49 /mh 39.17 /mh /cy 43.53 /mh 39.17 /mh 41.39 /mh	335 221 1,097 29 1,391	0.57 0.03 8.40 997.70	320 34 176 1,257			7.50				655 255 176 2,354 29 1,648	1,0 4 3,5 2,4
	4000 psl Concrete Grind/Patch Columns Rub Columns Liquid Cuning Compotends 03.03 Columns		21 cy 1,128 sf 1,128 sf 1,128 sf 1,128 sf 21 cy	0.013 mm/st 0.065 mm/st 0.063 mm/st	15 73 3 351	ley 39,17 Imh 39,17 Imh 39,17 Imh	574 2,872 133 14,001	142,00 0,03 0.06 0.06 320,87	2,982 34 68 66 65 6,738			7,50	157	-		2,982 608 2,939 199 20,897	4,: 4,: 4,: 32,:
03.04	Walls Brick Ledge Forms Keyway 5". Vertical Wall Keyway 6" Panel Form System 16" h Wall Box Out For Weir, 34 If Wallerstop 6" Flat Strip 6 Cd Wall Forms		161 sf 	0.300 mh / sf 0.050 mh / li 0.110 mh / li 0.190 mh / sf 0.550 mh / sf 0.110 mh / li 0.005 mh / sf	48 16 1,986 77 46 52	39,49 /mb 	1,908 646 413 78,419 3,041 1,819	2.21 0.67 1.84 1.34 2.10 0.03	365 220 64 19,206 188 885 314	-				-" - 		2,263 866 477 97,625 3,229 2,705	3,5 1,3 7 153,2 5,0 4,2
	Superplasticitzers @ Walls Rebar-Walls (125 #/cy) Finish-Top Of Wall Pump Place Walls 24* Pump Place Walls 30* Pump Place Bick Ledge		10,450 sf 398 cy 25 tr 474 sf 350 cy 47 cy 1 cy	15.003 m/h/tn 0.008 m/h/sf 1.150 m/h/cy 1.159 m/h/cy 2.001 m/h/cy	52 375 4 403 54 2	39,17 /m/h /cy 43,53 /m/h 39,17 /m/h 41,39 /m/h 41,39 /m/h 41,39 /m/h	2,047 16,325 149 16,652 2,238 83	8.40 997.78 -	3,344 24,943 -			6.65 6.65 14.42	2,327 313 14	-		2,360 3,344 41,268 149 18,990 2,550 97	3,7 5,0 63,5 30,0 4,0
	4000 psi Concrete Gridd/Patch Walls Rub Walls Liquid Curring Compounds 03.04 Walls		398 cy 10,450 sf 5,225 sf 10,450 sf 396 cy	0,013 m/r/sf 0,058 m/r/sf 0,002 m/r/sf	136 303 21 3,534	/cy 39,17 /mh 39,17 /mh 39,17 /mh	5,322 11,870 819 141,760	142.00 0,03 0.05 0.06 270.90	56,516 314 314 615 107,276			8.70	2,654			56,516 5,635 12,183 1,433 251,690	86,7 8,6 19,2 2,2 391,4
03.06	Suspended Flat Slab Form Suspended Slab Eoltorn Slab Edge Form 12* Skip & ADI Suspended Slab Forms Superglasticitans Retar - Suspended Slab (225 <i>ilicy</i>) Finish- Hard Trowel Pumo Pince Suspended Slab 12*		6,383 sf 660 sf 7,043 sf 	0.180 mh /st 0.250 mh /sf 0.605 mh /sf 20.004 mh /tn 0.030 mh /tn 1.600 mh /sf	1,149 165 35 531 192 425	39.49 /mh 39.49 /mh 39.17 /mh 43.53 /mh 39.17 /mh 41.39 /mh	45,378 6,517 1,380 23,117 7,502 17,586	2.18 5.17 0.04 8.40 997,70	13,943 3,413 289 1,983 26,489			6.65	1,570	-		59,322 9,930 1,666 1,983 49,606 7,502 19,166	92,9 16,4 2,6 3,0 78,7 11,8 30,3
03.07	4000 psi Concrete Liquid Curing Compounds 03.06 Suspended Flat Stab Suspended Beams		236 cy 14,086 sf 236 cy	0.003 mih/s/	42 2,539	39,17 /mh	1,655 103,135	142.00 0.68 378.15	33,512 9,616 89,244			5,65	1,570	-	-	33,512 11,271 193,849	50,8 17,2 301,1
	Beam Side Forms Beam Boltom Forms Charder Sing & Oll Beam Forms Superplasticizens @ Beams Rebar-Beams (250 #(v))		1,354 st 468 sf 936 tf 1,822 sf 51 cy .6 to	0.210 m/n/sf 0.210 m/n/sf 0.015 m/n/ff 0.005 m/n/sf 15.003 m/n/tn	284 98 14 9	39,49 /mh 39,49 /mh 39,49 /mh 39,17 /mh /cy 43,53 /mb	11,230 3,882 555 357 4,179	2.21 2.21 0.57 0.03 8.40 997,70	2,986 1,032 531 55 428 6,385			-		- - -		14,216 4,914 1,085 412 428 10,555	22,: 7,: 1,0
	Recar Dearlis (25 MrCy) Finish: Top (26 Beam Pump Place Beams @ Roof 4000 psi Concrete GrindPlacta Beams Rub Beams Loaid Caving Compounds		468 st 51 cy 1,822 st 1,822 st 2,290 st	0.013 min/sf 0.013 min/sf 0.013 min/sf 0.035 min/sf 0.022 min/sf	4 102 24 155 5	43.53 /mh 39.17 /mh 41.39 /mh /cy 39.17 /mh 39.17 /mh	4,119 147 4,224 928 6,066 179	142.00 0.03 0.06	5 7,242 55 109 135			14.42	735	-		10,555 147 4,959 7,242 983 6,175 314	16,3 7,8 10,5 1,5 8,7
03.08	Claude Clauding Computerions 03.07 Suspended Beams Pads & Curbs Pad Form 6" Roof Parapet Curb Forms 48" h Chamfer		51 cy 52 sf 1,145 sf 571 ll	0.120 .mh/s/ 0.200 mh/s/ 0.215 mh/i/	791 6 229 9	39,49 /min 39,49 /min 39,49 /min	31,746 246 9,045 338	0.00 371.73 1.37 1.52 0.57	18,958 71 1,744 324	-		14.42	736	-		51,440 317 10,788 862	80,1 16,5 1,0
	Chamter Strip & Oil Equipment Pad & Curb Forms Rebar- Pads (100 #/cy)		5/1 1,197 sf 1 to 	0.015 m/r/fl 0.005 m/r/s/ 18.003 m/r/to 	9 6 12 2	39,49 /min 39,17 /min 43,53 /min 39,17 /min	338 234 509 83	0.57 0.03 997.70	324 36 549		· · · · · · · · · · · · · · · · · · ·	- - -		-		662 273 1,158 83	1,0 4 1,7 1

5 I I

OUCC Attachment JTP-5

Cause No. 45545

f vansville WTP Rehabiltation 6-1	2-20			EWSU Wa	ter Treatment Plan	t- Advanced Fac	ility Plan						Cause	nent JTP-5 No. 45545 : 70 of 105	C OUCC DR 17	ause No. 4554 -6 Attachment Page 48 of f
WBS WBS WBS Lvi2 Lvi3 Lvi4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Materiai Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
	Pada & Curbs Pada & Curbs Pump Piace Curbs 12"	11_cy_	2,501 mh/cy	28	41,39 /mh	1,138	-				9.86	106		anda ana an manina A	1,247	1,974
	Pump Place Pads 5" 4000 psi Concrete	2 cy 13 cy	1.601 mh/cy	3	41.39 /mh /cy 39.17 /mh	132	142.00	1,845			7.49	. 15		: :	147 1,846	234 2,802
	Liquid Curing Compounds 03.08 Padis & Curfus	1.321 si 13 cy	8.003 mh/sf	4 298	39.17 /mh	155 11,882	0.06 365.12	78 4,747	-	•	9.49	123		-	233	354 26,205
03,20	Precast Planks Precast Hollow Core Roof Planks 4' wide x 10"	4,324 st	0.020 mh/sl	85	42,24 Inh	3,654	8.60	36,059			0.35	1,522			43,234	65,98
	Precast Hollow Core Root Planks 4" wide x 10" 03.20 Precast Planks	4,324 si 4,324 sf	0.020 mn/st	86 86	42,24 /mn	3,654	8.80	38,059	-		0.35	1,522			43,234	65,95
04.00	Masonry 8° CMU + Rigid (neulation Backup To Brick, 17' h	2,302 sf			/sf				18.00	41,444		· .			41,444	62.90
	8" CMU Interior Partition 9,33" h Brick Veneer	824 sf 2.448 sl			/sf		:		14.00 9.00	11,538 22.036	-				11,538 22,036	17,51
	04.00 Masonry	3,272 sf							22.93	75,019					75,019	113,85
	Wood Nise Nallers & Blocking	5,025 sf	6,010 mh/s/	50	39.67 /mh	1,994	0.40	2,017		-					4,011	6,21
	06.00 Wood Roofing	1 Is		50		1,994	2,016.69	2,017							4,011	6,21
	Nembrage Roofing- 60 mil EPDM Mechanically Attached v/l 3* Insulation	5,100 s/ 64 v/			/sf /vf				3.00 18.00	15,303 1.152					15,303 1,152	23,22
	Aluminum Downspouls, 4 ea x 18' each Aluminum Coping (B) Rool Paraspel 20' wide Aluminum Guiters	143 II 114 IF			AL AL				25.01	3,576					3,576	5,4
	Roof Hatch 4'0' x 4'0" Transluend Panel Skylight Frame & Panels 7' x 7', 6 ea	3 ea 294 sf			/ea /st				2,500.58 38.01	7,502				and an and a second s	7,502	11,31
	07.01 Roofing	5,100 st			734				7.93	40,417					40,417	61,34
	Doors, Frames & Hardware HM Door Leefs- 3'x7' 20 ga, half glass	7 eə	1.500 ea/mh	5	39.18 /mh	183	450.09	3,151	-						3,334	5,01
	Overhead Doors- 10'x10' 24 ga steel manual 1" insualion 26 ga back-up panel 08.00 Doors, Frames & Hardware	1 ea 8 ea		5		183	- 393.83	3,151	2,256.45 281,93	2,255					2,255 5,589	3,42 8,45
09.00	Finishes									400						
	Paint HM Door Frames - primer (2) costs Paint HM Doors - primer (2) costs	4 ea 7 ca			. iea iea	100 A.	:	-	100.02 140.03	980					- 400 980	60 1,48
	Paint Wells- 3 coats 09,00 Finishes	3,950 sf 1 is			-	-	•	-	0.94 5,093.27	3,713	-	•			3,713 5,093	5,6
10.00	Specialty Hems Signs - Building ID	1 ea			/ea				3,000.60	3,001					3,001	4,5
	Signs - Doors Signs - Doors Fire Extinguisher CO2, 10 lbs	4 ea 3 ea			/ea /ea				30.01 225.05	120					120	16
	10.00 Specialty Items	3 ea 1 ls			/64				3,795.76	3,795					3,796	5,7
22.00	Plumbing Plumbing Subcontract	5,100 sf			/s/				6,00	30.605					30,606	46,4
	22.00 Plumbing HVAC	1 Is							30,606.11	30,605					30,606	40,4
	Ventitation & Unit Heater System	5,100 sf			/sf				25.01	127,525					127,525	193,5
31.01	23.00 HVAC Dewatering	5,100 st							25.01	127,525					127,525	193,5
	Remove Dewatering System 24" Wells, well casing, pea gravel	1 ls 35 lř	2.000 cd/is	96	2,249.33 /cd	4,499			227.27 150.00	227 5,250	1,295,68	1,298			6,022 5,250	9,5 7,9
	Set 8 Wike Pumps	1 ea 1 ea	2,090 ea/cd 1.090 et/cd	24 48	2,249.33 /od 2,249.33 /od	1,125 2,249	25,000.80	25,000 1,000			. 323.92 647.84	324 646			25,449	40,2 8,1
	Suction Piping Header Piping	80 W 200 If	110,000 If / cd 200,000 If / cd	35	2,249.33 /cd 2,249.33 /cd	1,636 2,249	15.00 35.00	1,200	-		5,89 3.24	471 848			3,307	5,1 15,2
	Vaking Run Temp Power to Pumps	1 ls 1 ea	1.000 is/cd 1.000 ea/cd	48	2,249.33 /cd 1,439.45 /cd	2,249	5,000.00	5,000			647.84 226.08	648 225			7,897	12,1: 5,6
	Electric Consumption	4 mo	1.000 mo/ls		As		1,000.00	4,000							4,000	6,0
	31.01 Dewalering Piles	1 ls		331		15,447		45,200	5,477,27	5,477		4,250			70,384	108,1
	Augened Pilos CIP 18" x @ 25 it depih, 10'oc ≠ 79 ca (1 per 64 sf) 31.02 Piles	1,975 v/ 79 ea	0.002 cd/v/	221 221	2,146.97 /cd	8,482	35.16 878.91	69,434 69,434	-	-	2.58 64.51	5,096 5,096			63,012 83,012	126,9 126,9
	Excavation Shoring Shoring System Design Engineer	1 ks							15,003.00	15,093					15,003	22,7
	Shong System Design Engineer Sinucture Sheeling (140' x 22' deep) The Backs (1 per 80 s (of Sheeling, 149' x 18'* 2,652 s);	1 is 3,278 s/ 34 ea	0.001 cd/sf	162	2,465.38 /cd	6,225	16.00	52,458	2,377.47	15,003	0.75	2,465			61,148	22,7 93,3 122,6
	31.03 Excavation Shoring	3,278 sf		162		6,225	16.00	52,458	2,377.47 29.24	80,834 95,837	0.75	2,465			156,986	122,6
31.10	Structure Excavation Exc Clay-Backhoe/Truck (5,440 sfx 17,831)	3,592 cy	499.900 cy/cd	259	1,410.05 /cd	10,132					6.58	23,650			33,782	53,65
	31.10 Structure Excavation Structure Backfill	3,592 cy		259		10,132					6.58	23,650			33,782	53,67
31.12	BackFill Earth-Backhoe/Truck (149' x 4' x 17.83')	383 cy	0.002 cd/cy	25	1,327.72 /cd	1,027			-	-	4.69	1,795			2,822	4,41
31.13	31.12 Structure Backfill Soll Disposal	383 cy		25		1,027					4.69				2,822	4,4
	Spoks to Waste 31.13 Soil Disposal	3,199 cy 3,199 cy	0.003 day/cy	288 288	1,410.06 /day	11,279 11,279	-		-		8,23 8,23	26,329 26,329		· •	37,608	59,7 59,7
	Structure Stone Base			200												
	Sinucture Subbase Stone-Loaders/Truck - 5,440 sf x 4" 31.20 Structure Stone Base	67 cy 67 cy	0.003 cd/cy	8	1,609.55 /cd	327 327	28.28 28.28	1,895 1,895		-	10.02 10.02	671 671		•	- 2,893 2,893	4,48 4,48
40.01	Above Ground Process Piping Paint & Stendi Exposed Piping <20*	620 K			-				10.00	6,201	-				6,201	9,4
	ram a sterior cruster right ⊂20 Paint & Sterior Exposed Priping ≥20 40.01 Above Ground Process Piping	26 # 1 lf				-		-	25.01 5.851.37	650 6,851	-	-			. 650 6.851	91 91 19,31
	to Building & Structure Construction	1 07 5,500 .gst		10,606		429,038	100.64	513,267	5,651.37 77,64	5,851	14,25	72,694			6,851 1,407,877	2,170,01
	Electrical & Instrumentation UG Electrical					in and the										
	Building Electrical System	5,100 sf			/sf				16.00	81,616					81,616	123,87
	26.00 UG Electrical Above Ground Electrical	1 Is							81,616,29	81,616					81,616	123,87

8 a - 0 - 1 - 1

Int of the Control Under the Control Under the Control Answer Control Control Answer Control Con	M Evansville WTP Rehabilitation 6	5-12-20			EWSU Wate	r Treatment Plan	nt- Advanced Faci	lity Plan		,	,,,,,,,		OUC			C. OUCC DR 17-	ause No. 4554 6 Attachment 2 Page 49 of 54
Alt	WBS WBS WBS Lvl 2 Lvl 3 Lvl 4		Takeoff Quantit	y Labor Productivity		Labor Price				Cost/Unit	Amount			Equip		Totel Amount	Grand Total Amount
Image: Second secon		Process Electrical System 26.01 Above Ground Electrical				/sí				30.01	153,031	and the control of the formation	-	ber of the second s			232,257 232,257
a b c	26.02	Controls & Instrumentation 26.02 Instrumentation & Controls	1 ls			As				264,180.00	264,180					264,180	400,950 400,950
Hart Set Product Set Product Set Prod			1 la							498,828,84	496,827					498,827	757,077
International of a state of a st																	
Bork Pack Bork Pack <t< td=""><td>40.00</td><td></td><td>20.11</td><td>800.000 Kr</td><td></td><td>0.630.01. (-4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	40.00		20.11	800.000 Kr		0.630.01. (-4											
No. 10 month 20					2			23.29	70			1.66	38		<u>-</u>	122	194 175
Hereine hand Bit Bit </td <td></td> <td>DI Pipe Push - Class 52 30</td> <td>15 11</td> <td>0.440 mh/if</td> <td>7</td> <td>51,34 /mh</td> <td>339</td> <td>167.28</td> <td>2,509</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>- · · ·</td> <td>2,848</td> <td>4,344</td>		DI Pipe Push - Class 52 30	15 11	0.440 mh/if	7	51,34 /mh	339	167.28	2,509	-	-				- · · ·	2,848	4,344
distanti density of the set of the se										-	· · · ·	-		-	·	1,256	1,914
				0.021 ch7a		182.49 /ch				-	•	-		-	-		126
mp <	40.01		20 13		14		5/2	165.47	3,709			1.88	38			4,419	6,753
Handshors Handshors <t< td=""><td>40.01</td><td>Rise Success Fighing</td><td>4 es</td><td>4.001 mb/ea</td><td>16</td><td>45.62 /mb</td><td>730</td><td>250.05</td><td>1.000</td><td></td><td>· · · ·</td><td></td><td></td><td></td><td></td><td>1 730</td><td>2,574</td></t<>	40.01	Rise Success Fighing	4 es	4.001 mb/ea	16	45.62 /mb	730	250.05	1.000		· · · ·					1 730	2,574
matrix		Hydrostatic Testing	142 lf	0.021 ch/li	12			D.15	23	-		-		-	· · · · · · · ·	567	896
Image of the set of the		Dresser Couplings 6"	8 ea	2.400 ch/ea				170.00	1,360	-				•		1,360	2,054
i i 0											1			~	· · · · ·		8,328 40,209
												351.32	723				3,004
				2.500 ch/ea				1,285.26					602			2,344	3,632
			4 ea	2.501 ch/ea		182,49 /ch	1,825	700.14		-		602.12	2,408	-	•		10,972
b b <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>- I</td> <td></td> <td></td> <td></td> <td>7,353</td> <td>2,118</td>										-	-	- I				7,353	2,118
b b 1.200 m/s 0 0 0.200 m/s <			3_ea		8						-			-		867	1,338
in Programmer										-	-	-					9,583
cf Wordstater 5 as 4.5 do miss 2 a 3 a <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td>. 3</td> <td></td> <td></td> <td></td> <td>10,281 17,969</td>										:			. 3				10,281 17,969
0 1 0 0 1 0 0 1 0							1,102					-					2,543
0 0					6								стана на	-	-	558	865
Different for 4 a 4.30 minus 19 4.50 minus 19 1.50 minus 10 1.50 minus				17.874 mmh/ea 20.620 mmh/ea	36		1,631			-		-	-				9,614
0 Hungth 10° 2 is 6.62 m/s 1 4.65 m/s 500 700 700 7 7.53 7.53 0 Hungth 10° 1 6.62 m/s 1 6.62 m/s 7.73 7.64 7.63 7.74 7.63 7.74 7.64 <td< td=""><td></td><td></td><td></td><td></td><td>19</td><td></td><td>361</td><td>120.00</td><td></td><td></td><td></td><td></td><td>· · · ·</td><td></td><td></td><td></td><td>2,124</td></td<>					19		361	120.00					· · · ·				2,124
cline frage frage 1 6 6.00 m/s / Logs 27.00 m/s / Logs 2.00 m/s / Logs		DI Flanged Tee 10*								-	-			-		1,280	1,981
0 Hier Ange 37 0 Hor 17, 36 m/r ang 1, 50 T/r 36 m/r ang 1, 50		Di Flanged Teo 30°		17,874 mh/ea	71	45.62 /mh	3,262	2,600.00	10,400		-	-		-	. . .		20,947
Characteristics Accounter Activity/CE Sole So					17						:	-					617 4,876
4.0.2 Very Meters, Efc. 1.170 m/ cs. 4.56.2 /m. 1.020 - - - - 1.173 m/ cs. 4.56.2 /m. 1.020 - - - 1.173 m/ cs. 4.56.2 /m. 1.020 - - - 1.173 m/ cs. 4.55.2 /m. 4.55.2 /m. 1.020 - - - 1.173 m/ cs. 1.173 m/ cs. 4.55.2 /m. 1.020 - - - 1.173 m/ cs.		Chemical Piping & Accessories- ALLOWANCE	500 LF		120	45.62 /mh	5,476	55.01	27,505		-	-	-		-		50,412
baseds Presents Pig 6° 10000 Presents P		40.01 Above Ground Process Piping	142 lf		1,190		53,393	545.19	77,417			26.29	3,733			134,542	207,943
Note: File Moder - Min 24 ** Minimizer File Moder - Minima Moder - Minimizer File Moder - Minimizer File Moder - Minimizer	40.02	Valves, Meters, Etc.															
sing Gack Value 6* 4 ea 4 cas 4 cas <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>· · · · ·</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td>11,110</td> <td>16,93</td>										-	· · · · ·	-	-	-	•	11,110	16,93
binding Clack Value 10 2 0 7,960 h/r,a 16 45.62 h/n 7.80 4,402.81 5,742 - - - - - 6,033 6,032 - - - - 6,033 6,032 6,03			1 ea 4 ea	26,005 mh/ea			1,270					-	-				20,22 8.02
b 10* distantly Name, 125 boles, C1600, F3y, WEM disc activator NEMA 4 2 s 9.900 m/r.es 19 45.02 /m/r.es 11,402 - - - 1,207 18,278 27.0 Get My Name, 125 boles, C1600, F3y, WEM disc activator NEMA 4 2 s 18 233 15,278 11,678 18,728 15,278<		Swing Check Valve 10"	2 ea	7.996 mh/ea		45.62 /mh	730	4,650.93				· · ·					15.27
2 /* 5 detail / Valae, 125 datae, C (16a), F.g., v (K Melle ackature MEMA 4 4 a 10, 2014 m/ as 17, 2014 m/ as 15, 201 12, 202, 00 16, 40, 20, 40, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2										-		-	-	-	•	60,856	92,63
02 Values, Medire, Rec. 1 is 33 16,23 16,26 15,272,01		10" Bullerity Valve, 125 lb class, Cl Body, Fig. w/ EWA elec actuator NEMA 4 24" Guilardu Valve, 125 lb class, Cl Body, Fig. w/ EWA elec actuator NEMA 4							11,402		-	-	-			12,278	18,693
40.04 Mydropneumatic Piprign System 1 m ² /s 42.62 m ² /s 12.000.03 12.000																	253,23
Higo documantic Parge Plang Like Adv Advance 1 is min /s 4.5.2 /min 4.5.2 /min 12,000	40.04															100,000	8-3-3-2-3-
4.0.4 Mydropaceuratic Piping System 1 is		Hydropneumalic Piping, Fitting & Valve Altowance		mh / Is		45,62 /mh	••••••				12,000					12,000	18,213
43 Process Equipprend: 3 en 35,007 m/n as 106 777 m/n 5,017 100.02 300 50 50,007 m/n as 50,007 50,007 50,007 50,007 50,007 m/n as 50,007 m/n as 50,007 m/n as 50,007 m/n as 50,007		40.04 Hydropneumatic Piping System									12,000						18,213
43 Process Equiligation 3 000000000000000000000000000000000000			182 //		1,456		65,692	1,455.89	235,854	74,07	12,000	23,28	3,771			317,317	486,14
Processe Drames - Vence Takings Promes - Share, 20 Taking Promesse - Share, 20 Taki																	
Here Transmission Purps - Von Tothlem Purps 2,000 53,0gen 2007DH1 4 eg 117.023 m/r eg 4 68 47.77 m/m 22,493 100.02 4 60 - - 100.021,563 48,206 48,206 48,208 907.14 1000 Purps - Shore Network 200 500 PUT 2 eg 24.005 m/n eg 62,21 29,025 900.78 800 - - - 100.021,563 48,208	43,00																
		recyce nonys - verscar tarbine namps / 5 np, 3 mga Water Transmiston Pumps - Vert Turbine Pumps, 200 hp. 5.3 gon. 208/TDH		35.007 mm/ea 117.023 mm/ea	105	47.77 /mh 47.77 /mh					-	-	· · · .				254,31 691.78
43.00 Pumps 1s 621 29.02.8 900.18 900 652,130.16 650,030.0 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 65,000.00 55,000.00 55,000.00 55,0		Dewatering Pumps Submersible Pumps 30 hp, 350 gpm, 208 TDH									· ·	-	- 1				91,58
43.16 Swift Water Chemical Infjection In-Line Blender 1 25.005 mh/ea 25.005 mh/ea 24.00 mh 1,600 1,600 1,600 50.005 mb/ea 50,009			1 is		621		29,425	900.18	900								1,037,68
43.16 Swift Water Chemical Injection In-Line Blander 1 Is 25 1,600 1,500.30 1,500 50,009.80 50,000.80 50,009.80	43.16																
43.21 Air Compressor 1 en 40.000 mh / ea 40 42.40 /mh 1,896 - - 55,000.0 55,000 55,000.0 36,000 55,000.0 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 36,000 36,000 55,000.0 75,100.1 73,7140 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>42.40 /mh</td> <td></td> <td>79,858</td>						42.40 /mh											79,858
Package Alc Compressor 350 clm 1 es 40.000 mi/ ea 40 42.40 /mi 1,696 - - - 35,000.00 35,600 36,666 55, 4 32.1 AIr Compressor 350 clm 1 ls 40 1,686 35,000.00 35,000.00 35,000.00 35,666 55, 4 32 Processor 1 1 ls 665 32,619 2,400.48 2,460 737,154.01 <td>· ·</td> <td></td> <td>1 Is</td> <td></td> <td>25</td> <td></td> <td>1,060</td> <td>1,500.30</td> <td>1,500</td> <td></td> <td></td> <td></td> <td></td> <td>50,009.98</td> <td>50,010</td> <td>52,570</td> <td>79,850</td>	· ·		1 Is		25		1,060	1,500.30	1,500					50,009.98	50,010	52,570	79,850
43.21 AFC Compressor 1 In 40 1,66 35,000.00 35,000 <t< td=""><td>43.21</td><td></td><td></td><td>40.000 mb 1</td><td>40</td><td>42 40 1-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	43.21			40.000 mb 1	40	42 40 1-											
43 Processe Equilyment 1 ls 686 32,121 7,400.48 2,400 737,140.14 737,140 777,721 1,173, 68 High Service Primp Station (New) 1 ls 12,748 526,911 751,527 903,704,70 903,705 76,405.00 76,405.00 737,140.14 737,140 2,995,742 4,580				40.000 mil/88		42.40 /110				-	-	-	•				55,80
6B High Struke Plump Station (New) 1 in 12,748 526,911 751,527,75 751,522 903.704.70 903.705 76,465.00 76,465 737,140.14 737,140 2,995,742 4,986								2.400.44	2 400								55,80
										903 704 70	901 705	75 455 60	76 /44				
		06 High Service Pump Station	1 ls		14,068		589,327	764,021.75	764,022		914,705		76,465			5,894,159	4,586,57 8,989,60

OUCC Attachment JTP-5

AECOM 20-018 Evenswite WTP Rehabitation 6-12-20	EWSU Wa	ter Treatment Plant-	Advanced Faci	lity Plan					OUC	Cause	nent JTP-5 No. 45545 2 72 of 105	OUCC DR 17	Cause No. 45545 7-6 Attachment $\mathcal{Z}^{age 50}$ Page 50 of 54
WBS WBS WBS Lvl 1 Lvl 2 Lvl 3 Lvl 4 Description	Takeoff Quantify Labor Productivity Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Yotal Amount
07 Groundwater & Surface Water 7A Groundwater & Surface Water 60/50 Nend 70 Oroundwater & Surface Water 50/50 Nend	(2) L. C.										 		· · · · · · · ·
76.00 Groundwater & Surface Water 50/50 Blend Estimate Place Holder 70.00 Groundwater & Surface Water 50/50 Blend 70 Groundwater & Surface Water 50/50 Blend 74 Groundwater & Surface Water 50/50 Blend 07 Groundwater & Surface Water	1 / / / / / / / / / / / / / / / / / / /	//s		1999 - 2014 - 10 - 10 - 10 - 10 1		2011 - M N. M. M. M. M T. J J T T T T T.	najirinin najir - Artinaka Arak	99 a daa daasti statu a saanii		Part Manual Social Social	1		

and for the state

AECOM 20-018 Exzesvile WTP Rehabitation 6-12-20			EWSU Wa	iter Treatment Plant	- Advanced Fac	ility Plan					OUC	Cause	nent JTP-5 No. 45545 273 of 105	OUCC DR 17	ause No. 45545 -6 Attachment 2 ^{age 5} Page 51 of 54
W85 W85 W85 ₩85 Lvi1 Lvi2 Lvi3 Lvi4	Description	Takeoff Quantity Labor Productivity	Man Hours	Labor Price	Labor Amount	Materiai Çost/Unit	Materia) Amount	Subcontract Cost/Unit	Subconfract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
08 Electrical and E&I	Sending the metric of the second s			<u></u> .	<u> </u>		· · · · · · · · ·	1 1						••••••••••••••••••••••••••••••••••••••	
26 Electrical & Instrumentation				and the second second									l		
26.01 Above Ground Electrical Estimate Place Holder		1 <i>i</i> s		/ls		1999 C. S. Landes 2020 C C.		1971							
j i 26 Electrical & Isstrumentation BA Electrical- Rehab		1 18 1 18	'												
0B E&i - Rehab 26 Electrical & Instrumentation								. [
Estimate Place Holder	ie Zazana ana di benter managan demangementanya kita ann marmanya pertamente film menyengen err	1 ls	a film and a star of the star										1		
1 28.02 Instrumentation & Controls 26 Electrical & Instrumentation 08 E& - Reinab		1 18 1 Ma													
08 Electrical and E&I		1.ls								Ì				<u> </u>	

8. c i i i i

AECOM 20-018 Evansviže WTP Rehabilitation 6-1:	-20		 		EWSU Wa	ater Treatment Pla	nt- Advanced Fac	ility Pian					OUC	Cause	ment JTP-5 2 No. 45545 3 <u>e 74 of 105</u>	OUCC DR 1	Cause No. 455 7-6 Attachmen Page 52 of	nt 2 ^{Page 5} .
WBS WBS WBS WBS Lvl1 Lvl2 Lvl3 Evl4		Description		stity Labor Productivity	Hours	Labor Price	Labor Amount	Materiai Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amoun	t Total Amount	Grand Total Amount	હે. ગ
	Outfall & Floodwater System						dense dense orde e		 Instant participation 		an angaranan karina a kepa		nta ser ende hanne		- and the set that the g			1
	Outfall & Floodwater System- Rehab																	
	Outfail & Floodwater System- Rehals															1		
	Outfall & Floodwater System- Rehab			is						100.000.00								
	Outfall & Floodwater System- Rehab 90.00 Outfall & Floodwater System- Reha	-		is		AS				100,000,00	100,000					100,000	151,77	
	90 Outlall & Floodwater System- Reheb	D .		is la						100,000,00	100,000					100,000		
	9A Oulfail & Floodwater System- Rehab			le .						100,000,00	100,000					100,000	151,77	
	09 Outfall & Floodwater System		1	.ls					en en 1940 en 1950 anna de arranges	100,000.00	100,000				a tau anticipati tau a	100,000	151,77	

at a la g

AECOM 20-018 Evensvile WTP Rehabilitation	vn 6-12-20			EWSU Water Treatment Pi	ant- Advanced Facility Pla	7			OUC	C Attachmen Cause No Page 75	. 45545	C OUCC DR 17	Cause No. 45545 7-6 Attachment 2 ⁷⁴⁹ Page 53 of 54
	BS 14	Description	Takeoff Quantity Labor Productivity	Man Labor Price Hours	Labór Mat Amount Cost	rial Material	Subcontract Cost/Unit	Subcontract Com Amount Co	st Equip Const Equip st/Unit Amount	Process	Process ulp Amount	Total Amount	Grand Total Amount
10 10A	Laboratory Laboratory- Rehab												
10	Laboratory- Rehab												i
10.04	4 Laboratory- Rehab Laboratory Equipment Upgrade Allowance		1 /s	60			50.000.00	50,000				50,000	75,888
	10,04 Laboratory- Rehab		1 ls				50,000.00	50,000				50,000	75,885
	10 Loboratory- Robab		1 10				50,000.00	50,000				50,000	75,886
	10A Laboratory- Rebab		1 16				58,000.00	50,000				50,000	75,886
	10 Laboratory						50,000.00	50,000				50.000	75.886

8.5 i I I

AECOM 20-018 Evansville WTP Rehabilitation 6-12-20 a a de la companya de

EWSU Water Treatment Plant- Advanced Facility Plan

OUCC Attachment JTP-5 Cause No. 45545 Dage 76 of 105 Cause No. 45545 Page 54 of 54

Estimate Totals

Description	Amount 28,222,766	Totals	Hours 707,472 hrs	Rate	Cost Basis	Cost per Unit	rcent of Total 10.36%	
Overtime - 50 hr wk (w/ 1.5)					с			
Material	33,259,065						12.20%	
Subcontract	27,440,416						10,07%	
Equipment	8,801,548		94,226 hrs				3.23%	
Process Equip	80,218,708						29,43%	
Subtotal	177.942,503	177.942.503					65.29%	65.20%
Sales Tax (Const Equipment)	649,554			7.38 %	с		0,24%	
Mobilization/Demobilization	1,779,425			1.00 %	т		0.65%	
Safety Supplies and Equip (L)	846,683			3,00 %	C		0,31%	
Small Tools and Equip (L)	564,455			2,00 %	С		0.21%	
Consumables (L)	423,341			1.50 %	C		0,16%	
Testing & Commissioning	1,779,425			1,00 %	т		0.65%	
3rd Party Inspections	889,713			0.50 %	с		0,33%	
Tay & Mist Sublotal	6,932,596	184,075,099					2.54%	67.83%
General Conditions	17,794,250			10.00 %	с		6.53%	
General Conditions Subilistal	17.794.250	202,669,349					6.83%	74.36%
Conlingency (%)	30,400,403			15.00 %	т		11,15%	
Configuration Configuration Configuration	38,400,483	233.069.752					11,15%	85.51%
Escalation- (mid pl 2023 @ 2.68%/yr)	15,965,278			6.85 %	т		5,86%	
Escalation Subtotal	15,965,278	249.035,030					5.86%	91.37%
Market Conditions- Max					т			
Maarkel Conditions		249,035,930						91.37%
Permis	1.362.751			0.50 %	т		0.50%	
All Bisk insurance	1,867,763			0.75 %	Ť		0.69%	
Performance & Payment Bond	2,490,350			1,00 %	÷		0.91%	
Parmits, its. & Bonds Subfold	5.720,864	254.755,894		1,00 /	•		2,10%	83.47%
G.C Overhead and Profit	17,794,250			10.00 %	c		6,53%	
GC OHEP Subtotal	17,794,250	272,550,144		10.00 /6	5		6,53%	100.00%
Total		272,550,144						
10181								

OUCC Attachment JTP-5 Cause No. 45545 Page 77 of 105

OUCC DR 17-7

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:

Please state the dates of the cost estimates in the Advanced Facility Plan were prepared and the year assumed for the costs (e.g., 2021 dollars, 2022 dollars, etc.). Please also state the level of design on which the cost estimates are based (e.g., 30% design completion).

Information Provided:

The costs were developed between in the third and fourth quarters of 2020. Estimates were based on 2020 dollars and escalated by 3%. However, it is now understood escalation has increased considerably going into 2021. The cost estimates were based on the alternative evaluations report, which is conceptual level (approximately 10% design).

OUCC Attachment JTP-5 Cause No. 45545 Page 78 of 105

OUCC DR 17-8

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:

For Evansville's preferred new water treatment plant Alternate 2B, please identify the engineering costs (planning, design, bidding assistance, construction engineering, and inspection services) anticipated for the project and state the costs for each engineering component incurred to date.

Information Provided:

The following amounts have been spent or planned to be spent as follows:

Planning	\$870,173	See invoices provided in response to OUCC DR 17- 12	Status: complete
Preliminary Design	\$620,159	See invoices provided in response to OUCC DR 17- 12	Status: Current, \$1,015,668 remaining contracted for task
Final Design	\$7,756,696	Budgeted	Status: Not started, funds reserved and ready
Construction	\$140,049,000	Planned	See Table 11-3 of submitted PER
Bidding/Con. Admin/Inspection	\$6,302,000	Planned	See Table 11-3 of submitted PER

OUCC Attachment JTP-5 Cause No. 45545 Page 79 of 105

OUCC DR 17-10

DATA REQUEST City of Evansville

Cause No. 45545

Information Requested:

For Evansville's water treatment plant rehabilitation Alternate 1, please provide cost support documentation for each major component lump sum cost listed in Table 9-2 Plant Alternative 1 Total Estimated Construction Cost on pages 117 and 118 of the Advanced Facility Plan (Attachment <u>SMB-1</u> to Mr. Breese's case-in-chief testimony in this cause). Please provide copies of the Excel worksheets detailing quantities, unit costs, equipment costs, other data used to establish costs, and all assumptions and cost allowances. Please also provide copies of budgetary cost proposals provided by equipment vendors and material suppliers.

Information Provided:

The spreadsheet is attached as OUCC DR 17-10 - Alt 1.xls. See also OUCC DR 17-6 - Timberline Output.pdf (developed in Timberline Cost estimating software) which presents further detail for cost estimates performed early in the development of the alternatives report. See response to OUCC DR 17-6 for quotes.

Attachment:

OUCC DR 17-10.xls.

OUCC Attachment JTP-5 Cause No. 45545 Page 80 of 105

٧

Cause No. 45545 OUCC DR 17-10 Attachment 1

OUCC Attachment JTP-5 Cause No. 45545 Page 81 of 105

Evansville Water and Sewer Utility

WTP Upgrade - Plant Alternative 1 - Capital Cost

Component Description	Cost	
Civil Site Work (Roads, Drainage, Fencing etc.)	\$3,500,000	
Rehabilitate River Intake	\$6,752,000	
North Plant Pretreatment Improvements	\$13,610,000	
North Plant Ozone System Retrofit	\$16,935,000	
Rehabilitate Gravity Filters	\$17,125,000	
New Sodium Hypochlorite System	\$2,092,000	
PAC Feed Improvements	\$1,000,000	
Other Chemical Improvements (4 at \$300k ea.)	\$1,200,000	4 chemical System
Demolish South Plant	\$1,066,000	
Construct New 6 MG Clearwell	\$10,960,000	
Rehabilitate Existing 6.5 MG Clearwell	\$734,000	1
Rehabilitate High Service Pump Stations #2, #3	\$8,733,000	
Extend 3 Plant Outfalls (\$750k ea.)	\$2,250,000	3 Outfalls
Building Renovations	\$4,000,000	,
Interconnecting Site Utility / Electrical Work	\$3,500,000	1
Other Demolition Work Throughout Plant	\$2,000,000	
Subtotal	\$95,457,000	s
Additional Construction Contingencies (15%)	\$14,319,000	
Other Misc. Plant-Wide Improvements (5%)	\$4,773,000	
Phasing & Sequencing Plant Outages (5%)	\$4,773,000	
Remediation & Hazardous Martials	\$1,000,000	
Allowances	\$500,000	
Startup and Commissioning	\$1,000,000	

Original Costs from Estimator

	Estimated Base Cost	Estimated Loaded Cost	Multiplier from
Description	(from estimate)	(from estimate)	Estimate
Demolition Work	\$49,600	\$75,000	1.512
Roof Repair / Replacement	\$7,000	\$10,500	1.500
Doors & Hardware Rehab	\$13,000	\$19,700	1.515
Building Finishes & Specialties	\$34,200	\$50,500	1.477
Structure and Walkway Rehabilitation	\$50,000	\$75,500	1.510
Process Piping and Accessories	\$209,000	\$317,800	1.521
Pump Replacement	\$1,335,500	\$2,020,400	1.513
Screen Replacement	\$666,000	\$1,019,100	1.530
Potassium Permanganate System	\$249,000	\$366,000	1.470
HVAC Replacement	\$115,000	\$172,000	1.496
Electrical Systems	\$200,000	\$302,000	1.510
Instrumentation	\$84,000	\$126,900	1.511
Totals	\$3,012,300	\$4,555,400	

Adjusted for Report

Description		Estimated Cost	
Demolition Work		\$75,000	Cost Adjust Comments
Roof Repair / Replacement (3,000 sf)		\$60,000	X - City noted a whole new roof
Doors & Hardware Rehab		\$13,000	
Building Finishes & Specialties		\$35,000	-
Structure and Walkway Rehabilitation	<u> </u>	\$50,000	
Process Piping and Accessories		\$209,000	
Pump Replacement (6 units)		\$1,336,000	1
		¢1 200 000	X - quote of \$750k for 3 screens - estimate seems to be pneumatic screens? Access from existing bridge, barge no
Intake Screens (3 units)		\$1,300,000	needed
	•••	¢ 400.000	X - estimate seemed low - need to run piping over, hoppe
Potassium Permanganate System (1 un HVAC Replacement (3,000 sf)	IT)	\$400,000	storage, etc.
Misc. Electrical (MCC Upgrades are Und	(anu au)	\$115,000 \$150,000	V. MCC's are getting some ungrades
Instrumentation	ierway)	\$150,000	X - MCC's are getting some upgrades
Subtotal	·····	\$3,843,000	<u>-</u>
Estimating Contingency	30%	\$1,152,900	4
Escalation to Midpoint	3%	\$1,152,500	
Construction Subtotal		\$5,111,190	_
Contractor General Conditions	10%	\$511,119	-
Contractor Overhead and Profit	12%	\$613,343	
Construction Contingencies	5%	\$255,560	
Allowance: Dredge River		\$260,000	
Grand Total Cost		\$6,752,000	

Effective Multiplier 1.76

the spectrum second

OUCC Attachment JTP-5 Cause No. 45545 Page 84 of 105

Original Costs from Estimator

Description		Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
02.01 Demolition Work	Demolition Work	\$76,883	\$119,797	1.558
	Modify Existing Structure & Service	\$1,906,341	\$2,944,607	1.545
43.03 Baffle Walls	Baffle Walls	\$346,653	\$530,906	1.532
40.01 Above Ground Process Pipin	g Process Piping	\$18,825	\$28,586	1.519
43.01 Flocculators & Mixers	Flocculators & Mixers	\$921,261	\$1,402,364	1.522
43.02 Settlement Equipment	Settlement Equipment	\$3,398,594	\$5,171,988	1.522
43.20 Slide Gate w/ Operator	Slide Gate w/ Operator	\$131,601	\$199,566	1.516
26.01 Above Ground Electrical	Electrical	\$315,783	\$477,528	1.512
26.02 Instrumentation & Controls	Instrumentation & Controls	\$94,735	\$143,258	1.512
Grand Total Capital Construction (Corand Total Capital Construction (\$7,210,676	\$11,018,600	

C 1

Adjusted for Report

Table B2.1 - Retrofit North Pretreat w/Plate Settlers

Description		Estimated Cost	Cost Adjust Comments
Demolition Work	·	\$90,000	
Modify Existing Structure & Services		\$2,307,000	X - EWSU wants influent channels and effluent launders completely rehabed - added \$400k to cost
Flow Control Diffuser Wall SS 304 (360 lf)		\$347,000	
Process Piping and Valves		\$150,000	X - Seemed low, updated to 150K
Coagulant Injection Improvements		\$75,000	
Flocculators & Mixers w/VFD (24 units)		\$922,000	
Plate Settlers & Sludge Collection		\$3,399,000	
Slide Gate w/ Operator (6 units)	·	\$180,000	X - 30K to match 120K for 4 units in new option
Electrical (8% Equip Cost)		\$361,000	X - Use 8% of equipment cost
Instrumentation & Controls (5% Equip Cos	t)	\$226,000	X - Use 5% of equipment cost
Subtotal		\$8,057,000	
Estimating Contingency	30%	\$2,417,100	
Escalation to Midpoint	3%	\$241,710	
Construction Subtotal		\$10,715,810	
Contractor General Conditions	10%	\$1,071,581	7
Contractor Overhead and Profit	12%	\$1,285,897	
Construction Contingencies	10%	\$535,791	
📲 Grand Total Cost		\$13,610,000	

(4) 1. (19) 1. (19) 1. (19)

Original Costs from Estimator

Description		Estimated base Cost (from estimate)	Estimated Loaded Cost I (from estimate)	Multiplier from Estimate
	Rehab North Basins # 1 - 5			
02.01 Demolition Work	Demolition Work	\$308,326	\$478,430	1.552
	Building Structure	\$896,554	\$1,389,903	1.550
31.12 Structure Backfill	Foundation and Earthwork	\$542,559	\$838,263	1.545
40.01 Above Ground Process Piping	Process Piping	\$16,825	\$25,562	1.519
	Ozone Facility			
	Buidling Structure	\$364,087	\$558,710	1.535
	Process Piping	\$298,560	\$459,056	1.538
40.02 Valves, Meters, Etc.	Valves, Meters, Etc.	\$12,895	\$19,597	1.520
43.10 Ozone Equipment	Ozone Equipment	\$3,497,647	\$5,302,139	1.516
22.00 Plumbing	Plumbing	\$34,447	\$52,091	1.512
23.00 HVAC	HVAC	\$258,300	\$390,602	1.512
	Electrical	\$208,973	\$316,009	1.512
26.02 Instrumentation & Controls	Instrumentation & Controls	\$49,500	\$74,854	1.512
	LOX Equipment			
	Buidling Structure	\$23,462	\$36,190	1.542
32.01 Fencing & Gates	Fencing & Gates	\$5,142	\$7,776	1.512
	Process Piping	S28,183	\$43,688	1.550
40.02 Valves, Meters, Etc.	Valves, Meters, Etc.	\$20,611	\$31,273	1.517
43.17 LOX Equipment	LOX Vaporizor, Tank, Station	\$890,881	\$1,347,884	1.513
26.01 Above Ground Electrical	Electrical	\$42,977	\$64,990	1.512
26.02 Instrumentation & Controls	Instrumentation & Controls	\$12,893	\$19,497	1.512
Grand Total Capital Construction Cost	Grand Total Capital Construction (\$7,512,822	\$11,456,514	

P = 1
 A = 0

Adjusted for Report

Description		Estimated Cost	Cost Adjust Comments
Rehab North Secondary Basins	<u> </u>	μι, ··· (φ. μ) - · · · · · · · · · · · · · · · · · ·	Comments
Demolition Work		\$309,000	-
Basin Modifications		\$897,000	-
Ozone Corrosion Additives	<u> </u>	\$100,000	X - 10% of basin modifications, added
Basin Abandon, Structural Backfill	شي	\$543,000	
Process Piping		\$100,000	X - seemed low
Access Hatches (8 units)	······	\$120,000	X - Added item
Ozone Facility		· · · · · · · · · · · · · · · · · · ·	-
Building Structure (5,712 sf)		\$365,000	 /
Process Piping		\$299,000	
Sampling System (pumps, piping, A	nalyzers)	\$100,000	X - Added this item
Valves, Meters, etc.		\$155,000	X - assume 35 valves (9 pumps)+15K for small valve
Ozone System, quench, destruct (2	units)	\$4,498,000	X - Add 30% (1 Mill) for install
Plumbing (5,740 sf)		\$75,000	
HVAC (5,740 sf)	<u> </u>	\$259,000	
Electrical		\$900,000	X - 150K for Bldg and 750K for Ozone
Instrumentation & Controls (5 % Ec	uip Cost)	\$225,000	X - Ozone I&C would be higher; use higher
LOX Equipment			
Equipment Pad (1,462 sf)		\$35,000	X - Make 35K based on 12" slab and \$600/cy
Misc. Site and Access Improvement	ts	\$25,000	
Process Piping		\$29,000	7
Valves, Meters, etc.		\$42,000	X - Double estimator number
LOX Vaporizer, Tank, Station (2 unit	ts)	\$891,000	
Electrical (5% Equip Cost)		\$45,000	
Instrumentation & Controls (1.5% E	Equip Cost)	\$14,000	
Subtotal		\$10,026,000	_
Estimating Contingency	30%	\$3,007,800	1
Escalation to Midpoint	3%	\$300,780	
Construction Subtotal		\$13,334,580	1
Contractor General Conditions	10%	\$1,333,458	1
Contractor Overhead and Profit	12%	\$1,600,150	
Construction Contingencies	5%	\$666,729	1
Grand Total Cost	and the second	\$16,935,000	

Description		Estimated Cost	
Rehab North Secondary Basins	· · · · · · · · · · · · · · · · · · ·		
Demolition Work		\$309,000	
Basin Modifications		\$897,000	
Ozone Corrosion Additives		\$100,000	
Basin Abandon, Structural Backfill		\$543,000	
Process Piping		\$100,000	
Access Hatches (8 units)		\$120,000	
Ozone Facility			
Building Structure (5,712 sf)		\$365,000	
Process Piping		\$299,000	
Sampling System (pumps, piping, Ana	alyzers)	\$100,000	
Valves, Meters, etc.		\$155,000	
Ozone System, quench, destruct (2 u	nits)	\$4,498,000	
Plumbing (5,740 sf)		\$75,000	
HVAC (5,740 sf)		\$259,000	
Electrical	\$900,000		
Instrumentation & Controls (5 % Equ	\$225,000		
LOX Equipment			
Equipment Pad (1,462 sf)	\$35,000		
Misc. Site and Access Improvements		\$25,000	
Process Piping		\$29,000	
Valves, Meters, etc.		\$42,000	
LOX Vaporizer, Tank, Station (2 units))	\$891,000	
Electrical (5% Equip Cost)		\$45,000	
Instrumentation & Controls (1.5% Eq	uip Cost)	\$14,000	
Filter Rehabilitation Base Cost		\$10,138,000	
Subtotal		\$20,164,000	
Estimating Contingency	30%	\$6,049,200	
Escalation to Midpoint	3%	\$604,920	
Construction Subtotal		\$26,818,120	
Contractor General Conditions 10%		\$2,681,812	
Contractor Overhead and Profit	12%	\$3,218,174	
Construction Contingencies 5%		\$1,340,906	
Grand Total Cost		\$34,060,000	

I:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\DR 17-10 Attachment 1 Alt 1 Costs 081221.xlsm\Ozone

(4) 1. (19)

OUCC Attachment JTP-5 Cause No. 45545 Page 89 of 105

Original Costs from Estimator

Description		Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
	Rehab Filters 21 - 28			
02.01 Demolition Work	Demolition Work	\$231,041	\$363,200	1.572
03.30 Patch Cracks and Resurface Conc		\$80,975	\$127,647	1.576
09.00 Finishes	Paint Finishes	\$162,284	\$254,077	1.566
43.05 Filtration Equipment	Filtration Equipment	\$899,723	\$1,384,578	1.539
	Rehab Filters 29 - 32			
02.01 Demolition Work	Demolition Work	\$235,083	\$369,574	1.572
03.30 Patch Cracks and Resurface Conc	re Patch Cracks and Resurface Concrete	\$80,975	\$127,647	1.576
09.00 Finishes	Paint Finishes	S216,896	\$340,293	1.569
40.01 Above Ground Process Piping	Process Piping	\$137,561	S211,658	1.539
43.05 Filtration Equipment	Filtration Equipment	\$914,273	\$1,406,800	1.539
	Filter Building 21 - 36			
02.01 Demolition Work	Demolition Work	\$264,000	\$399,221	1.512
08.00 Doors, Frames & Hardware	Doors, Frames & Hardware	\$520,062	\$786,684	1.513
09.00 Finishes	Paint Finishes	\$143,284	\$220,121	1.536
23.00 HVAC	HVAC	\$880,000	\$1,330,738	1,512
26.01 Above Ground Electrical	Electrical	\$792,000	\$1,197,664	1.512
Grand Total Capital Construction Cost	Grand Total Capital Construction Cc	\$5,558,157	\$8,519,902	

(4) F (1) F (2)

Adjusted for Report Table B3.1 - Existing Filter Rehabilitation

Description		Estimated Cost	Cost Adjust Comments
Rehab Filters 21 - 28		· · · · · · · · · · · · · · · · · · ·	Filters are 28 X 37
Demolition Work		\$232,000	
Patch Cracks and Resurface Concrete	1	\$81,000	
Paint Finishes		\$163,000	
Filtration Equipment and Media	······	\$1,700,000	Too low in original
SS Air Scour Grids		\$720,000	X - Assume 90K per filter;
Air Scour Blowers (2 units)		\$425,000	X - Use half the cost from MGF alt blower pricing
Rehab Filters 29 - 36			Filters are 23 X 46
Demolition Work		\$236,000	
Patch Cracks and Resurface Concrete	2	\$150,000	
Paint Finishes		\$217,000	
Process Piping Improvements		\$138,000	
Filtration Equipment and Media		\$1,400,000	
Aluminum Storefronts		\$521,000	
SS Air Scour Grids		\$720,000	X - Assume 90K per filter
Air Scour Blowers (2 units)		\$425,000	X - Use half the cost from MGF alt blower pricing
Filter Building Improvements			
Filters 1-20 Demolition Work		\$264,000	
Misc. Doors, Frames & Storefronts		\$30,000	X - Filters 21-28 already have the storefront window (Delete writeup/estimate)
Paint Finishes		\$144,000	
HVAC Improvements		\$880,000	
Electrical Improvements		\$792,000	
Instrumentation and Controls Improv	/ements	\$500,000	
Subtotal		\$10,138,000	
Estimating Contingency	30%	\$3,041,400	
Escalation to Midpoint	3%	\$304,140	
Construction Subtotal		\$13,483,540	
Contractor General Conditions	10%	\$1,348,354	
Contractor Overhead and Profit	12%	\$1,618,025	
Construction Contingencies	5%	\$674,177	
Allowances:	2		1
Grand Total Cost	an Carlon an State	\$17,125,000	

Summary Table

Description	Estimated Cost	
Demolition & Media Removal		\$732,000
Filters 21-28 Concrete Repair		\$81,000
Filters 29-32 Concrete Repair		\$450,000
Pipe Resurfacing & Paint Finishes		\$524,000
Pipe Replacement		\$238,000
Filtration Equipment, Media & Valves		\$3,100,000
Storefront Walls (Filters 29-32) & Arch. Improvements		\$551,000
Air Scour Grids	\$1,440,000	
Air Scour Blowers (4 ea.)	\$850,000	
HVAC Improvements	\$880,000	
Electrical & I&C Improvements	\$1,292,000	
Subtotal		\$10,138,000
Estimating Contingency	30%	\$3,041,400
Escalation to Midpoint	3%	\$304,140
Construction Subtotal		\$13,483,540
Contractor General Conditions	10%	\$1,348,354
Contractor Overhead and Profit	\$1,618,025	
Construction Contingencies	\$674,177	
د پر Grand Total Cost		\$17,125,000

OUCC Attachment JTP-5 Cause No. 45545 Page 92 of 105

Original Costs from Estimator

		Estimated Base Cost	Estimated Loaded Cost	Multiplier from
Description		(from estimate)	(from estimate)	Estimate
	Building Structure	\$381,041	\$580,876	1.524
40.01 Above Ground Process Pipin	g Process Piping	\$26,385	\$40,184	1.523
43.00 Pumps	Pumps	\$299,011	\$453,245	1.516
43.13 Chemical System Equipment	Chemical System Equipment	\$78,332	\$119,317	1.523
21.00 Fire Protection (Wet System) Fire Protection (Wet System)	\$21,724	\$32,852	1.512
22.00 Plumbing	Plumbing	\$20,009	\$30,258	1.512
23.00 HVAC	HVAC	\$81,855	\$123,781	1.512
	Electrical	\$169,292	\$256,114	1.513
26.02 Instrumentation & Controls	Instrumentation & Controls	\$94,224	\$142,486	1.512
Grand Total Capital Construction	C Grand Total Capital Construction	\$1,171,873	\$1,779,113	

- Q. (1997) - A. (1997)

OUCC Attachment JTP-5 Cause No. 45545 Page 93 of 105

4. (1) (1) (2)

Adjusted for Report

Table B4.2 - Liquid Hypochlorite Disinfection (Bulk)

Description		Estimated Cost	Cost Adjust Comments
Building Structure (1,819 sf)		\$382,000	
Process Piping		\$53,000	Very low in original
Pumps (carrier, transfer, metering)		\$300,000	
Liquid Chemical Feed Equipment		\$179,000	X - day tanks included, but no bulk tanks
Fire Protection (Wet System, 1,819 sf)		\$29,000	X - updated for square footage
Plumbing (1,819 sf)		\$21,000	
HVAC (1,819 sf)		\$110,000	X - Use \$60/sf instead of \$45/sf used elsewhere
Electrical (1,819 sf)		\$170,000	
Instrumentation & Controls		\$95,000	
Subtotal	· · · ·	\$1,339,000	
Estimating Contingency	20%	\$267,800	
Escalation to Midpoint	3%	\$40,170	
Construction Subtotal		\$1,646,970	
Contractor General Conditions	10%	\$164,697	1
Contractor Overhead and Profit	12%	\$197,636	1
Construction Contingencies	5%	\$82,349	
Grand Total Cost		\$2,092,000	

PAC System Upgrade

	Unit	Quantity	Uni	t Cost	Total Cost
Concrete Repair	LS		1	\$50,000	\$50,000
Accessories Replacement	LS		1	\$80,000	\$80,000
Mixers	EA		2	\$15,000	\$30,000
Slurry Pumps	EA		4	\$10,000	\$40,000
Metering Pumps	EA		8	\$7,500	\$60,000
HVAC Upgrades	LS		1	\$80,000	\$80,000
Piping & Valve Replacement	LS		1	\$100,000	\$100,000
Electrical and Controls	LS		1	\$200,000	\$200,000
Subtotal					\$640,000
Estimating Contingency	20%				\$128,000
Escalation to Midpoint	3%				\$19,200
Construction Subtotal					\$787,200
Contractor General Conditions	10%				\$78,720
Contractor Overhead and Profit	12%				\$94,464
Construction Contingencies	5%				\$39,360
Total					\$1,000,000

Other Chemical Systems

	Unit	Quantity	Unit	Cost	Total Cost
Misc. Elec / Control Upgrades	LS		1	\$80,000	\$80,000
Misc. Valve / Piping Replacement	LF		500	\$65	\$32,500
Pump Replacement	EA		2	\$7,500	\$15,000
Room Hardware / Finishes	LS		1	\$40,000	\$40,000
HVAC Improvements	LS		1	\$25 <i>,</i> 000	\$25 <i>,</i> 000
Subtotal					\$192,500
Estimating Contingency	20%				\$38,500
Escalation to Midpoint	3%				\$5 <i>,</i> 775
Construction Subtotal					\$236,775
Contractor General Conditions	10%				\$23,678
Contractor Overhead and Profit	12%				\$28,413
Construction Contingencies	5%				\$11,839
Total					\$300,000

Demolish	South	Plant
----------	-------	-------

Description		Estimated Cost	
Demo scrapers / drives, walks		\$50,000	130 ft diameter primary
Demo Concrete / haul (4800 CY at \$150	D/yd)	\$712,792	90 ft diameter secondary
Site Restoration / Fill		\$50,000	2 ft overall thickness
			18 ft depth
······································	<u> </u>	,	1843.06769 CY for walls
			2908.88209 CY for floors
Subtotal		\$812,792	
Estimating Contingency	10%	\$81,279	Reduce due to fairly defined demo work
Escalation to Midpoint	3%	\$24,384	
Construction Subtotal		\$918,455	
Contractor General Conditions	3%	\$27,554	Reduced GC's and OHP due to mainly demo wor
Contractor Overhead and Profit	8%	\$73,476	Reduced OHP due to demo work
Construction Contingencies	5%	\$45,923	
Allowances:			
Grand Total Cost	nan in the second state of the	\$1,066,000	

OUCC Attachment JTP-5 Cause No. 45545 Page 97 of 105

Original Costs from Estimator

Description		Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
	Structural Components	\$3,507,453	\$5,415,382	1.544
31.01 Dewatering	Dewatering	\$109,646	\$167,526	1.528
31.02 Piles	Piles	\$1,133,796	\$1,727,195	1.523
	Excavation	\$1,734,001	\$2,658,794	1.533
	Soil and Backfill	\$523,109	\$828,067	1.583

Grand Total Capital Construction C Grand Total Capital Construction Cost

\$7,008,005

\$10,796,964

5 I.

Adjusted for Report

Table B5.1b - Large Clearwell (6 MG) Option

Description		Estimated Cost	Cost Adjust Comments
			adjusted quantities by 95% of the 6.5 MG
		¢2,222,000	clearwell to accommodate 4 MG (did not
Structure (275'x137'x24')		\$3,333,000	adjust dewatering)
Dewatering (2 pumps, 4 mo)		\$110,000	
Piles (26,975 vf)		\$1,078,000	
Excavation, Shoring		\$1,648,000	
Soil and Backfill		\$497,000	
60-inch Transfer Piping	60-inch Transfer Piping		60 inch piping to high service station 2
			400 ft \$500 per ft
Transfer Pipe Utility coorination / site r	estoration	\$150,000	
Subtotal		\$7,016,000	
Estimating Contingency	20%	\$1,403,200	
Escalation to Midpoint	3%	\$210,480	7
Construction Subtotal		\$8,629,680	
Contractor General Conditions	10%	\$862,968	
Contractor Overhead and Profit	12%	\$1,035,562	
Construction Contingencies	5%	\$431,484	
Allowances:			7
Grand Total Cost	TRANSPORTED AND TRANSPORT	\$10,960,000	

an I a La

OUCC Attachment JTP-5 Cause No. 45545 Page 99 of 105

Description	Estimated Cost	
Concrete Repair - Walls 1560 SY @ \$40/SY	······································	\$62,507
Concrete Repair - Floor (1680 SY at \$30/SY)		\$50,473
New Concrete Wall (400 CY at \$750/CY)		\$301,333
Hatch Replacement (6 at \$5k ea)		\$30,000
Misc Improvements	-	\$25,000
Subtotal	\$469,313	
Estimating Contingency	20%	\$93,863
Escalation to Midpoint	3%	\$14,079
Construction Subtotal		\$577,255
Contractor General Conditions	10%	\$57,726
Contractor Overhead and Profit	\$69,271	
Construction Contingencies	\$28,863	
Allowances:		
Grand Total Cost	<u> </u>	\$734,000

Description

31.01 Dewatering 31.02 Piles

Grand Total Capital Construction Cost

3.9 (1) (2.3)

OUCC Attachment JTP-5 Cause No. 45545 Page 100 of 105

	Existing	New Wall
	226 ft	2 ft wide
	67 ft	401.777778 CY
	24 ft deep	
walls	1562.667 SY	
floors	1682.444	

l:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\DR 17-10 Attachment 1 Alt 1 Costs 081221.xlsm\Rehab Clearwell

i i i

OUCC Attachment JTP-5 Cause No. 45545 Page 101 of 105

_

Original Costs from Estimator

		Estimated Base Cost	Estimated Loaded	Multiplier from
Description		(from estimate)	Cost (from estimate)	Estimate
43.00 Pumps	Pumps	\$2,898,416	\$4,387,048	1.514
	Grand Total Capital Constructio	\$2,898,416	\$4,387,048	

Grand Total Capital Construction Cost

OUCC Attachment JTP-5 Cause No. 45545 Page 102 of 105

Rennovate 2 and 3

Table B6.1 - High Service Pump Rehab Option (2 and 3)

Description		Estimated Cost
Remove Vertical Turbines (3 at \$10k ea	<u> </u>	\$30,000
Remove Split Case Pumps (2 at \$5k ea)	\$10,000	
New Vertical Turbine Pumps (3 at \$900	k ea)	\$2,700,000
New Split case pumps (2 at \$750 k ea)		\$1,500,000
Minor pump rehab work (2 at \$25k ea)	i	\$50,000
Piping and Valve Rehab	\$250,000	
Electrical & I&C Work (15% Pump Equip	oment)	\$630,000
Subtotal		\$5,170,000
Estimating Contingency	30%	\$1,551,000
Escalation to Midpoint	3%	\$155,100
Construction Subtotal		\$6,876,100
Contractor General Conditions	10%	\$687,610
Contractor Overhead and Profit	12%	\$825,132
Construction Contingencies	5%	\$343,805
· · · · · · · · · · · · · · · · · · ·		
Grand Total Cost		\$8,733,000

Rennovate 3 only

Description		Estimated Cost
Remove Vertical Turbines (3 at \$10k ea)	\$30,000
New Vertical Turbine Pumps (3 at \$900	\$2,700,000	
Piping and Valve Rehab	\$250,000	
Electrical & I&C Work (15% Pump Equip	\$405,000	
Subtotal	\$3,385,000	
Estimating Contingency	30%	\$1,015,500
Escalation to Midpoint	3%	\$101,550
Construction Subtotal		\$4,502,050
Contractor General Conditions	10%	\$450,205
Contractor Overhead and Profit	12%	\$540,246
Construction Contingencies	5%	\$225,103
Grand Total Cost		\$5,718,000

OUCC Attachment JTP-5 Cause No. 45545 Page 103 of 105

Civil Work

	Unit	Quantity	Unit Cost	Total Cost
Demo: Storm Structures	LS	1	\$150,000	\$150,000
Dmo: Pavement	LS	1	\$100,000	\$100,000
Debris Hauling / Misc Excavation	LS	1	\$200,000	\$200,000
Demo: Underground Strucrures	LS	1	\$300,000	\$300,000
New Fencing	LF	3180	\$65	\$206,700
Gate / Card Access	EA	2	\$30,000	\$60,000
New Storm Piping (smaller)	LF	2000	\$100	\$200,000
Large Storm Piping / Structures	LS	1	\$250,000	\$250,000
Stormwater Pump Station Upgrades	LS	1	\$300,000	\$300,000
Site Paving	SY	6100	\$40	\$244,000
Site Grading	LS	1	\$80,000	\$80,000
Additional Dewatering	LS	1	\$150,000	\$150,000
Subtotal				\$2,240,700
Estimating Contingency	20%			\$448,140
Escalation to Midpoint	3%			\$67,221
Construction Subtotal				\$2,756,061
Contractor General Conditions	10%			\$275,606
Contractor Overhead and Profit	12%			\$330,727
Construction Contingencies	5%			\$137,803
Total				\$3,500,000

Outfall Extension (each outfall)

	Unit	Quantity	Unit Cost	Total Cost
Levee excavation / army coord.	LS	1	\$300,000	\$300,000
Pipe Extension	LF	100	\$500	\$50,000
Backfill and restoration	LS	1	\$100,000	\$100,000
Misc. Anchoring	LS	1	\$30,000	\$30,000
Subtotal				\$480,000
Estimating Contingency	20%			\$96,000
Escalation to Midpoint	3%			\$14,400
Construction Subtotal				\$590,400
Contractor General Conditions	10%			\$59,040
Contractor Overhead and Profit	12%			\$70,848
Construction Contingencies	5%			\$29,520
Total				\$750,000

OUCC Attachment JTP-5 Cause No. 45545 Page 104 of 105

-

Building Rennovations

	Unit	Quantity	Unit Cost	Total Cost
Levee excavation / army coord.	LS	1	\$300,000	\$300,000
Pipe Extension	LF	100	\$500	\$50,000
Backfill and restoration	LS	1	. \$100,000	\$100,000
Misc. Anchoring	LS	1	\$30,000	\$30,000
Subtotal				\$480,000
Estimating Contingency	20%			\$96,000
Escalation to Midpoint	3%			\$14,400
Construction Subtotal				\$590,400
Contractor General Conditions	10%			\$59,040
Contractor Overhead and Profit	12%			\$70,848
Construction Contingencies	5%			\$29,520
Total				\$750,000
Building Rennovations				
Admin area, Filters 1-20, garage	SF	51200	\$50	\$2,560,000
Subtotal	35	51200	j 20	\$2,560,000 \$2,560,000
	20%			
Estimating Contingency Escalation to Midpoint	3%			\$512,000
Construction Subtotal	5%			\$76,800
Contractor General Conditions	100/			\$3,148,800
	10%			\$314,880
Contractor Overhead and Profit	12%			\$377,856
Construction Contingencies	5%			\$157,440
Total				\$3,999,000
			Use	\$4,000,000

These Buildings are in the worst condition - rennovation costs are included for filters 21-36, river ntake, pump stations, etc.

Elec and Utilities				
New Electrical Ductbanks & Cabling	LF	1100	\$900	\$990,000
Buried Chemical Piping	LF	880	\$160	\$140,800
Elec Service Upgrades	LS	1	\$750,000	\$750,000
Larger Dia Interconnecting Pipe	LF	450	\$800	\$360,000
Subtotal				\$2,240,800
Estimating Contingency	20%			\$448,160
Escalation to Midpoint	3%			\$67,224
Construction Subtotal				\$2,756,184
Contractor General Conditions	10%			\$275,618
Contractor Overhead and Profit	12%			\$330,742
Construction Contingencies	5%			\$137,809
Total				\$3,500,000

OUCC Attachment JTP-5 Cause No. 45545 Page 105 of 105

INPUTS

- Estimating Contingency (Rehab) 30%
 - Estimating Contingency (New) 20%
 - Escalation to Midpoint 3%
- Contractor General Conditions 10%
- Contractor Overhead and Profit 12%
 - Permitting 0.0%
 - Construction Contingencies 5%

Effective Multiplier Used (Rehab) 1.69

Effective Multiplier Used (New) 1.56

OUCC Attachment JTP-6 Cause No. 45545 Page 1 of 11

Exhibit A, Page 1 of 10 FILED September 3, 2021 INDIANA UTILITY REGULATORY COMMISSION

Exhibit A SCOPE OF SERVICES

Evansville Water and Sewer Utility - Water Filtration Plant Advanced Preliminary Planning

Table of Contents	
Project Understanding,	1
Task 1: Kickoff Meeting and Workshop	2
Task 2: Infrastructure Condition, Performance, and Vulnerability Assessment	3
Task 3: Site Investigations	4
Task 4: DRAFT Alternatives Assessment	5
Task 5: Workshop #2, IDEM Review and FINAL Assessment Report	6
Task 6: DRAFT Preliminary Engineering Report and Drawings6	6
Task 7: Workshop #3 and FINAL Preliminary Engineering Documents	8
ADDITIONAL SERVICES IF AUTHORIZED	8
SCHEDULE	9
e-Builder® Construction Management Software	Э

Project Understanding

A Water Master Plan was completed by HNTB in September 2016 which provided an assessment of the City of Evansville water distribution system and water treatment plant assets. The Water Master Plan serves as an excellent guide for broad planning of future capital improvement projects, but is not intended, to provide a critical analysis of the various options for new water treatment processes.

It is our understanding that the purpose of this Advanced Facility Planning effort are twofold. The first is to address critical components to improve reliability and resiliency by complimenting and expanding the work of the Master Plan to address immediate needs and concerns. The second objective is to assess the long-term drinking water needs for Evansville and determine the most appropriate water sources and treatment processes for an upgraded or new water treatment facility. An alternative analysis is particularly important at this juncture, because there is a potential option to switch partially or completely from Ohio River water source to groundwater (or riverbank filtration), changing not only the source water characteristics but also the options available for treatment. This analysis will look at the life-cycle costs of the various options.

Some of the key issues identified in previously-provided information, discussions with City Personnel, and site visits conducted by AECOM are understood as follows:

1. The North plant is beyond its useful life and significant upgrades are necessary to maintain long term reliable operation. There are issues with the settling basins, corrosion of piping, old filters, and old high service pump station #2.

Exhibit A, Page 2 of 10

- 2. The 6.5 MG clearwell is the primary clearwell and leaves EWSU with very little operational flexibility, as it is difficult to remove from service. Furthermore, it is suspected that there could be structural issues with this clearwell (or in-tank groundwater pressure relief valves) as turbidity is reported to increase when the Ohio River level is high.
- 3. Significant waterline breaks throughout the City seem to be exacerbated by low temperatures and rapidly changing water temperatures. Significant resources and funds are utilized annually to address these breaks.
- 4. Pressures from IDEM to address the residuals handling system continue to be brought up, and the current NPDES permit expires on July 1, 2021.
- 5. The City wants to move forward with a reasoned and appropriate plan to satisfy its customers, IDEM, and to allow an easier path through the IURC for the next rate case in 2021.
- The City wants to keep the water quality consistent and of high quality going forward. If significant groundwater is located and utilized, softening of the harder groundwater and pH adjustment may be necessary.
- 7. The Ohio River is a major waterway and susceptible to industrial or municipal wastewater releases, fuel spills, and other sources of contaminants which any new treatment upgrades need to be capable of monitoring and mitigating.

For the purposes of this scoping document, the terms AECOM, AECOM Team, or Consultant are used interchangeably and include any and all firms under the Prime Consultant, AECOM. This team will be a cohesive team that will have fluid boundaries, and specific tasks will be delegated throughout the design. The AECOM is anticipated to consist of HNTB, Carollo Engineers, Powers Engineering, CTL, and VS Engineering.

Task 1: Kickoff Meeting and Workshop

The AECOM team will attend a project kickoff and initial workshop meeting with the City to discuss project goals and constraints, identification of high level alternatives for the project. Prior to the meeting, AECOM will provide the City with a list of requested information (**DELIVERABLE #1**) pertaining to plant operations and history. It is anticipated that some (or all) of the requested information will be made available prior to this kickoff meeting, allowing for specifics of the requested information to be discussed. An agenda shall be prepared and submitted for review prior to the meeting, that will, at a minimum, contain the following items for discussion:

- 1. Introduction of team members and individual roles.
- 2. Summary of project scope, schedules, and key issues.
- 3. Communication protocols between the City and AECOM team, including protocols for distributing and sharing files and other electronic data (proposed to utilize e-Builder).
- 4. Proposed format for progress reports and invoices.
- 5. Schedule for progress meetings.
- 6. Protocol and procedures for field reconnaissance activities.
- 7. City's requirements and preferences related to the facility daily continued operations.
- 8. Review of historical and projected water demands to establish the design flow(s);
- 9. Identify the project objectives as they relate to water quality and treatment (both finished water quality and potential sources of contamination).

Exhibit A, Page 3 of 10

- 10. Discussion of potential new sources of raw water including river bank filtration and groundwater, along with the impacts which alternative sources have on treatment technologies and water quality.
- 11. Identify what existing infrastructure within the North and South plants the City believes is the most vulnerable to failures and/or is unsalvageable.
- 12. Identify key meetings to be held with IDEM as they relate to both to drinking water requirements and residuals disposal / NPDES permit.
- 13. Discussion of bigger-picture preliminary treatment technologies and plant-wide improvement strategies to be considered in the alternatives analysis. Alternatives will be added and further developed in the alternatives analysis beyond this meeting, but this meeting can identify key considerations to be included in the evaluation such as operation and maintenance requirements, qualitative magnitude of capital and operational costs, impacts on water quality, residuals production and disposal, and treatment resiliency.

Following the meeting, a brief plant tour or tour of selected areas may be performed if needed. AECOM shall prepare summary meetings minutes which will be submitted as **DELIVERABLE #2** summarizing the key points, decisions, and all action items.

Task 2: Infrastructure Condition, Performance, and Vulnerability Assessment

Prior to development of long-term facility alternatives, the condition and performance of all infrastructure at the existing plant must be assessed. This task will include a full treatment/process performance assessment of the existing plant in order to benchmark the current performance. Additionally, AECOM will perform condition assessment to identify critical infrastructure and any need for immediate improvements to allow for continued plant operation (several years) until the final project is commissioned. The assessment will also include a vulnerability aspect, which will evaluate the magnitude of the consequence which could occur in the event of a failure. Existing infrastructure to be assessed as part of this task includes:

- 1. Intake structure including condition of screens, pumps, piping and valves, HVAC, building (structural and architectural components), and electrical systems.
- 2. North and south plant influent channels, flocculation, and sedimentation basins, including structural condition of concrete and handrail, mechanical condition of mixers, flocculators and sludge collection drives/equipment, piping, valves, and ancillary equipment.
- 3. Filters and corresponding gallery piping, valves, controls, backwash supply tanks, instrumentation and monitoring systems, and ancillary systems such as troughs and surface sweep equipment.
- Finished water systems including filter effluent piping, clearwells, high service pumps, valves, and instrumentation and monitoring systems. This task does not include City water distribution system hydraulic or water quality modelling.
- 5. Condition of all chemical systems with specific attention to redundancy, feed equipment condition, control and monitoring systems, and operator safety considerations. Existing chemical feed systems include hyper-lon coagulant, powder activated carbon, chlorine gas, sulfur dioxide, ammonia, sodium hydroxide, KMnO4, and fluoride.
- 6. Overall assessment of buildings and building systems will be included and shall involve major structural components, architectural finishes including roofs, environmental hazards such as lead paint and asbestos, HVAC systems, plumbing and sump pumps, and lighting/power systems.

Exhibit A, Page 4 of 10

7. Critical electrical infrastructure systems including the condition of incoming services, motor control centers, transformers, transfer switches, drives, disconnects, standby generator, and transmission / distribution systems throughout the plant.

DELIVERABLE #3 will be a technical memorandum which will identify any short-term projects that should be considered for immediate implementation in order to keep the plant operation during the planning and construction phases of this project. The proposed improvements or short-term projects will include orderof-magnitude costs and tentative implementation schedules based on equipment lead and installation times. Up to three (3) separate memoranda will be included as part of this task. These will include one pertaining to electrical infrastructure, one for the clearwell improvements, and a third (if needed) to cover any other miscellaneous processes or infrastructure in need of immediate improvements.

Task 3: Site Investigations

The primary components of the site to be investigated for this level of planning and design include a hydrogeological study, site survey, and geotechnical investigation. The hydrogeological investigation is currently ongoing, and shall continue to be conducted as part of this scope. Results of the hydrogeological study will be included in the Deliverable associated with Task 4, Alternatives Evaluation. A summary of hydrogeological task items include the following:

- 1. Continue with test drilling including construction of one larger test well (up to 16-inch diameter casing) and identify aquifer yield, draw-down rates, and water quality information.
- 2. Continue to work with Layne collector wells to investigate feasibility of horizontal collector wells.
- Provide a summary report of the wellfield capacity to be included as part of Task 4. The summary report shall include options describing possible locations of vertical and/or horizontal collector wells, including estimated costs associated with these options.

The site survey will be conducted during Task 6, Preliminary Design. A summary of the site survey task items include the following:

- Establish horizontal and vertical site control. Horizontal control will be based on Indiana Geospatial Coordinate System. Vertical control will be based on the North American Vertical Datum (NAV88). A minimum of 4 vertical benchmarks will be established on or near the site.
- 2. Locate and identify visible physical features (buildings, roads, drives, walks, walls, fences, signs, etc.) within the project limits. Trees and the perimeter outline of any wooded or river bank areas will also be located.
- 3. Identify the 100- and 500-year floodplain boundaries,
- 4. Determine spot elevations of critical features (finished floor levels at door openings, curbs, walks, tops, toes, swales, etc.) and at sufficient intervals throughout the site to develop 1-foot contours.
- Locate field utility markings and visible field evidence (manholes, valves, etc.) of underground utilities to delineate underground utility locations based on a combination of assembled record documents, physical markings, and visible field evidence.
- 6. Generate a base map, depicting the above items at an appropriate scale, in AutoCAD format. The base map will be provided in DWG and PDF format.

The geotechnical investigation will be conducted during Task 6, Preliminary Design. A summary of the geotechnical investigation task items are as follows:

1. Perform soll borings to determine geotechnical and foundation engineering considerations as described below. The number and depth of borings is unknown at this time will be determined

Exhibit A, Page 5 of 10

during preliminary design based on the selected alternative. The cost associated with this investigation is based on the number of borings, and it is assumed that 6 will be taken as part of this task.

- 2. Provide field and laboratory reports in accordance with ASTM standards, including soil classification chart(s), boring surface elevations, soil thickness of each layer, groundwater elevations, sieve analyses, identification of moisture content, and USCS classification.
- 3: Recommendations for style of foundation support for the structures and slabs, including identifying the allowable soil bearing capacity, slope ratio requirements, estimated settlement, and allowable lateral loads.
- 4. Recommendations for design of any retaining walls, if necessary.
- 5. Compaction recommendations for fill behind walls and support floors.

Task 4: DRAFT Alternatives Assessment

Based on findings and outcomes of the previous tasks, AECOM will develop an Alternatives Evaluation Report to ultimately identify the selected project alternative. AECOM will initially create a long list of alternatives using a matrix of differing water sources/blend rates and treatment technologies/water quality goals. Sources of water in this alternatives matrix will include the Ohio River, Riverbank Filtration, and Groundwater. Treatment technologies may include, but are not limited to ballasted flocculation, plate or tube sedimentation, lime softening, high pressure membranes, low pressure membranes (including membrane gravity filtration, or MGF), ozonation, biofiltration, advanced oxidation or UV disinfection, and upgrades of existing equipment in kind among others. The long list of preliminary alternatives will be screened on criteria of feasibility, operability, capital and operational cost, and other advantages / disadvantages. From the long list, up to eight (8) alternatives will be selected to create a "short list" which will receive a detailed evaluation. The detailed evaluation for the selected alternatives will include the following tasks:

- 1. Each alternative will include a detailed narrative of the proposed system including the following information:
 - a. Basis of design table or summary which identifies the major equipment, number of units, and corresponding flows or other operating conditions. Cut sheets of major equipment will be provided in Appendices.
 - b. Quantity and quality of residual streams that need disposal.
 - c. Operational and maintenance considerations.
 - d. Environmental and safety considerations.
 - e. Projections of chemical usage and electrical consumption.
- 2. Each alternative will include projected finished water quality information, including the impacts of blending of source waters. Any recommended alternative will comply with present and anticipated standards, and this task will further include attention to the robustness of the alternative. This includes considering treatment process to handle multiple contaminants, evaluating levels of redundancy, and assessing the ability to adapt to rapidly changing water quality as observed in the Ohio River. The water quality evaluation will also include any recommendations for post-treatment measures in terms of maintaining stability and prevention of corrosion within the distribution system. A distribution system hydraulic or water quality model is not included in these services.

Exhibit A, Page 6 of 10

- 3. Each alternative will include conceptual level site plan(s) that shall identify the location of proposed infrastructure and general routing of major utilities, including process piping, electrical and communication utilities, and access drives and/or loading areas.
- 4. Each alternative will include a life cycle cost analysis which will feature an estimate of project capital cost (+/- 50% planning level estimate) and operational costs based on projected electrical usage, chemical requirements, and equipment maintenance / replacement costs. The life cycle costs will be evaluated through a 40-year planning period for each alternative.
- 5. Following development of each of the alternatives, AECOM will conduct a ranking, or scoring based on weighted criteria. The ranking criteria shall include engineering aspects (finished water quality, resiliency, etc.), environmental issues, operational and maintenance considerations, and capital and operational costs. This ranking will assign a numerical score to each alternative to be used for selection of the proposed alternative.

As part of this task, AECOM and City Personnel will perform up to three trips to visit other water treatment plant sites and/or equipment manufacturing facilities to observe treatment equipment similar to that which is being considered for alternatives in this project. The purpose of the site visits is to better understand key advantages and disadvantages of equipment technologies, lessons learned in construction or startup, and discuss ongoing operation and maintenance requirements or issues with other plant operators.

DELIVERABLE #4 will be a DRAFT Alternatives Assessment Report and submitted as one (1) electronic PDF file and three (3) bound hard copies. The Report will provide a comprehensive summary of the items listed in this task, including the initial long list of alternatives, detailed evaluation of the individual 'short list' alternatives, and the ranking of the alternatives including identification of the selected project.

Task 5: Workshop #2, IDEM Review and FINAL Assessment Report

AECOM will conduct a follow-up meetings to facilitate transitioning from the Alternatives Assessment Report to Preliminary Engineering of the preferred alternative. Individual subtasks associated with this task include the following:

- 1. AECOM will meet with the City when Deliverable #4 is submitted and give a presentation which will outline alternatives evaluated in the Assessment Report and provide further explanation of the selected alternative.
- 2. Following the initial meeting, the City shall review the Alternatives Assessment report and provide comments to AECOM in MS Work or PDF file format.
- 3. AECOM and the City will host a meeting with IDEM to discuss the identified path of the project moving forward as it pertains to drinking water quality and residuals disposal.
- 4. AECOM will address all City and IDEM comments in the Assessments Report, and subsequently submit **DELIVERABLE #5** to the City, which is the Final Alternatives Assessment Report. The Report will be provided to the City as (1) electronic PDF file and three (3) bound hard copies.

Task 6: DRAFT Preliminary Engineering Report and Drawings

This task includes further developing the specifics of the preferred alternative established in Tasks 4 and 5 and includes developing preliminary drawings. Subtasks associated with this Task include the following:

- 1. AECOM will prepare a Preliminary Engineering Report. The Report will refine the alternative selected in the Alternatives Assessment and will provide the following information:
 - a. Detailed description and narrative of the proposed improvements.

Exhibit A, Page 7 of 10

- b. Cut sheets and budgetary quotations for major equipment, including lead times.
- c. Updated estimates of project capital costs will be prepared in accordance with AACE Class 4 Estimates,
- d. Further discussion of residuals disposals and any updates from ongoing conversations with IDEM.
- e. Tentative design and construction schedule based on the actual date at the time of this Report.
- f.....The previously submitted FINAL Alternatives Assessment Report-will be included as an Appendix to this Preliminary Engineering Report.
- 2. AECOM will prepare preliminary drawings (30% level development). The actual number of sheets will vary depending on the selected alternative, but selected alternatives would generally include a sheet set similar to the following list:
 - 1) Cover Sheet
 - 2) Index and General Drawing Symbols
 - 3) General Notes and Details 1
 - 4) General Notes and Details 2
 - 5) Demolition Sheet 1
 - 6) Demolition Sheet 2
 - 7) Demolition Sheet 3
 - 8) Demolition Sheet 4
 - 9) Demolition Sheet 5
 - 10) Demolition Sheet 6
 - 11) Existing Site and Utility Plan North
 - 12) Existing Site and Utility Plan South
 - 13) Proposed Site and Utility Plan 1
 - 14) Proposed Site and Utility Plan 2
 - 15) Proposed Site and Utility Plan 3
 - 16) Proposed Site and Utility Plan 4
 - 17) Civil Details 1
 - 18) Civil Details 2
 - 19) Civil Details 3
 - 20) Civil Details 4
 - 21) Overall Process Flow Diagram and Design Information
 - 22) Process Equipment Schedules 1
 - 23) Process Equipment Schedules 2
 - 24) Detailed Process Flow Diagrams 1
 - 25) Detailed Process Flow Diagrams 2
 - 26) Detailed Process Flow Diagrams 3
 - 27) Detailed Process Flow Diagrams 4
 - 28) Detailed Process Flow Diagrams 5
 - 29) Detailed Process Flow Diagrams 6
 - 30) Detailed Process Flow Diagrams 7
 - Sty Detailed Flocess I tow Diagrams /
 - 31) Detailed Process Flow Diagrams 8
 - 32) Detailed Process Flow Diagrams 9
 - 33) Detailed Process Flow Diagrams 10
 - 34) Hydraulic Profiles 1
 - 35) Hydraulic Profiles 2
 - 36) Treatment Process Plans and Sections 1

Exhibit A, Page 8 of 10

- 37) Treatment Process Plans and Sections 2
- 38) Treatment Process Plans and Sections 3
- 39) Treatment Process Plans and Sections 4
- 40) Treatment Process Plans and Sections 5
- 41) Treatment Process Plans and Sections 6
- 42) Treatment Process Plans and Sections 7
- 43) Treatment Process Plans and Sections 8
- 44) Treatment Process Plans and Sections 9
- 45) Treatment Process Plans and Sections 10
- 46) Process Details 1
- 47) Process Details 2
- 48) Process Details 3
- 49) Process Details 4
- 50) Architectural Building Elevations 1
- 51) Architectural Building Elevations 2
- 52) Major Structural Modifications 1
- 53) Major Structural Modifications 2
- 54) Electrical Site and Power Plans 1
- 55) Electrical Site and Power Plans 2
- 56) Electrical Site and Power Plans 3
- 57) Electrical Site and Power Plans 4
- 58) Electrical One-Line Diagrams 1
- 59) Electrical One-Line Diagrams 2
- 60) Electrical One-Line Diagrams 3
- 3. AECOM will provide a Specification Table of Contents in CSI Division 50 Format, which will list all of the anticipated specification sections associated with the proposed design.

DELIVERABLE #6 shall be the DRAFT of the Preliminary Engineering Report, Preliminary Drawings, and Specification Table of Contents described in this section and will be provided in one (1) electronic PDF file and three (3) bound hard copies. Drawings will be provided in 11"x17" format.

Task 7: Workshop #3 and FINAL Preliminary Engineering Documents

Following submission of Deliverable #6, the City shall provide comments to AECOM in MS Word or PDF file format. Following receipt of comments, AECOM shall conduct a follow-up Workshop meeting with the City to discuss any City Comments. The Workshop will include discussion of possible modifications or other changes that could be employed to address any comments. Following the Workshop, AECOM will address all comments and issue **DELIVERABLE #7**, which is the FINAL Preliminary Engineering Documents. This FINAL document will include the Preliminary Engineering Report, Preliminary Drawings, and Specification Table of Contents. The FINAL Preliminary Engineering Report will also include an updated schedule for project implementation. Engineering Documents will be provided as one (1) electronic PDF file and three (3) bound hard copies, with drawings in 11"x17" format.

ADDITIONAL SERVICES IF AUTHORIZED

If desired by the City, AECOM can perform the following tasks:

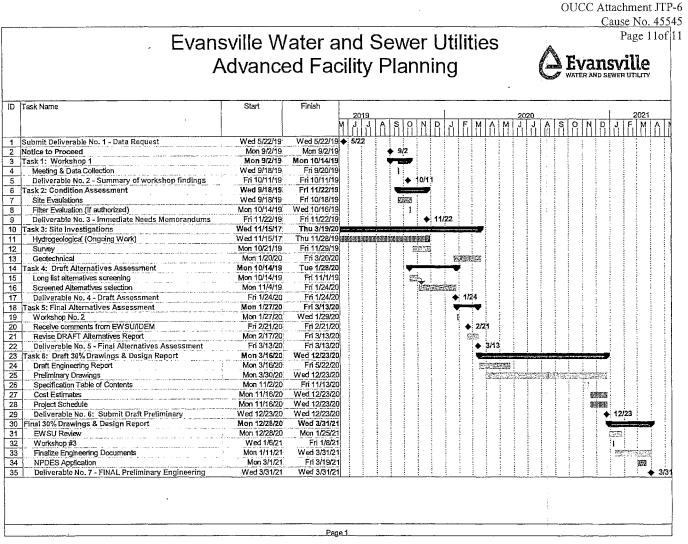
 AECOM can perform filter Inspection of any or all of the existing gravity filters. Inspection tasks could involve any combination of the following: Media depth measurement, sampling/coring of filter media, sieve analysis, determining common filter media parameters such as L/D₁₀ ratio, Exhibit A, Page 9 of 10

uniformity coefficient, floc retention and backwash profiles, and measuring bed expansion during backwash.

- 2. Depending on the selected alternative to be developed in preliminary design, AECOM can perform pilot testing of the proposed technologies. Pilot testing would be anticipated if technologies such as ActiFlo, low pressure membranes (including MGF), or ozonation/biofiltration were selected. A pilot study may also be warranted for other technologies to better determine operational parameters. These requirements will be determined prior to preliminary design of the selected alternative and piloting requirements will be noted in the Alternatives Assessment. Pilot testing will follow all IDEM or other regulatory requirements including development of a piloting protocol and sampling plan, monitoring for required integrity or other performance testing, and extrapolation of long-term performance.
- 3. AECOM can complete an NPDES permit application for submission to IDEM based on the Preliminary Design and anticipated residuals water quality and quantity. Any IDEM or NPDES permit review fee(s) shall be paid the City.

SCHEDULE

A Gantt chart schedule has been developed and is attached to this scope of services. The schedule assumes the agreement between the City and AECOM will be completed and a Notice to Proceed issued by September 2, 2019.


e-Builder® Construction Management Software

- EWSU is implementing the use of a computer based program, e-Builder® (hereafter known as the "Program"), to standardize and better manage the planning, implementation, design, and construction for its capital projects. EWSU has purchased and will maintain the Program. ENGINEER will be required as a condition of the contract to utilize the Program and its functions to facilitate the execution of the contract. Such examples of the typical functions include, but *are not limited* to:
- Program Management
- Design Development and Review
- Consultant Proposals, Amendments, and Billings
- Purchase Orders, Contracts, and Service Agreements
- Contractor Pay Applications
- Construction Submittals
- Requests For Information
- Project Schedules and Progress Meetings
- Change Order Management
- Daily Job Site Daily Inspection Reporting
- Project Closeout and Documentation
- Asset Management
- Other Project Documentation and Communications

All submittals shall be posted in a searchable, bookmarked PDF format with the exception of Requests for Information (RFIs). RFIs shall be posted in Microsoft Word format. Maximum file size for submission shall be 50 MB. Submittals larger than 50 MB should be submitted as separate files within the same submittal.

Exhibit A, Page 10 of 10

The Program is a web based platform that requires access through the purchase of a "seat" with a user name and password. It shall be the responsibility of ENGINEER to pay for this seat and any additional seats they deem necessary to fully execute the project. Instruction and training to utilize the Program will be the responsibility of ENGINEER.

Cause No. 45545 OUCC DR 1-3 Attachment 2 Page 24 of 24

OUCC Attachment JTP-7 Cause No. 45545 Page 1 of 2 -

											OUCC Est. at 2
	AFF	Table 9-2	AFP	Table 9-4	AFP T	able 9-9	AFP	Table 9-11	PER	Table 21	Reduction
	Alt	ernative 1	Alternative 2A		Alternative 2B			rnative 3	Alter	native 2B	Alternative
	Rehab	Existing WTP	New SI	New SWTP-Old Site		New SWTP & Site		Blended WTP & Site		VTP & Site	New SWTP & S
Component Description		Cost		Cost		Cost		Cost		Cost	Cost
Civil Site Work (Rds, Drainage, Fencing)	\$	3,500,000	\$	3,500,000	\$	2,853,000	\$	3,500,000	\$	2,853,000	
Rehabilitate River Intake	\$	6,752,000	\$	6,752,000	\$	6,752,000	\$	4,823,000	\$	6,752,000	
Raw Water Piping, Metering Vault		Missing	\$	900,000	\$	1,610,000		Missing	\$	1,610,000	
North Plant Pretreatment Improvements	\$	13,610,000		NA		NA	\$	7,16 3 ,000		NA	
North Plant Ozone System Retrofit	\$	16,935,000		NA		NA		NA		NA	
Groundwater Wells and Conveyance		NA		NA		NA	\$	40,073,000		NA	
GW Pretreatment (oxidation, detention)		NA		NA		NA	\$	1,422,000		NA	1
GW Pretreatment (filtration)		NA		NA		NA	\$	9,013,000		NA	
GW Membrane Softening Facility		NA		NA		NA	\$	35,979,000		NA	
New Conv. Pretreatment System		NA	\$	17,377,000	\$	17,377,000		NA	\$	17,377,000	
Ozone Facility (Generation, Basin, LOX)		NA	\$	19,630,000	\$	19,630,000		NA	\$	19,630,000	
Rehabilitate Gravity Filters	\$	17,125,000		NA		NA	\$	9,013,000		NA	
New Biologically Active Filters & Bldg.		NA	\$	33,912,000	\$	33,912,000		NA	\$	33,912,000	i i
New Sodium Hypochlorite System	\$	2 ,092,000	\$	2,092,000	:	iee Below	\$	2,092,000		See Below	
PAC Feed Improvements	\$	1,000,000	\$	1,000,000	:	See Below	\$	800,000		See Below	
Other Chemical Impr. (4 at \$300k ea.)	\$	1,200,000	\$	1,200,000	1	ee Below	\$	1,200,000		See Below	
New Chemical Facilities (all)		See above		See above	\$	6,612,000		See above	\$	6,612,000	
Demolish South Plant	\$	1,066,000	\$	1,066,000		Missing	\$	693,000		Missing	-
Demolish North Plant		NA		Missing		Missing		Missing		Missing	
Demolish 6.5 MG Clearwell		NA		Retained		Missing		Missing		Missing	
New 6 MG Clearwell	\$	10,960,000	\$	10,960,000	Only 1	Clearwell	\$	10,960,000	Only 1	Clearwell	
New 5 MG Clearwell		NA		NA	\$	8,804,000		NA	\$	8,804,000	
New High Service Pump Station		NA	\$	7,870,000	\$	11,130,000		NA	\$	11,130,000	
Rehabilitate Existing 6.5 MG Clearwell	\$	734,000	\$	734,000	Only 1	Clearweli	\$	734,000		Clearwell	
Rehab. High Service Pump Station #3	\$	8,733,000	\$	5,718,000	Only 1	Clearwell	\$	8,733,000	Only 1	Clearwell	1
Extend 1 Plant Outfall	\$	2,250,000	\$	750,000		Missing	\$	2,250,000	-	Missing	
Building Renovations	\$	4,000,000	Ś	2,000,000		Missing	\$	4,000,000		Missing	1
Residual Pump Station Forcemain		Missing		Missing	\$	1,575,000	T	Missing	\$	1,575,000	
Filter Washwater Tank		NA		NA	\$	950,000		NA	Ś	950,000	
New Administration Building		NA		NA	Ś	1,810,000		NA	Ś	1,810,000	
New Maintenance Building		NA		NA	Ś	1,040,000		NA	Ś	1,040,000	
Interconnecting Site Utility / Elect. Work	\$	3,500,000	\$	3,500,000	Ś	3,500,000	Ś	3,500,000	Ś	3,500,000	

Comparison of New 50 MGD WTP Alternatives 2A (existing site) and 2B (Garage site) and 40 MGD OUCC Alt. 2B

City of Evansville

Cause No. 45545

Prepared by: Jim Parks / OUCC September 2, 2021

OUCC Attachment JTP-7 Cause No. 45545 Page 2 of 2

Comparison of New 50 MGD WTP Alternatives 2A (existing site) and 2B (Garage site) and 40 MGD OUCC Alt. 2B

													0	JCC Est. at 20%
	AFP	Table 9-2	AFP	AFP Table 9-4		AFP Table 9-9		AFP Table 9-11		PER Table 21				Reduction
	Alte	ernative 1	Alte	Alternative 2A		tern	ative 2B	A	lternative 3	A	ternative 2B		A	lternative 2B
	Rehab	Existing WTP	New St	WTP-Old Site	New	' SM	/TP & Site	Blen	led WTP & Site	Nev	v SWTP & Site		Ne	w SWTP & Site
Component Description		Cost		Cost		_	Cost		Cost		Cost			Cost
Other Demo. Work Throughout Plant	\$	2,000,000	\$	2,000,000			Missing		\$ 2,000,000		Missing			
New Electric service entrance		NA	1	NA		\$	1,000,000	1	NA	ł	\$ 1,000,00	00		
New Generator (2,000 KW)		ΝA	1	NA		\$	1,500,000		NA		\$ 1,500,00	00		
Dewatering	ł	Missing		Missing			Missing		Missing		\$ 27,650,00	0		
Subtotal	\$	95,457,000	\$	120,961,000		\$:	120,055,000		\$ 147,948,000		\$ 147,705,00	10	\$	96,044,000
Additional Construction Contingencies	15% \$	14,319,000	10% \$	12,096,000	3%	\$	3,602,000	10%	\$ 14,795,000		See Below		\$	2,881,320
Other Misc. Plant-Wide Improvements	5% \$	4,773,000	2% \$	2,419,000	1%	\$	1,201,000	2%	\$ 2,959,000		\$ 1,201,00	10	\$	960,440
Phasing & Sequencing Plant Outages	5% \$	4,773,000	3% \$	3,629,000			Missing	5%	\$7,397,000	1	Missing			Missing
Remediation & Hazardous Materials	\$	1,000,000	\$	1,000,000			Missing	1	\$ 1,000,000	}	Missing			Missing
Allowances	\$	500,000	\$	500,000		\$	500,000	1	\$ 500,000		\$ 500,00	0	\$	500,000
Maintenance Building Relocation		NA		NA		\$	13,691,000		NA	1	Non SRF		\$	3,500,000
Startup and Commissioning	\$	1,000,000	\$	1,000,000		\$	1,000,000		\$ 1,000,000		\$ 1,000,00	0	\$	1,000,000
Total Estimated Construction Cost	\$	121,822,000	\$	141,605,000		\$:	140,049,000		\$ 175,599,000		\$ 150,406,00	0	\$	104,885 ,7 60
Additional Construction Contingencies		See above	1	See above			See above	[See above	3%	\$ 4,512,18	0		
Total Construction Costs		Missing		Missing		\$:	140,049,000		Missing		\$ 154,919,00	0	\$	104,885,760
Construction Admin. and Bidding		Missing		Missing	2.5%	\$	3,501,000		Missing	2.5%	\$ 3,872,97	5	\$	2,622,144
Inspection and Materials Testing		Missing		Missing	2%	\$	2,801,000		Missing	2%	\$ 3,098,38	0	\$	2,097,715
Interest Incurred through Financing		Missing		Missing	2.25%	\$	3,151,000		Missing	2.25%	\$ 3,485,67	8	\$	2,359,930
Permitting Fees and Legal Expenses		Missing		Missing	1%	\$	1,400,000		Missing	1%	\$ 1,549,19	0	\$	1,048,858
Total Non-Construction Costs		Missing		Missing		\$	10,853,000		Missing		\$ 12,006,00	10	\$	8,129,000
Total Project Cost		Missing		Missing		\$ 1	150,902,000		Missing		\$ 166,925,00	0	\$	113,014,760
Total Project Cost Reduction due to 40 MGD Capacity from Advanced Facility Plan Table 9-9 costs												\$	37,887,240	
Use											se	\$	37,875,000	

Data sources:

1) Supplemental Workpaper - Preliminary Engineering Report, VS Eng., June 2021 (based on the AECOM Advanced Facility Plan)

2) Advanced Facility Plan, AECOM, April 23, 2021

3) Evansville response to DR 17-6 Attachment 1 (cost support details - Excel worksheet), 07/19/2021

City of Evansville Cause No. 45545 Prepared by: Jim Parks / OUCC September 2, 2021

SFY 2022 - Drinking Water

Indiana Drinking Water State Revolving Fund (DWSRF) Loan Program SFY 2022 Project Priority List, July 16, 2021, 1st Quarter Final* Projects Applying for Financial Assistance in State Fiscal Year 2022 (July 1, 2021 - June 30, 2022)

			·····		ojooto / ippijii	g for 1 mariolary i	ssistance in State Fiscal Year 2022 (July 1, 2021 - June -		C-10-10	Current	Estimated			CEV 2022
PPL	PPL		MHI ^{2, 3}	Population	PWSID	SRF		Estimated Green Project Reserve	Green Project Reserve	User Rate (per 4,000	Post-Project User Rate (per 4,000	Requested	Cumulative Requested	SFY 2022 Fundable Range
Rank '	Score 97	Participant Nashville	\$43,542	Served	No(s). 5207002	Project No.	Project Description Water Main Extension, Storage, and Distribution System	Cost \$0	Category ⁴	gallons) ² \$58.22	gallons) ² \$58.22	Funds \$2,800,000	Funds \$2,800,000	(\$80 Million)
	74	Wheatland	\$42,292	1,320	5242016		Improvements	\$0	N/A	\$42.47	\$126.02	\$3,700,000	\$6,500,000	
2			\$44,292	2,574	· · · ·	DW220791 02	Distribution System Improvements Distribution System Improvements and Lead Service Line	\$0	N/A N/A	\$22.05	\$126.02	\$1,400,000	\$7,900,000	
3	72	Monticello - RCA Neighborhood Evansville - Treatment Plant			5291011		Replacement	TBD	TBD		\$25.07	\$1,400,000	\$257,900,000	
4	70		\$42,600	173,000	5282002	DW220482 03	New Treatment Plant Supply, Storage, Distribution System, and Treatment	TBD		\$33.74				(Rate)
5	53	Fort Wayne	\$49,855	270,402	5202020 5236003	DW210212 05	Improvements; Lead Service Line Replacement Distribution System Improvements and Lead Service Line		WE	\$25.32	\$30.32	\$45,000,000	\$302,900,000	lion Subsidized
6	50	Jackson County Water Utility	\$49,506	14,155	5263008	DW210336 04	Replacement	\$0	N/A	\$46.15	TBD	\$3,500,000	\$306,400,000	
7	50	Grabil	\$55,536	1,250	5202006	DW201302 02	Supply, Treatment, and Distribution System Improvements	\$296,000	EE, WE	\$17.96	\$41.14	\$5,200,000	\$311,600,000	
8	47	Lapel Maysville Regional Water and Sewer	\$52,841	2,068	5248013	DW210548 02	Supply, Storage, and Distribution System Improvements Water Main Extension, Storage, and Distribution System	\$0	N/A	\$35.10	\$59.47	\$9,300,000	\$320,900,000	\$8
9	47	District	\$62,504	487	5202037	DW220502 01	Improvements	\$0	N/A	\$36.25	\$65.00	\$2,500,000	\$323,400,000	nge • \$7.5
10	46	Andrews	\$40,333	1,149	5235001	DW160935 01	New Plant	TBD	TBD	\$29.60	\$121.04	\$6,000,000	\$329,400,000	up tr
11	43	Monticello - Water Main Replacement	\$44,276	5,300	5291011	DW210191 02	Distribution System Improvements	\$0	N/A	\$22.05	\$25.07	\$2,200,000	\$331,600,000	able ble for
12	36	Cromwell	\$43,229	550	5257004	DW211657 02	Supply, Treatment, Storage, and Distribution System Improvements	\$32,000	EE	\$45.26	\$97.31	\$3,500,000	\$335,100,000	undab e eligible
13	35	L & M Regional Water District	\$29,722	490	5268013	DW211568 01	Distribution System Improvements	\$5,000	WE	\$36,20	\$41.36	\$1,600,000	\$336,700,000	Fu Borrowers are
14	35	Dillsboro	\$40,250	2,000	5215002	DW201515 01	Storage and Distribution System Improvements	\$0	N/A	\$34.64	\$54.11	\$2,600,000	\$339,300,000	woulo
15	35	Hoosier Hills Regional Water District	\$44,734	8,642	5269002	DW210469 01	Storage and Distribution System Improvements and Water Main Extension	TBD	TBD	\$34.82	\$37.00	\$3,300,000	\$342,600,000	B
16	34	Edwardsville Water Corporation	\$30,300	10,200	5222001	DW201122 01	Storage and Distribution System Improvements	ТВD	GI, EE	\$38,26	\$42.47	\$8,000,000	\$350,600,000	
17	33	Leavenworth	\$31,772	233	5213004	DW210913 01	Storage and Distribution System Improvements	\$0	N/A	\$21.69	\$34.15	\$1,900,000	\$352,500,000	
18	31	Lebanon	\$50,480	16,098	5206003	DW181306 02	Storage and Distribution System Improvements	\$0	N/A	\$34.26	\$40.16	\$8,300,000	\$360,800,000	
19	31	Brown County Water Utility	\$61,455	11,300	5207001	DW201407 03	Supply and Distribution System Improvements	\$0	N/A	\$55,32	TBD	\$4,300,000	\$365,100,000	
20	30	Northwest Jasper Regional Water District Distribution System Improvements	\$47,083	3,815	5237015	DW191737 01	Supply, Plant and Distribution System Improvements	\$0	N/A	\$44.01	\$49.50	\$5,498,933	\$370,598,933	
21	30	North Dearborn Water Corporation	\$65,096	5,435	5215008	DW201615 02	Supply, Plant and Distribution System Improvements	TBD	WE	\$26.07	TBD	\$3,800,000	\$374,398,933	
22	29	New Market	\$62,917	765	5254008	DW210754 02	Plant and Distribution System Improvements	TBD	WE	\$57.14	\$65.42	\$1,900,000	\$376,298,933	
23	28	Edinburgh	\$50,200	4,792	5241002	DW211041 01	New Supply, Supply Improvements, and New Plant	\$0	N/A	\$20.98	\$23.48	\$5,800,000	\$382,098,933	
24	28	Russellville	\$51,250	380	5267008	DW201867 02	Storage and Distribution System Improvements	\$0	N/A	\$45.00	\$100.47	\$2,400,000	\$384,498,933	
25	27	Dana	\$45,804	660	5283005	DW200483 01	Plant, Storage and Distribution System Improvements	\$0	N/A	\$39.02	\$87.58	\$1,900,000	\$386,398,933	\sim
26	26	Van Bibber Lake Conservancy District	\$25,313	830	5267010	DW191067 01	Distribution System Improvements	\$0	N/A	\$78.00	\$253.91	\$8,700,000	\$395,098,933	oucc
27	25	Evansville - Main Replacement	\$42,600	173,000	5282002	DW181282 02	Distribution System Improvements	\$0	N/A	\$33.74	\$45.86	\$97,000,000	\$492,098,933	CC
28	25	Chandler	\$50,904	19,295	5287002	DW181987 03	Distribution System Improvements	\$0	N/A	\$35.21	\$35.21	\$18,000,000	\$510,098,933	∩ A
29	25	Cedar Lake	\$65,067	5,550	5245047 5245067	DW201745 04	Supply, Storage, and Distribution System Improvements	\$0	N/A	\$36.04	\$40.18	\$4,000,000	\$514,098,933	ttachment Cause No. Page
30	24	New Chicago	\$37,037	5,500	5245032	DW210645 02	Distribution System Improvements	\$0	N/A	TBD	TBD	\$2,300,000	\$516,398,933	hma e N Pa
31	24	Carmel	\$113,714	88,077	5229004	DW181129 01	Plant, Storage and Distribution System Improvements	TBD	твр	\$25,31	\$29.87	\$51,000,000	\$567,398,933	ment : No. Page
32	23	IN Recreation Development Commission /	N/A	83	2100018	DW220210 02	New Supply and Treatment Expansion	\$0	N/A		твр	\$6,400,000	\$573,798,933	JTI 455 1 o
33	21	Charlestown State Park Gibson Water, Inc.	\$63,056	4,390	5226009		Distribution System Improvements	TBD			\$38.80	\$2,400,000		JTP-8 45545 1 of 2
L		l		1	l			1	1				j	

(c) (c) (1) (c) (c) (c) (c) (c)

PPL Rank ¹	PPL Score	Participant	MHI ^{2, 3}	Population Served	PWSID No(s).	SRF Project No.	Project Description	Estimated Green Project Reserve Cost	Green Project Reserve Category ⁴		(per 4,000	Requested Funds	Cumulative Requested Funds	⊅ SFY 2022 Fundable Range (\$80 Millioa)
34	21	Tri-Township Water Corporation	\$68,658	9,725	521509	DW220615 01	Storage and Distribution System Improvements	\$775,000	WE	\$26,46	TBD	\$4,600,000	\$580,798,933	
35	17	Columbus	\$63,405	44,061	5203002	DW211403 01	New Supply	\$0	N/A	\$9.82	\$17.49	\$15,400,000	\$596,198,933	
36	16	Washington	\$40,645	13,690	5214007	DW190414 01	Distribution System Improvements	\$0	N/A	\$33.79	\$38.86	\$3,300,000	\$599,498,933	
	21	Attica	\$49,167	1,360	5223001	DW220823 01	Treatment, Storage, and Distribution System Improvements	\$0	N/A	\$33.25	\$40.88	\$2,400,000	\$601,898,933	
TOTAL	REQUE	STED FUNDS - PRELIMINARY ENGINEER	ING REPOR	TS (PERs)				\$1,108,000				\$601,898,933		

PPL PPL Rank ¹ Score	Participant	MHI ^{2, 3}	Population Served	PWSID No(s).	SRF Project No.	Project Description	Estimated Green Project Reserve Cost	Green Project Reserve Category ⁴	User Rate (per 4,000		Estimated Total Project Cost	Cumulative Total
Application Only Loogoot	ee	\$44,125	3,915	5251005	DW210251 01	Storage and Distribution System Improvements	TBD	TBD	\$31.54	\$46.35	\$2,700,000	\$2,700,000
Application Only Madison		\$40,231	6,471	5239006	DW22093903	Plant, Storage and Distribution System Improvements	TBD	TBD	\$9.48	\$15.12	\$12,400,000	\$15,100,000
TOTAL REQUESTED FL	INDS - APPLICATIONS ONLY				A		\$0		· · · · ·		\$15,100,000	
TOTAL REQUESTED FL	INDS - PERs & APPLICATIONS						\$1,108,000				\$616,998,933]

TOTAL REQUESTED FUNDS - PERS & APPLICATIONS

Footnotes:

¹ A community must submit a complete Preliminary Engineering Report to the DWSRF Loan Program in order for the project to be scored and ranked on the Project Priority List (PPL).

² Additional subsidization may be provided to participants who have a low Median Household Income (MHI) and/or high post-project user rates as outlined in the Intended Use Plan (IUP). The amount of the additional subsidization shall be determined and set forth in the financial assistance agreement.

³The Indiana DWSRF Loan Program defines a Disadvantaged Community in Section VII of the IUP.

⁴ EE = Energy Efficiency, EI = Environmentally Innovative, GI = Green Infrastructure, WE = Water Efficiency, CR = Climate Resiliency.

* This project priority list was published on July 2, 2021 for a 2-week comment period.

OUCC Attachment JTP-9 Cause No. 45545 Page 1 of 6

New Water Treatment Plant Alt 2B - River Intake Rehabilitation Cost Support / Comparison

Advanced Facility Plan, Attachment SM	B-1, pj	o. 50-51			Multiplier	Timberlin	ne Output			
Table 7-5 Cost Estimate for River Intake	Rehab	oilitation	DR 17-6 At	tach. 1.xlsm	from	DR 17-6 A	ttach. 2.pdf	OUCC	Esti	mate
Description		Est. Cost	Total Cost	Total Price	Estimate	Total Cost	Total Price		Ļ	Amount
Demolition Work		\$75,000	\$49,600	\$75,000	1.512	\$ 49,562	\$ 75,292	ł	\$	49,600
Roof Repair / Replacement (3,000 sf)		\$60,000	\$7,000	\$10,500	1.500	\$ 6,955	\$ 10,556		\$	7,000
Doors & Hardware Rehab		\$13,000	\$13,000	\$19,700	1.515	\$ 12,925	\$ 19,784		\$	13,000
Building Finishes & Specialties		\$35,000	\$34,200	\$50,500	1.477	\$ 31,037	\$ 47,859		\$	34,200
Structure and Walkway Rehabilitation		\$50,000	\$50,000	\$75,500	1.510	\$ 37,676	\$ 58,298		\$	37,676
Process Piping and Accessories		\$209,000	\$209,000	\$317,800	1.521	\$ 207,113	\$ 316,440		\$	209,000
Pump Replacement (6 units)		\$1,336,000	\$1,335,500	\$2,020,400	1.513	\$ 1,323,368	\$ 2,011,165	(3) & 25%	\$ 1	1,274,760
intake Screens (3 units)		\$1,300,000	\$ 666,000	\$ 1,019,100	1.530	\$ 370,321	\$ 571,280	(2) & 25%	\$	966,075
Potassium Permanganate System (1 unit)		\$400,000	\$249,000	\$366,000	1.470	\$ 12,281	\$ 18,787	(4) & 25%	\$	62,500
HVAC Replacement (3,000 sf)		\$115,000	\$115,000	\$172,000	1.496	\$ 114,015	\$ 173,042		\$	115,000
Misc. Electrical (MCC Upgrades are Underway	')	\$150,000	\$200,000	\$302,000	1.510	\$ 200,000	\$ 303,543		\$	150,000
Instrumentation		\$100,000	\$84,000	\$126,900	1.511	\$ 84,000	\$ 127,488		\$	100,000
Subtotal		\$3,843,000	\$ 3,012,300	\$ 4,555,400		\$ 2,449,253	\$ 3,733,534		\$ 3	3,018,811
Estimating Contingency 30%	30%	\$1,152,900	\$903,690	\$1,366,620		\$734,776	\$1,120,060	10%	\$	301,881
Escalation to Midpoint 3%	3%	\$115,290	\$90,369	\$136,662		\$73,478	\$112,006	3%	\$	90,564
Construction Subtotal		\$5,111,190	\$4,006,359	\$6,058,682		\$3,257,506	\$4,965,600		\$3	3,411,256
Contractor General Conditions 10%	10%	\$511,119	\$301,230	\$455,540		\$244,925	\$373,353	10%	\$	301,881
Contractor Overhead and Profit 12%	12%	\$613,343	\$361,476	\$546,648		\$293,910	\$448,024	12%	\$	362,257
Construction Contingencies 5%	5%	\$255,560	\$150,615	\$227,770		\$122,463	\$186,677	0%	\$	-
Allowance: Dredge River		\$260,000	\$ 250,000	\$ 378,051		\$ 250,000	\$ 379,429		\$	-
Grand Total Cost	ſ	\$6,752,000	\$ 5,069,680	\$ 7,666,691		\$ 4,168,805	\$ 6,353,083		\$ 4	4,075,395

Notes:

(1) Budgetary Cost for 3 Johnson T54MF Screens (17-6 Att 1)(2) Budgetary Cost for three Evoqua Travelling Screens

.7-6 Att 1) \$ 212,874 Jan. 2020 quote from Aqseptence Group

\$ 772,860 Feb. 2021 quote - Includes equip I&C and VFDs

\$ 1,019,808 March 3, 2021 quote from Trillium Pumps USA, Inc.

\$ 50,000 March 11, 2021 quote from BL Anderson

(4) Budgetary Cost for KMnO4 system(5) Yellow shaded cells show costs that are approximately equal

(3) Budgetary Cost for Six Floway Low Service Pumps

(6) Black text shows AECOM estimated costs and assumed percentages.

(7) Product text shows (2000) estimated costs and assumed percentages

(7) Red text shows OUCC calculated costs and assumed percentages.

City of Evansville Cause No. 45545

Cause 110. 45545

Preapred by: Jim Parks / OUCC August 19, 2021

OUCC Attachment JTP-9 Cause No. 45545 Page 2 of 6 -----

Original Costs from Estimator

Description	Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
Demolition Work	\$49,600	\$75,000	1.512
Roof Repair / Replacement	\$7,000	\$10,500	1.500
Doors & Hardware Rehab	\$13,000	\$19,700	1.515
Building Finishes & Specialties	\$34,200	\$50,500	1.477
Structure and Walkway Rehabilitation	\$50,000	\$75,500	1.510
Process Piping and Accessories	\$209,000	\$317,800	1.521
Pump Replacement	\$1,335,500	\$2,020,400	1.513
Screen Replacement	\$666,000	\$1,019,100	1.530
Potassium Permanganate System	\$249,000	\$366,000	1.470
HVAC Replacement	\$115,000	\$172,000	1.496
Electrical Systems	\$200,000	\$302,000	1.510
Instrumentation	\$84,000	\$126,900	1.511
Totals	\$3,012,300	\$4,555,400	

l:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\TP-9\DR 17-6 Attachment 1 Alt 2B intake.xlsm\Intake

OUCC Attachment JTP-9 Cause No. 45545 Page 3 of 6

Adjusted for Report

Table B1.1 - River Intake Rehabilitation, Low Service PS

Description		Estimated Cost	Cost Adjust Comments
Demolition Work		\$75,000	comments
Roof Repair / Replacement (3,000 sf)		\$60,000	X - City noted a whole new roof
Doors & Hardware Rehab		\$13,000	
Building Finishes & Specialties		\$35,000	
Structure and Walkway Rehabilitation		\$50,000	
Process Piping and Accessories		\$209,000	
Pump Replacement (6 units)		\$1,336,000	
			X - quote of \$750k for 3 screens - estimate seems to be pneumatic
Intake Screens (3 units)		\$1,300,000	screens so updated
			X - estimate seemed low - need to run piping over, hopper, storage,
Potassium Permanganate System (1 unit)		\$400,000	etc.
HVAC Replacement (3,000 sf)		\$115,000	
Misc. Electrical (MCC Upgrades are Underwa	y)	\$150,000	X - MCC's are getting some upgrades
Instrumentation		\$100,000	
Subtotal		\$3,843,000	
Estimating Contingency	30%	\$1,152,900	
Escalation to Midpoint	3%	\$115,290	
Construction Subtotal		\$5,111,190	
Contractor General Conditions	10%	\$511,119	1
Contractor Overhead and Profit	12%	\$613,343	1
Construction Contingencies	5%	\$255,560	1
Allowance: Dredge River		\$260,000	1
Cicino Totel (Cost	and the second	567/572000F	

I:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\JTP-9\DR 17-6 Attachment 1 Alt 2B Intake.xlsm\Intake

ansvile WTP Re	rhabikalion 5-	Endo Main Medanak Min Metanaco Jackiy Main														OUCC Attachment JTP-9 Cause No. 45545 Page 4 of 6-			
WBS WBS LVIZ LVI:		Description	Take	eoff Quantity I.	abor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount	
		River Intake & Low Service Pump Station River Intake & LSPS Rehap					. A	~ *				· · · ·							
	62	Modify Existing Structure & Servicas																	
	02.01	Demolition Work Non-Hazzidaus Waste Transport and Disposal		1.6							500.00	500					- 500		
		NewHazzidous Waste Transport and Disposal. Demo Sharko Solema A. Nandrail Demo Sharko Dora & France		6 cy 3 ez	0.300 ch/cy 1.000 ch/ca	4	88.76 /ch 117.52 /ch	160	-	. •			12.65			•	- 235 - 437		
		Demo Dauble Goor & Frame		2 *3	1.333 ch/ea	;	117.52 Jes	313					37.66	75		1 K	- 359		
		Demo HVAC System (Includes Exhaust Fans, Neaters, Lowers & Ductwork) Demo Electrical System (Includes IBC System & Lights)		3,000 st 3,000 st				•	-		10.00	30,000					- 30,600 \$8,000	27	
	02.10	02.61 Demoition Work Inbia Pipe Rehab		1 14		21		\$26			48,500,00	48,500	236.21	236			49,542	75	
	02.10	micka rige Kenza Temparay supprt es. 42° pipe discharge Domo Coste FujiPier		3 = 2	3.000 ch/ea	45	194,58 (ch	1,751				-	539,05				- 4,2fa		
		Demo Cone FlorPler Neoprened Pad		3 mi 3 mi	1.600 c5/ez 2.500 mh/ez	4	\$79,51 /cd 45,52 /mb	2,035 342	60.00	180		-	2,148.16	5,447		:	- 8,446 - 521		
		CIP Feeling - 6wx 2wx 2'd CIP Plet - 5wx 2'wx 4'd		3 cy 5 cy			-	-	-		1,500.08	4,500				-	- 4,500 - 7,500		
		Gestenhidsillige Kei 42" Carbon Bred Flarge Thersi Assembles - 42"interior		9 ea 9 ea	1,000 mh / ea 6,000 mh / ea		45.62 ANA	411	425.00	3,825		-					4,215	6	
		02.10 Intake Pipe Rohab		u ea 3 ea	0.000 MT / 63	164	45.62 http	7,005	500.00 2,835.00	4,505 8,503		12,010	2,988,21	1,985			· 6,914 35,475		
	07.01	Roofing (repet & Patch Roof System (Patchwork Volde Waczanty)		3,360 st			Ad				1.59	4,950					4,950	,	
		Patch Auminum Downspach		40 8			81 10				18.00	720					720	1	
		Patch Auminum Coping @ Roof Parapel 12" wde 07.01 Roofing		257 at 3,300 st							5.00 2,11	1,285					1,285 6,955		
	68.69	Doors, Frames & Hardware 194 Sinds Frames 15 os 2327		5 +3	1900 mb/sa		38.18./mb	164	185.94	901							1.096		
		H% Dear Leafs- 3x7 20 ps. half glass		7 64	1.500 ea /mh	;	39.18 /mh	183	450.09	3,155		:		: :		:	· 3,333		
		Finish Hardware by Leaf- Albware 06.00 Doors, Frames & Hardware		7 ea 7 ea	6.002 mh/ea	55	39.18 /mb	2,194 2,573	\$00.16 1,476.87	6,305 50,353		-					- 8,495 12,925		
	09.00	Finishes																	
		Paint HM Ober Frames - primer (2) coals Paint HM Doers - primer (2) coals		5 es 7 es			Jea Jea				100.02	500 840					- 500		
		Paint CNU Neck - Hock Rier & (2) ceat Ubarade Arthricotaral Finishes		6,306 sf 1 b					1		1.35	8,505				:	- 8,505 4,000	1:	
		Paint 6' Pipe Paint 18' Pipe		505 H 85 H	0.140 mh/ff 0.200 mh/ff	71 17	27.53 Juli 27.53 Juli	1,947	0.69	350			4.2	2,141			- 4,437	1	
		Paint 24" Pice		7 8	0.350 mh/lf	2	27.53 Amb	67	2.77	19		:	7.07	49			· 1,159 · 136		
		Paint 30" Pipe Paint 36" Pipe		54 H 34 H	0438 mh/H 0525 mh/H	24 18	27.53 Jun 27.53 Jun	650 491	3 45 4.15	587 545		:	4.13	101		:	- 1,060 - #01	1	
		Pairs 42" Pipe 09.00 Finishes		223 H 3.309 Js	0.525 mb/H	117	27.53 Jath	3,223 6,549	4.85	1,081 1,955	4.24	13,945	4.95	1,103 4,198			- 5,407 26,386	41	
	10.00	Specially items							0.05	400				4,000					
		Signs - Building ID Signs - Coors		i ea 5 ea			lez lez				3,000,60 38.01	3,001					- 1,001 - 1,59		
		Fire Enloguisher CO2 10 Bs 10,00 Speciality Items		4 ea 3,300 is			Ara				225.05 1.23	900 4,551					900 4,031	1	
	23.00	HVAC																	
		Replace XVAC System (includes Exhaust Fans, Kealers, Louvers & Deckerk) Replace Antilary Building Systems		3,000 st			AI M				25.01	75,915 39,900		1			75,015	113 59	
		ZI.00 HVAC		3,300 m							34.55	\$14,015					114,015		
	31.00	Dredging Hydraulic Dredging-Albovance		1.6			· · .			-	250,000.00	250,000	· · · .				- 250,000	375	
	32.00	31.00 Dredging		1 1a							250,600.06	250,000					250,000	379	
	12.00	Site Improvements Replace Telezeos Sidewales & Handral		1.6							1,200.00	1,205					1,201		
		32.00 Site Improvements 02 Modify Existing Structure & Services		1 (s 1 (s		492		17,233	20,011.62		1,200,00	1,200	13.399.15				1,202	1	
:	26	Electrical & Instrumentation				432		17,433	20,011.62	29,812	450.706.22	450,704	13.399.15	13,399			502,170	764	
	26.01	Above Ground Electrical Electrical Work For New Pimps & Lights		1 16			05				200,000.05	200,000					265,099	303	
		26.01 Above Ground Electrical		1 is			.0				200,000.00	200,000					200,000		
	26.02	htstrumentation & Controls Controls & Instrumentation Work For New Pumps		1.5			~				84,000.00	\$4,000					\$4,000	127.	
		25,02 Instrumentation & Controls		1 is							84,000,00	\$4,050					84,500	127	
	40	26 Electrical & Instrumentation Process Projeg		3,300 15							86.06	284,000					284,000	431	
		Above Ground Process Fiping									-								
		Replace Water Supply, PCC, Ottorine Solvion and Potassium Permanganate Piping 40.01 Above Grownd Process Piping		600 m 600 bř	0.900 mh / ff	540 540	45.82 Anh	24,625	47.39	28,432		-	-	•		• •	53,068	52 52	
	40.02	Valves, Helers, Etc.				-													
		Backfow Preventer Fig 6" Magnetic Flow Meter, Infoe - 30" w/ transmitter		1 ea 2 ea	12 170 mh/ea 38,000 mh/ea	12 76	45.62 http: 43.67 http:	555 3,319	5,009,00 19,000,00	5,000 38,000				:		: :	5,555 41,319	8 62	
		Resurface All Large Discharge Valves & Replace Actuators 24* Resurface All Large Discharge Valves & Replace Actuators 36*		6 es 1 es	10.040 mm /e=	50 14	30.57 /mh	1,834 428	7.806.00	46,800						: :	48,634	18,	
		Resumbles Al Large Discharge Valves & Replace Advators 42" 40.02 Valves, Meters, Etc.		3 63	17.000 mtr/ea	51 213	30.57 /mh	1,559 7,695	14,950.00	44,850	*	-	-	•		· ·	- 46,409 154,645	70	
		40.02 Virives, Melers, Etc. 40 Process Piping		600 if		753		7,895	291,30	146,350 174,782							207,113		
	43 	Procase Equipment																	
	43.00	Pumps Pump Inspection		6 cz	24 000 mh/ez	144	42.40 /mb	6,105			2,200.00	\$3,200	-	·			19,305	29	
		Freight Ch. Perrips To Joballe Verlifed Performance Test		6 ez 6 day	8.000 ch/day	48	/ea 29 43 /sh	1,413					-	· · ·	1,500. 1,508.	000,8 000 000,8 00	\$,000 10,413	13	
		Vendur Venlled Performance Test Vendur Wilnessed, Verified Performance Test		6 ea 6 ea			ica (ra								1,500	9.000	5,000	13	
		Vence reversely, commerce autonomice resi System On the following Exploring fulloading		i day	6.000 ch/day 4.000 ch/ea		29.43 /ch 192.62 /ch	215	750.00 500.00	750			351.61		,,500,		985	1	

Ŧ.

-

d ivansvide WTP Re	habilitatio	oa 6 -12-				EWSU Wat	er Treatment Plan	t- Advanced Fac	ility Plan							No. 45545 age 5 of 6	OUCC DR 17	ause No. 455 -6 Altachmen Page 3 of
WBS WBS Lvi2 Lvi3	3 LV	44	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
	42.0		Pumps Equipment Rigging / Raugh Set - Pamps	6 es	4.000 ch/ea	144	195,85 Joh 103,33 Joh	4,700	502.00 507.00	3,000 100	-	-	401.59	2,410			10,110	15,42
		1	Equipment - Final Setting Grout Base - Pumps Variable Frequency Drives 150 HP	6 ea 6 ea	4.000 ch/ea 40.000 mh/ea	72 240	28.14 Jnh	6,753	31,995.09	191,970			346.16	2,077	-	:	116,723	302,04
			Replace Vertical Turbine Can Low Service Pumps 150 HP Demo Existing Low Service Pumps 150 hp	6 e 2 6 e 2	30.000 mh/ea	180	/ea 3445 /mb	6,203							165,000.00		\$\$9,000 6,200	1,502,53 9,61
			Add Large Sump Pump To Lover Level	1 e2	32,000 mh / ca	32	34.45 Meh	1,102	199,020,00		13,200,00		6,776.18		45,000.00	45,000	46,102	70,84 2,011,12
	43.0	08 1	43.00 Pumps Intaka Somens	1 is		1,005		23,372	189,020.00	159,020		13,290		6,776	1,071,000.00	1,071,060		
		-	3-Man Olve Tearn - (1) Dwer, (1) Teader, (1) Standay Diver Rebuild Intake Screens	180 ch 3 ea	60 000 mh / ea	180	52,90 Anti	5,923		-	560.00	100,000	555.58 6.857.60	100,000	47 875 60	10.05	200,800	312,13
			AD,00 Intake Screens	3 63	60 CD0 mm / 63	180	27,92 200	5,923			33,620.00	100,800	39,993.93	119,373	47,875.00		370,321	571,28
	43,0		Polassium Permanganate System															
			Purchase Chemicals: Potassium Permangnate By Owner) Automated Patassium Permangarate W. Waing Tank (by Carus Corp)	1 is	50.000 mh / is	50	45.62 Amb	2,281			-		-	-	10,000.00	10,000	12.281	91.7
			43,09 Potassium Permanganate System			50		2,281								10,000	\$2,281	58,78
			43 Process Equipment 14 River Igtake & LSPS Rehati	1 is 1 is		1,230 2,482		41,576 91,153	199,020.00 394,613.41	199,020		114,000	126,748.98 140,148.13	125,749	1,224,625.00	1,224,825 1,224,625	1,765,970 2,699,252	2,591,23
18			Never Instate & LSPS	1 18		1,461		51,155	23+,613.41	14,013	643,700,22	141,725	140,142.13	140,148	1,224,525.00	3,424,645	2,075,224	4,00,0
	90		Building & Structure Construction															
	03.D		Foundation Mat Keyway 6	650 H	0.050 mb/f	33	3949 Amh	1.264	0.67	437							1.721	2.6
			Wet Found then Edge Form 24"	Jee st	0.350 mb/sf	128	39.49 Amh	5.059	1.31	410		:					5,540	8,7 12,1
			Vat Foundation Edge Form 30" Waterstop 6" Fail	510 st 650 K	0.350 mb/sf 0.110 mb/ff	179	39.49 Anth 39.18 Anth	7,050 2,802	1.31 2.10	670 1,355		:				4	7,720	8,3
			Strip & Gèl Mai Found. Form Rober- Foundation Mai (100 Bloot	. 670 sf 13 in	0.005 mh/sf 20.000 mh/ta	348	39.17 Amh 43.53 Amh	172	0.03	25		:			:	:	198 29,150	45.2
			Return Support - bricks: (12/bf)	368 ea	0.002 miles	1	43.53 Mith	32	0.25	97			n n 1			-	123	41
		÷	Pump Place Mai Foundaton 24*	3,070 sf 83 ry	0.023.mm/st 0.5500.mm/cy	47	38.17 Auto 41.39 /mb	1,718					4.59	341		:	2,035	3.3
		1	Party Place Mai Foundation 30* 4000 psi Consete	160 cy 263 cy	0.500 mh/cy	10	41.39 /mb	3,725	142.00	37 346	•.	- ÷	4.59	826	-	:	4,551	7.3
		. 1	Upid Caring Compareds	3,948 s1	0.003 mb/sf	12	35,17 Arb	454	0.05	232	· · · · ·						675	1,0
			6 MJ, Vapar Banter 03.00 Foundation Mart	4,400 st	0.002 mb/st	9	43.53 mb	383	0.05	231				1.207	-		614 36,634	9 143,5
	03.0	33 0	Columns											.,				
			Form Rectangle Columns 141 & 25.321 h Chamfer	1.525 sf	0.155 mh/sf 0.015 mh/7	257	39,49 Amh 35,46 Amh	2,936 878	1,60	2,43 4 643	:	:	:	:	:	:	12,371 1,326	19,4
			Sate & Oil Column Form	1.525 st	0.005 mb/st		39,17 /min	259	0.03	46	-	· -	-	-	-		344	5
			Superplasticitares () Columns Column Rebar (120 d'icy)	19 cy 1 km	20.004 mb / bi	23	43.53 /mit	853	8,40 997.70	1.107		:	·	:		:	2,120	32
			Einiste Float Pump Place Columns 18 ea	89 sf 19 cy	0.917 mb/sf 3.600 mb/cy	1 20	39.17 Anh 41.39 Anh	44		:	:	:	7.50	. 10		:	46	23
			4000 ps) Constate	19 tv	0.013 mb/sf		/oy 39.17 /mb		142.00	2,698							2,658	4,01
		,	Grind/Patch Column's Rub Columns	1.525 sf 1.525 sf	0.065 mb /s/	26	39,17 /mb	777	0.03 60,0	45				:			822 3,974	1,2 6,2
			Uquid Caring Compounds D3.03 Columns	1.525 sf	0.003 mb/s/	5 454	39,17 http:	179	0.06	30 7,361		-		142	-	-	269 23,541	43
	83,6		Walls					18,040		7,351								
			Brick Ledge Forms	257 K 1,004 K	0.050 mh/H 0.050 mh/H	77 59	39.48 /mb 39.49 /mb	3,045 1,583	2.21	587 675	· · ·		-	•			3,612	5,6
		· · · ·	Keyway 6" Vertical Walt Keyway 6"	272 #	0,110 mh /#	30	39,49 Arth	1,182	0.67	183				:			1,365	2,5
			Panel Form System 12-10 Panel Form System = 36° b	2.250 sf 12,695 sf	0.170 mh/sf 0.190 mh/sf	38) 2,413	39.49 Anh 39.49 Anh	15,104 95,255	1.34 1.24	4,134 23,332	:	:		:		:	19,239	30,1 185,1
		,	Waterstop 6' Plat Ship & Oli Wall Forms	1,276 #	0.110 mh/H 0.095 mh/sf	140	39,18 Anh 39,17 Anh	5,500	2.10	2,630					•		5,180 3,274	12,7
		5	Superplastidiana @ Walk	553 cy			ley		8.40	4,545	-	:	:		- · I		4,546	7,9
			Retur-Walk (125 Biry) Finish-Teo of Wal	35 km 2.008 sf	15.003 eet/ta 0.008 eet/sf	525	43.53 /min 39.17 /min	22.856	997.70	34,920				:	-	:	57,776	E5,1 9
			Pump Place Walk 24" Pump Place Brick Ledge	553 cy 14 cy	1.150 mil/cy 2.001 mil/cy	636 28	41.38 /mm 41.39 /mm	26,327 1,159		:	-	:	6.05 14.42	3,677 202	÷	:	30,004 1,361	47,5
			4000 ps1 Concrete	\$57 ey			ler		142.00	80,514		:		-		:	\$0,514	122,1
			GrindiPatch Walks Rub Walts	14,495 sl 7,473 sf	0 013 mh/sf 0,558 mh/sf	120	39.17 Anh 39.17 Anh	7,382 18,978	0.03	435		:	:	1	:	:	7,817 17,425	27,5
			Liquid Curing Compounds D3.04 Wallis	15,203 51	0.002 mit/sf	31 5,923	39.17 /mh	1,199 201,447	0.06	905		•		3,879	•	•	2,059	3.2 558,5
	03.0	5 5	Slab On Grade											3,475				
		1	Slab Edge Form 28" Retor: SDG (128 #licy)	249 sf 2 bi	0.350 min/st 14,003 min/te	22	39.49 Jmh 43.53 Jmh	3,443	1.31 997.70	327 1,596		-		-	-		3,755	5,9 3,8
		,	Mesh Support - kricks (12/sf)	75 ez	0.002 mh/ea		43.53 Amb	,	0.25	1,556		:		:		:	25	
		, i	Finish-Hard Trowel Pump: Place Stab on Grade 8" & Electrical Room	624 sf 16 cv	0.015 eth/sf 0.509 eth/sy		39.17 Amin 41.38 Amin	357 331	:			:	3.67				357	5
			Pump Place Thinkened Stab 20" x 20"	10 cy 28 cy	0.500 mh (cy	5	41.08 Jack	207	142.00	3.572			3.67	37			244	2 5,5
		5	Saw Cut 5-O-G (DB/st)	50 1	0.030 mit / 6	2	39.17 http	59	0.17		-	:	0.95	48	:	:	115	1
			Liquid Carleg Compounds Seal Fisons	873 sf 624 sf	0.002 mitr/s/ 0.002 mitr/s/	2	39.17 Amh 39.17 Amh	63 49	0.05	51 52			:	:	1	-	129	11
			8 MJ, Vapor Barner Gravel Fill Under Stab 4"	700 sf	0.002 min/sf 0.004 ed/ay	į	43.53 mm 1,412.15 Ad	61 43	0.05 29.26	37			1.84		-		92	11
			Cave) Fill Cader State 4" C3.05 State On G racke	8 ey	and cover	128	1412.10 /00	43 5,554	23.26	234 5,983	-		124	174			11,741	10,19
	03.0	x :	Suspended Flat Slab															
		-	Form Suspended Stab Bottom Stab Edge Form 12	2,312 sf 207 sf	0.189 mm /sf 0.250 mm /sf	418 52	39.49 Arch 39.49 Arch	16,437	2.18	5,050			:	:		:	21,467 3,114	33,61 4,84
		5	Sarip & Di Suspended Stab Forms Superpla sticizers	2,510 sf 57 cy	0,005 mh/sf	13	39.17 Amh	493	0.04	103			-	•			597	1
		F	Rebar- Suspended Slab (225 Moy)	6 14	20.004 mb/a	128	43.53 mb	5,581	097.70	419 6,395				:			11,977	18,5
		5	Finish-Hard Travel Pump: Place Suspended Stab 12*	2,312 sf 57 cy	0.030 mh/sf 1.900 mh/sy	69 103	39.17 Jmh 43.39 Jmh	2,717 4,247	:				6,65	371	:	:	2,757 4,537	4,3
			COD mil Concella	57 cy					142.00	1.014			1/10				1,054	12.21

Page 3

OUCC Attachment JTP-9 Cause No. 45545 Cause No. 45545 OUCC DR 17-6 Attachment 2^{Page 3} Page 3 of 54

Report Date: \$11/2020 1:19 PM

=

-

«Fite name»

EWSU WATER PLANT ALTERNATIVES ANALYSIS INTAKE ALTERNATIVE 1 - REHABILITATE EXISTING SYSTEM LIFE CYCLE COST ANALYSIS (30 YEARS)

Capital Costs		er og en som en stater f	- Cap	ialicosi 2020\$
Total Capital Cost			\$	6,752,000
O&MICosts	ે.). વિપાલમાં	\$Annual	30 Yr Lif	e Cycle Cost 2020\$
Chemicals & Consumables	\$	67,835	\$	2,035,058
Potassium Permanganate (3300 lb bins)	\$	67,835	\$	2,035,058
PAC (incl. in Pretreatment costs)	\$	-	\$	
Energy Costs	\$	318,081	\$	9,542,431
Screens & Backwash Water	\$	1,742	\$	52,259
Low Service Pumps & Drives (6@150HP)	\$	313,552	\$	9,406,558
KMNO4 System (PAC in Pretreatment)	\$	697	\$	20,903
HVAC (A.C. for VFD only)	\$	2,090	\$	62,710
(Insignificant for controls)	\$	-	\$	-
			\$	_
Equipment Maintenance Costs	\$	25,500	\$	765,000
River Sediment Removal (Est 2X in 30 Yrs)	\$	16,000	\$	480,000
Traveling Screens & Backwash Water	\$	5,000	\$	150,000
Low Service Pumps & Motors & Valves	\$	4,500	\$	135,000
Total O&M Costs	\$	411,416	\$	12,343,000
Replacement Costs	ense vielen vers	Times Replaced	30 Yr Lif	e Cycle Cost 2020\$
Roof Replacement	20	1	\$	50,000
Process Piping	20	1	\$	20,900
Pumps	20	1	\$	200,400
Screen Replacement	20	1	\$	195,000
Potassium Permanganate System	15	2	\$	112,500
HVAC	15	2	\$	23,000
Electrical and I&C	15	2	\$	26,800
	ement Costs		\$	629,000
Salvage Value 202	OStoReflect Remembing	Useful Life at Year 30		
Roof Replacement	20	Years	\$	(25,000)
Process Piping	20	Years	\$	(10,450)
Pumps	20	Years	\$	(100,200)
Screen Replacement	20	Years	\$	(97,500)
Potassium Permanganate System	15	Years	\$	(56,250)
HVAC	15	Years	\$	(11,500)
Electrical and I&C	15	Years	\$	(13,400)
Total Salvage Value of	Remaining Useful Life		\$	(315,000)
Total Descant Month	30 Year Life Cycle Cost		\$	19,409,000
rotar Present Worth:	so real Life Cycle Cost		ې ب	19,409,000

OUCC Attachment JTP-10 Cause No. 45545 Page 1 of 6

New Water Treatment Plant Alt 2B - High Service Pump Station #4 Cost Support / Comparison

DR 17-6 Attach. 1	.xlsm						Timberli	ne	Output]		
Table B6.2 - New High Service Pump	s Option (n	ot ir	n WTPAFP)	DR 11	7-6 Attach. 1.:	klsm	DR 17-6 A	tta	ch. 2.pdf	OUCC	C Es	timate
				Est. Base	Est. Loaded	Multiplier	Total	G	rand Total			
Description		E	st. Cost	Cost (from	Cost (from	from	Amount		Amount			Amount
				est.)	est.)	Estimate	Amount		Amount			
Pump Building (5,100 sf)		\$	513,600	\$855,407	\$1,318,619	1.542				3,000 SF	\$	503,181
Dewatering				\$70,384	\$107,754	1.531						
Foundation and Earthwork		\$	159,000	\$317,103	\$486,388	1.534	\$ 1,407,877	\$	2,170,009	1	\$	317,103
Plumbing (5,100 sf)		\$	18,600	\$30,606	\$46,283	1.512				3,000 SF	\$	30,606
HVAC (5,100 sf)		\$	76,800	\$127,525	\$192,844	1.512	{				\$	75,015
Process Piping		\$	158,000	\$157,812	\$242,437	1.536	\$ 317,317	Ś	486,145		\$	157,812
Valves, Meters, etc.		\$	167,000	\$166,356	\$252,319	1.517	Ş 517,517	ç	400,140		\$	166,356
Vertical Turbine Pumps (4 units at 80)0ea)	\$	3,200,000	\$682,455	\$1,033,923	1.515					\$	682,455
Swift Chem. Injection In-Line Ble	ender K - Not	t to	be included	\$52,570	\$79,566	1.514	\$ 771,721	\$	1,173,345	1		
Air Compr	essorX - Not	t to	be included	\$36,696	\$55,602	1.515						
Electrical (15% equipment)		\$	480,000	\$234,647	\$354,833	1.512	\$ 498,827	Ś	757,077	1	\$	162,246
Instrumentation & Controls		\$	265,000	\$264,180	\$399,494	1.512	\$ 458,821	Ļ	11,11		\$	264,180
Subtotal		\$	5,038,000	\$2,995,741	\$4,570,062		\$2,995,742		\$4,586,576	1	\$	2,358,953
Estimating Contingency	20%	\$	1,007,600	\$599,148	\$914,012		\$599,148		\$917,315	10%	\$	235,895
Escalation to Midpoint	3%	\$	151,140	\$89,872	\$137,102		\$89,872		\$137,597	3%	\$	70,769
Construction Subtotal		\$	6,196,740	\$3,684,761	\$5,621,176		\$3,684,763		\$5,641,488		\$	2,665,617
Contractor General Conditions	10%	\$	619,674	\$299,574	\$457,006		\$299,574		\$458,658	10%	\$	266,562
Contractor Overhead and Profit	12%	\$	743,609	\$359,489	\$548,407		\$359,489		\$550,389	12%	\$	319,874
Construction Contingencies	5%	\$	309,837	\$149,787	\$228,503		\$149,787		\$229,329	0%	\$	-
Grand Total Cost		\$	7,869,860	\$ 4,493,612	\$ 6,855,093		\$ 4,493,613	\$	6,879,864		\$	3,252,053
Cost to use for alt 2B		\$1	1,130,000									

Original Est. was for effectively replacing high service #2

Notes: (1) Yellow shaded cells show costs that are approximately equal

(2) Black text shows AECOM estimated costs and assumed percentages.

(3) Red text shows OUCC calculated costs and assumed percentages.

City of Evansville Cause No. 45545 Prepared by: Jim Parks / OUCC September 3, 2021

OUCC Attachment JTP-10 Cause No. 45545 Page 2 of 6 ÷

_

Original Costs from Estimator

	Estimated Base Cost (from estimate)	Estimated Loaded Cost (from estimate)	Multiplier from Estimate
Building Structure	\$855,407	\$1,318,619	1.542
Dewatering	\$70,384	\$107,754	1.531
Foundation and Earthwork	\$317,103	\$486,388	1.534
Process Piping	\$157,812	\$242,437	1.536
Valves, Meters, Etc.	\$166,356	\$252,319	1.517
Pumps	\$682,455	\$1,033,923	1.515
Swift Water Chemical Injection	\$52,570	\$79,566	1.514
Air Compressor	\$36,696	\$55,602	1.515
Plumbing	\$30,606	\$46,283	1.512
HVAC	\$127,525	\$192,844	1.512
Electrical	\$234,647	\$354,833	1.512
Instrumentation & Controls	\$264,180	\$399,494	1.512
Grand Total Capital Construc	\$2,995,741	\$4,570,062	

I:\Shared\Water\Utility\Evansville Water (Muni)\45545 Rates & Financing 2021\45545-Jim\Attachments\JTP-9\DR 17-6 Attachment 1 Alt 2B Intake.xlsm\High Serv

OUCC Attachment JTP-10 Cause No. 45545 Page 3 of 6

Adjusted for Report

Table B6.2 - New High Service Pumps Option

Description		Estimated Cost	Cost Adjust Comments
Pump Building (5,100 sf)		\$513,600	Reduce to 3,000 SF
Dewatering			No dewatering - b uild on top of clearwe
Foundation and Earthwork		\$159,000	Reduced - built on top of clearwell
Process Piping		\$158,000	7
Valves, Meters, etc.		\$167,000	
Vertical Turbine Pumps (4 units at 800ea	a)	\$3,200,000	7
			X - Not to be included
			X - Not to be included
Plumbing (5,100 sf)		\$18,600	
HVAC (5,100 sf)		\$76,800	Reduce to 3000 SF
Electrical (15% equipment)		\$480,000	
Instrumentation & Controls		\$265,000	
Subtotal		\$5,038,000	
Estimating Contingency	20%	\$1,007,600	
Escalation to Midpoint	3%	\$151,140]
Construction Subtotal		\$6,196,740]
Contractor General Conditions	10%	\$619,674]
Contractor Overhead and Profit	12%	\$743,609]
Construction Contingencies	5%	\$309,837	7
Allowances:			7

Cost to use for alt 2B

\$11,130,000.00 Original Estiamte was for effectiveltly replacing high service #2

l:\Shared\Water\Utility\Evansville Water (Muni)\4554S Rates & Financing 2021\4S545-Jim\Attachments\JTP-9\DR 17-6 Attachment 1 Alt 2B Intake.xlsm\High Serv

OM 8 Evanovike WTP Rebabilitation &	13-30		_	EWSU Wate.	r Treatment Plan	- Advanced Faci	lity Plan				o 		ent JTP-10 No. 45545 Page 4 of 6		Ci OUCC DR 17-	ause No, 45545 -6 Attachment 2 ^{Page} Page 47 of 54
S WBS WBS WBS 1 LVI2 LVI3 LVI4		Yakeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
16 6A 43	High Service Pump Station Xigh Service Pump Station (Retrofil) Process Equipment				an, 201,000,110 (0)			To and as								
43.00	Pumps Jong Notes Can Pump - 1200 Np HSP3 Var Notes Can Pump - 1200 Np L30 Pumps AJ Process Equipment A High Shrving Pump Sisten (Retrofit)	5 ea 6 ma 1 la 1 la 1 la	24.000 mh/sz 240.000 mh/sz	120 1,200 1,320 1,320 1,320	42,40 (m) 47,37 (m)	5,087 57,328 62,415 62,415 62,415	2,501,00 12,500,00 12,500,00 12,500,00	12,500 12,500 12,500 12,500	2,209.00 11,000,00 51,000,00 11,000,00	11,000 - 11,000 11,000 11,000	;	:	562,500.00 2,612,500.00 2,612,500.00 2,612,500.00	2,812,500 2,812,500 2,812,500 2,812,500	16,987 2,482,328 2,498,416 2,128,416 3,398,416	24,747 4,378,312 4,467,029 4,463,029 4,463,829
68 00 03.00	High Service Parap Estison (New) Bailwing & Structor Construction Foundation Mit Seyman 2 ⁻¹ Mit Fandrate Lipp Fam 12 ⁻¹ Uir (Spuncher Lipp Fam 12 ⁻¹)	504 17 260 st 3,870 st	0.050 mb/# 0.350 mb/sf 0.350 mb/sf 0.310 mb/sf	23 91 555 55	39.49 Anh 39.49 Anh 39.48 Anh 39.16 Anh	995 3,594 26,850 2,172	0.67 1.31 1.31 2.19	339 341 2,455 1,059		· :	į			 	1,334 3,935 38,305	2,089 6,207 44,633 5,845
	song & Gold Jaf Pool, Form Hearts Franchistics Mill (1990 Mu) Phale Support - Wark (1990 Mu)	2,130 ef 17 br 608 ma 5,067 ef 81 cy 2,28 cy 14 cy 353 cy	0.005 mh/si 29.006 mh/ta 0.003 mh/eL 0.023 mh/si 0.505 mh/sy 0.506 mh/sy 0.506 mh/sy	11 489 1 117 41 154 7	39.17 Jmh 43.53 Jmh 43.53 Jmh 39.17 Jmh 41.39 Jmh 41.39 Jmh 41.39 Jmh	417 21,272 53 4,585 1,576 5,548 230	0.03 597.70 0.25	51,555 54 17,410 - - 51,545			4.59 4.59 4.59	372 1,230 54			3,231 481 36,85 213 4,555 2,75 8,775 324 51,365 1,269	757 80,000 326 7,236 3,245 10,735 561 78,232
03.03	Ligd Curing Compounds 6 Mi. Yapar Barrier 03,00 Foundation Miat Columns	7,197 s/ 5,600 s/ 363 cy	0.003 mi/sf 0.002 mi/st	22 11 1,658	39.17 mh 43.53 mh	845 428 67,765	0.08 0.05 204.11	423 294 74,098	:	:	4.59	1,665		:	782 145,520	1,981 1,218 222,351
	Form Rectapie Columns 3.037 6.3.09 Oranife Stafa GO Column Form Sapespäraticume Column Column Recur (128 Rey) Fallar (Fota)	1.128 sf 665 if 1.128 sf 21 cy 1 in 44 sf	0.165 mil/si 0.015 mil/si 0.005 mil/si 20.004 mil/si 0.017 mil/si	185 5 25 1	3949 /mh 3940 /mh 39.17 /mh /sy 43.53 /mh 39,57 /mh	7,350 335 221 1,007 29	1.60 0.57 0.03 8.40 897.70	1,801 320 34 1,257		-					9,150 655 255 378 2,354 29	14,365 1,016 401 268 3,644 45
	Ange Parce Columns 15 as 2005 pull-Contraint Grido/Park/Columnia Naga Columnia Naga Columnia Columnia	21 cy 21 cy 1,128 sf 1,128 sf 1,128 sf 21 cy	1,890 mh/s/ 0,013 mh/s/ 0.065 mh/s/ 0.003 mh/s/	34 15 73 3 351	41,39 Amh /oy 39,17 Amh 39,17 Amh 39,17 Amh	1,391 574 2,872 133 14,001	142.00 0.03 0.08 0.08 320.87	2,952 34 65 60 8,738		-	7.50	167 - - - 157	-		1,548 2,982 608 2,929 199 28,897	2,452 4,528 961 4,848 310 32,637
H,CC	Walls E Exit Lega Forms Reproved Forms Reproved For Execution Forms Found Ford Execution Forms Reproved Form Forms Reproved Forms Forms Reproved Forms Forms Reproved Forms Forms Reproved Forms	161 sf 227 H 95 H 10,450 sf 140 sf 422 H	0.300 mh/s/ 0.050 mh/s/ 0.110 mh/s/ 0.190 mh/s/ 0.500 mh/s/ 0.110 mh/s/		39.49 Amh 39.49 Amh 39.49 Amh 39.49 Amh 39.49 Amh 39.10 Amh	1,008 645 78,419 3,041 1,219	2.21 0.87 0.87 5.84 5.34 2.10	355 226 54 19,206 182 886					-		2,763 865 477 97,525 3,223 2,705	3,558 1,355 750 153,264 5,090 4,234
	Ship & O What Forme Superput of Users of Whats Result-Wath 1725 #Wyt Philos Top of Wath Philos The All Wath Philos These Wath 3/4 Philos Philes Wath 3/4	10,450 cf 358 cy 25 tm 474 cf 350 cy 47 cy	0.005 mh/sf 15.003 emh/sf 0.008 emh/sf 1.150 emh/sy 1.150 emh/sy	52 175 4 403 54	39.57 Anh Pay 43.53 Anh 30.17 Anh 41.39 Anh 41.39 Anh	1,047 16,326 143 15,652 2,238	0 03 8 40 997.70	314 3,344 24,949			5.65 5.65	2,227 213	· · · · · · · · · · · · · · · · · · ·		2,360 3,344 41,268 149 18,970 2,559	3,715 5,075 63,635 235 20,076 4,039
	Pump Piane Brink Ludge Glob pil Chamite Glob Pil Chamite Glob Pil Chamite Nage Walt Luget Glob Glob Pil Chamite Chamite Glob Pil Chamite Glob Pil Chamite Glob Pil Chamite Chamite Glob Pil Chamite Glob Pil Chamite Glob Pil Chamite Glob Pil Chamite Chamite Glob Pil Chamite	1 cy 368 cy 10,450 sf 5,225 sf 10,450 sf 2966 cy	0.013 mil/s/ 0.013 mil/s/ 0.058 mil/s/ 0.002 mil/s/		41.29 Amh Foy 28.17 Amh 38.17 Amh 39.17 Amh 39.17 Amh	83 5,322 11,870 819 141,750	142.00 0.03 0.08 0.08 270,90	56,516 214 314 615 107,276				14 - - 2,554	· · · · · ·		97 56,516 5,635 12,183 1,433 251,538	154 85,775 8,693 19,262 2,223 331,404
03.96	Singsandor fini Sibb permissionale Sala Intern Sala Salari Sala Intern Sala Salari S	6,7113 sf 660 sf 7,043 sf 225 cy 2,7 in 6,381 sf 2,26 cy 2,36 cy 4,086 sf	0,190 mh /sf 0,250 mh /sf 0,005 mh /sf 20,004 mh /sf 0,000 mh /sf 1,800 mh /sf	1,143 165 35 531 192 425 42	39.49 http 39.49 http 39.17 intb 43.53 http 39.17 http 41.39 inth 39.17 inth	45,372 8,517 1,380 23,117 7,502 17,586 1,555	2.18 5.17 0.04 840 887.70 142.90 0.68	13,943 0,413 289 1,983 26,489 30,512 9,516				1,870			59,322 9,623 1,662 1,853 47,655 7,552 19,156 33,512 15,271	92,987 15,494 2,622 3,609 76,791 11,873 30,332 50,862 17,214
03.07	03.06 Suspendad Flan Stab Suspendad Raams Bean Sole Forms Bean Bolam Forms Chanter	236 cy 1,254 sf 468 sf 936 H	0.210 mh/sf 0.210 mh/sf 0.015 mh/sf	2,53) 284 98 14	38.49 /mh 38.49 /mh 38.49 /mh	103,135 11,220 3,462 555	378.15 2.21 2.21 0.57	83,244 2,586 1,032 531		:	6.65 	1,091 	*	÷	193,949 14,216 4,914 1,085	307,190 32,305 7,710 1,583
	Suýs 6 Ulicen form Superskilster og Buon Paco Togo først Paco Togo først Ange Tara bang forst Ange Tara bang forst Ange Tara bang Superskilster Superskilster Ange Tara bang	1,822 si Si sy 6 ta 468 si 51 sy 51 sy 1,822 si 1,822 si	0.005 mm / sr 15.003 mm / tr 0.008 mm / sr 2.001 mm / sr 0.013 mm / sr 0.013 mm / sr	9 4 102 24 155	28,17 Jmh Jey 43,53 Jmh 41,59 Jmh 41,59 Jmh Jey 59,17 Jmh 29,17 Jmh	357 4,173 147 4,224 928 6,050	0 03 8.40 997.70 142.50 0.03 0.03	53 428 6,785 7,241 55 109		• • • • •	14 42	467			412 428 10,585 14,559 7,242 913 5,175	643 650 18,305 232 7,855 10,951 1,552 9,765 488
63.68	Light Grange Campones 0.3.07 Stopphode Blasma Parls A. Climbs Parl om 1 ⁶ Roof Parges Club Forms 41 ¹ h Stop Farges Club Forms	2,295 st 51 cy 52 st 1,145 st 571 st 1,197 st	0.002 mh/sf 0.200 mh/sf 0.200 mh/sf 0.015 mh/sf 0.005 mh/sf	5 791 8 229 9	29.17 http 29.49 Jen 39.40 Jen 29.40 Jen 39.17 Jen	177 31,745 2,645 3,945 238 234	0.06 371.73 1.37 1.52 0.57 0.03	135 18,958 71 5,744 324 38	:		14.42	736	-		314 51,440 317 10,788 642 270	488 80,199 453 16,961 1,077 428

-

_

4 Vanselle WTP Rehab	Biitalion 6-12				EWSU Wa	ter Treatment Pla:	m-Advanced Fac	lifty Plan					CC Attachmer Cause N Pa			OUCC DR 17	Cause No. 4554 7-6 Attachment Page 48 of 5
Lvi 2 Lvi 3	Lvi 4	Description	Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Material Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
		Pads & Curbs Pump Place Curbs 12"	. 11 sy	2.501 mb/cy	28	∡1.08 /mm	5,538			· · · · ·		36.6	103			1,247	1,874
		Pemp Place Pads 6" 4000 psi Constele	2 ey 13 ey	1.501 mh/cy	3	41.35 /mh /cy	132	142,00	1,845		. :	7,49	55		: :	347 3,848	234 7,802
		Lipid Curing Companies 03.08 Parts & Curbs	1321 vi 13 cy	0.003 mh/sf	238	39.17 http	185 11,882	0,08 365,12	4,747	-	•	9.49	120			233 16,752	354 26,206
	03.20	Precast Planks Precast Malaw Care Roof Planks 4" wide x 10"	4.324 \$1														
		olizo Precast Planks	4,324 ti 4,324 ti	0.020 mh/sf	96 86	42,74 Anti	3,654 3,654	6.60 5.30	38,059 38,059	-		0.35 0.35	1,522			43,234 43,234	65,35 86,58
	64.00	Masoney B° CMU + Rigid less/silon Backup Te Brick. 17'h	2,302 1/							18,00						41,444	67,90
		6° CMU Interfor Partition 9.33° h	824 11			51 51				14,00	41,444 11,538				: :	11,533	17,5
		Brick Venetr D4.00 Masonry	2,448 11 3,272 at					-		9.00 22.93	22,036	-			· ·	22,036	33,44 113,80
	06.00	Weed															
		Mise Naiters & Blocking 05.09 Woeld	5,025 st 1 hs	0.010 mh / sf	50 50	39.67 Arth	1,794	2,016,69	2,017 2,017		-	-	•		• •	4,013	6,2 6,2
	07.01	Roofing					1,354	2,010.03	2013								•,4
		Membrane Roofing-60 mil EPDM Mechanics ly Attached of 3" Insulation Anninum Opynopouts, 4 ea x 16' each	5,100 sf #4 vf			741 M				3.00 18.00	15,303					15,303	20,3 1,7
		Avrisum Coping @ Roof Parapet 20" wide Avrisum Genera	143 H							25.01	3,575					3,575	5,
		Real Hatch 4'0' x 4'0'	3 ea			/# /ea				2,500.50	1,710					1,710	91,2
		Translucest Panel Stylight Frame & Panels 7" x 7", 6 ea 07.01 Roofing	294 sf 5,100 #f			lsf.				38.01 7,93	11,574 49,417					11,174 40,417	16,0
	08.00	Doors, Frames & Hardware								7,33	49,417						
		NM Geor Leafs. 31/7 20 ga, kuti gass Orefrexd Doors- 10/x10/24 ga steel manual 11/asuation 26 ga back-up panel	7 42	1.605 es/mh	5	39.18 Anto	183	450,09	3,151	2 255 45	2,255	-	-			3,534 2,255	5, 3,
		08.00 Doors, Frames & Hardware	5 m2				167	393.83	3,151	281,93	2,255	-			• •	5,513	
	09.00	Finishes Pairt HM Door Frames - primer (2) coats				icz				106.02						409	
		Paint KM Doors - primer (2) costs	4 ca 7 ca			iež iež			:	140.03	460 960		:		: :	580	1
		Paint Wats-3 zoals 09.00 Finishes	3,950 sr 1 ks			-	•		-	6.94 5,093.27	3,713		-			3,713 5,093	5, 7,
	10.00	Specially Items															
		Signs - Building 10 Signs - Dears	1 ea 4 ea			/ea /ea				3,000.60 30.01	3,001 120					3,001 120	٩
		Fire Estimatisher CO2 10 bs	D ea			/ca				225 05	675	-	-			\$75	13
	22.00	10.00 Specially Items Plambing	1 is							3,795.76	3,790					3,798	5,
		Partiling Subcontract	5,100 sf			(d				6.00	30,605					30,606	46,-
		22.00 Ptombing	1 is							30,606.11	30,658					30,605	46,-
		Venblation & Unit Meater System	5,100 st			ist		-		25.01	127,525	· .				127,525	193,
		22.00 HVAC Devatedag	5,100 sf							25.01	127,525					127,525	593,
		Remove Dewalering System	1 15	2.000 cd/ls	96	2,245.33 /rd	4,493			227.27	227	1,295.68	1,295			6,022	2,5
		24° Webs, web casing, sez gravel Set & Wire Paraps	35 H 1 ea	2.000 ea/cd	24	2,249.33 /rd	1,125	25,000.00	25,000	150.00	5,250	323,92	324		: :	5,250 26,445	7,
		Maintenance/Convolution Suction Profess	1 ez ad K	1.000 ea/cd	40	2,249.33 Jed 2,249.33 Jed	2,749	1,000.60	1,690	:	:	647.84 5.00	642 471			3,897 3,707	6, 5
		Hrader Piping	200 8	200.000 H/cd	4	2,249.33 /rd 2,249.33 /rd	2,249	35.00 5,000.00	7,300		-	5,89 3,24 647,84	648		- •	9.897	15,
		Valving Ren Temp Powerio Pumps	t is 1 ea	1.000 es / od	12	1,439,45 /cd	2,243 1,433	2,000,00	5,000 2,009			278.08	226		: :	7,897	12.
		Detris Consumption 31.01 Dewatering	4 mo 1 is	1.000 mo/h	331	As .	15,447	1,000,00 45,200.00	4,000	5,477.27	5,477	4,260.36	4,260			4,000	5, 109,
	31,02	Pilet								5,477.21	5,00						
		Augered Pries CIP 18"s @ 25 ft depth, 10" on = 78 ea (1 per 64 s1) 31,02 Piles	1,975 vf 73 ea	0.002 cd/vf	221	2.148.97 /cd	8,482 8,482	35.16 878.91	57,434 62,434		-	2.58 64.51	5,096 5,076			\$3,012 \$3,012	126, 125,
	31.03	Excevation Shoring						010.51				04.51					
		Sholog System Design Engineer Sturehre Sheeting (149' x 22' deep)	1 h 3,276 st	0.001 ed/sf	162	2,465.38 Ad	5,225	15.00	52,451	15,023,00	15,000	0.75	2,455		: :	15,003 61,548	22,1 93,1
		Tie Backs (1 per 60 slof Sheeting, 146' x 16' - 2,592 x)	34 es							2,577.47	80,814				. :	\$0,834	122,6
		31.00 Excavation Shoring Structure Excavation	3,278 sf		162		6,225	15.00	52,458	29.24	95,837	0.75	2,465			155,986	235,
		Exe Clay-Backhoe/Truck (5,440 sf x 17,83)	3.592 cy	499.990 cy/cd	259	1,410.06 /c6	10,132			-		0.58	73,650			33,782	\$3,6
	31.12	31.19 Structure Excevation Structure Backfill	3,592 cy		259		10,132					6.56	21,559			33,762	50,0
		BackFil Extin-Backton/Tuck (1437 x 4' x 17.83)	383 cy	0.002 cd/cy	25	5,327.32 /ed	1,027					4.89	1,795			2,822	44
	31.13	31,12 Structure Bendrill Soli Disposati	383 ey		25		1,027					4.69	1,795			2,822	4.4
		Spoils to Waste	3.199 cy	0.003 day/cy	288	1,410.06 /day	11,375	-				8,23	26,325			37,608	59.7
		31.13 Soli Disposal Structure Stone Base	3,199 ey		268		11,279					8.23	26,329			37,608	59,7
		Structure Subbase State-Loaders/Track - 5,440 vf.x 4*	67 cy	0.003 ediey		1,609.56 /c4	327	28.26	\$,895	-		10.02	671			2,893	4.4
		31.20 Structure Stone Base Above Groupd Process Piping	ଶି କ		•		327	26.28	1,895			10.02	671			2,893	4,4
		Paint & Sterci Exposed Piping 420	620 H			-		-		10.00	6,201	- 1				6,201	8,4
		Paira & Starra Exposed Aping > 20° 40.01 Above Ground Process Piping	28 K 1 M			•	•	-		25.01 6.851.37	630 6,851		•			650 6,851	9 10,3
		00 Building & Structure Construction	5,100 gsf		10,605		429,03x	100.64	\$13,267	77.04	8,851 392,878	14.25	72,694			1,407,477	19, 2,170,0
26		Electrical & Instrumentation															
:	25.00	JG Electrical Building Electrical System	5.100 11			141				18.00	81,816					81,615	123,2
		26.00 UG Electrical Above Ground Electrical	1 1s							\$1,616.29	\$1,616					\$1,816	123,8

...

ansville WTP Rehabilitation 6-	12.20		 		EWSU Wat	er Treatment Plan	d- Advanced Fac.	iity Plan					C Attachment Cause No Pag				ause No. 45545 -6 Altachment 2 Page 49 of 54
Was WBS WBS	1	Description	 Takeoff Quantity	Labor Productivity	Man Hours	Labor Price	Labor Amount	Materiai Cost/Unit	Material Amount	Subcontract Cost/Unit	Subcontract Amount	Const Equip Cost/Unit	Const Equip Amount	Process Equip Cost/Unit	Process Equip Amount	Total Amount	Grand Total Amount
26.01	Above Ground Electrical Process Dectrical System 26.01 Above Ground Electrical		 5,100 sf 1 is			Jet.				30.01 153,030.55	153,071 153,071					153,031	232,257
25.02	Instrumentation & Controls																
40	Controls & Instrumentation 25,02 (natrumentation & Controls 26 Electrical & Instrumentation		1 is 1 is 1 is			A				264,180.00 264,180,00 433,828,84	254,180 264,180 498,827					264,180 254,180 498,827	400,350 400,350 757,077
40 40,00	Process Piping Under Ground Process Piping																
	Yrench Excav & Lay Pipe 0-4' Stone Pipe Bedding		20 #	500.000 t/od 200.000 cy/od	2	2,539.31 /cd 2,896 43 /cd	25 43	23.29		-	-	1.89	38		· .	122	194 175
	Di Pipe Push - Class 52 30		16 F	0.440 mb/H	,	\$1,34 Amh	339	167.28	2,509							2,844	4,344
	Di Pice Push - Class 52 35 Hydrostatic Testing		5 K 20 M	0.500 mb/h 0.921 ch/d	3	61.347 Amh 182.49 /ch	121	225.44 0.16	1,127	:	:	· · · ·	:			1,256	1,914
	40,00 Under Ground Process Piping		20 1		14		672	185.47	3,709			1.88	38			4,419	6,7%
40.01	Above Ground Process Piping Pipe Supports		4 14	4.001 mh/ea		45.62 /mb	730	250 05	1,000							1,730	2,67
	Hydrostalic Testing		4 E1 142 W	0.021 ch/#	16	162.46 Ah	7.50	250 05 0.16	1,000	1	· · · · · ·					\$67	2,674
	Dresser Couplings 6" Restrained Joint Couplings 10"		8 ss 4 ss	2.400 ch/ea 5.721 ch/ea	12	/ch 182.49 /ch	4.175	170.00	1,360	-						1,363	2,46 1,32
	Restrained Joint Couplings 24		B ea	13.893 ch/ex	442	182.48 /ch	20,151	654,14	5,473							25,524	40,20
	14" Di Stab Thimbie 12" kang 36" Di Wat Thimbie 24" kang		2 **	1.501 ch/ea	12	182.48 Ach 182.49 /ch	416	325,07	1,216	:		361.32	722			1,920	3,00
	36" Di dibb Thimble 12" long		4 42	2.501 ch/es	40	182.45 /ch	1,825	760.14	2,801		-	602.12	2,408			7,034	10,27
	ClasketNistelBok Kill 5" ClasketNistelBok Kill 10"		22 12	1.000 pmt/es 1.000 pmt/es	. 22	45.62 /mh 45.62 /mh	1,004	15.87 37,54	349	:	:	·	:			1,353	2,11
	GasketRiuls/Bolt XII 30" Di Flanord Joint Pipe 5"		3 ea 70 if	2.501 mit/ea 0.900 mit/ff	61	45.52 /mh 45.62 /mh	342	175.03	\$25 3.317		-	· · · · ·				167 5 191	1,22
	Di Fanged Joint Pipe 10*		46 If	1.240 ph / If	61 57	45.62 Ath	2,603	68.25	4,050				:			6,663	10,21
	DI Fanged Joint Pipe 30" Di Fanged 90 e16"		26 f 5 ta	3,051 min/lif 4,830 min/ca	75 24	45.82 /mh 45.82 /mh	3,619	310.21 105.30	5,065	-		:	:			11,684	17,95
	Di Finned 90 el 10"		1 64	0.361 mih/az	5	45.02 Jun	290	267.35	267							558	85
	Di Fanged 90 et 10" Di Fanged 90 et 16"		2 ea 0 ea	17.874 mih /ea 20.520 mih /ea	36	45.62 /min 45.62 /min	1,631	2,317.07	4,634 30		:		:			6,365 33	9,51
	Di Planged Tee 6"		4 42	4.830 pm / es	19	45,62 /mh	510	120,00	430	•	-	-				1,361	2,12
	Of Flanged Tex 10" Di Flanged Tex 30"		2 **	8.362 pm /ex 17.874 pm /ex	13 71	45.62 /mh 45.62 /mh	3,352	2,860,00	10,400				:			1,200	1,35
	Di Biad Flange 10 Di Biad Flange 10		1 **	8.101 emt/ea 17.163 emt/ea	4 17	45.82 /mh 45.82 /mh	278	247.85	248							525 3,179	4,07
	Chemical Piping & Accessodes- ALLOWANCE		500 LF	0.240 mh / LF	120	45.62 /mb	5,475	55,01	27,405				:			32,991	50,41
	40.01 Above Ground Process Piping		142 If		1,130		53,397	545.19	77,417			28.29	3,733			134,542	207,94
40.02	Valves, Meters, Etc. Backflow Preventy: Fig.51		2 **	12.170 mh/ca	14	45.62 mm	1,119	5 000 00	10.000							11.110	14.81
	Magnetic Flow Meter - Infine - 24" w/ transmitter		1 64	20.005 mh/ea	26	48.65 Am	1,270	12,602,39	12,002	-					-	13,273	20,23
	Swing Check Valve 6" Swing Check Valve 10"		4 42	4.559 mh/ez 7.995 mh/ez	19	45.62 /wh 45.62 /wh	151	1,100,00	4,400		:		:			5,252 10,031	8,02
	Swing Check Valve 24		4 ex	18.001 mh / ez	72	45.62 /mh 45.62 /mh	3,285	14,402.68	57,612			*	-			63,896	92.53
	10" Butterfly Valve, 125 to class, CI Body, Fig. of Elilie 24" Butterfly Valve, 125 to class, CI Body, Fig. of Elilie	lec actuator NEMA 4	2 ea 4 ea	8.502 mi/ea 19.204 mi/ea	19 77	45.62 Am 45.62 Am	3,504	5,701.14	11,402 50,010	:	:	:	:			52,514	10,65
	40.02 Valvas, Metars, Etc.		1 is		253		11,628	154,728.01	154,728							116,355	251,23
40.04	Hydropneumatic Piping System Hydropneunatic Piping, Fitting & Valve Alexance		1 6	mb / b		45.62 Jmh				12,000.00	13,000					12,000	18,21
	40.04 Hydropheumatic Piping System		1 la							12,000,00	12,600					12,500	16.21
	40 Process Piping		162 Jf		1,456		65,692	1,455-89	235,854	74.07	\$2,000	23.78	3,771			317,317	486,14
43 43,00	Process Equipment Pumps																
1,00	Recycle Parent - Vertical Yurbine Purent 75 hp. 8 http:		3 **	35.007 mh/ea	105	47,37 Arts	5,017	109.02	300					54,010.76		167,350	254,01
	Water Transmision Pumps - Vert Turbice Pumps, 200 hp Devealering Pumps Submersible Pumps 30 hp, 250 gp	p, 5,3 gpm, 208TDH am, 208TDH	4 88	117.023 mb/ea 24.005 mb/ea	455	47.17 hmb 42.59 hmb	22,363 2,045	100.02	400	:	:	:	:	108,021,55 29,005,78		454,849 60,258	691,78 91,58
	43.00 Pumps		1 le		621		29,415	900.16	900					652,130,16		612,455	1,037,58
40,16	Swift Water Chemical Injection In-Line Stende Chemical Injection In-Line Stender	ar -	1.44	25 005 mh/ea	25	42.40 Amin	1,060	1,509,30	1,500					50,009.98	50,010	\$2,570	73,651
	Cherrical Injection In-Line Bleader 43,16 Swift Water Chernical Injection In-Line B	Slander	1 es 1 is	25 005 mh/ea	25	42.40 min	1,060 1,060	1,509,30	1,500					50,009.98 50,009.98		\$2,570 \$2,570	75,850
43.21	Air Compressor																
	Package Air Compressor 350 etm		1 82	40.000 mil/ea	40	42.40 Am	5,695			-		-	•	35,000.00		36,696	55,80
	43.21 Air Compressor 43 Process Equipment		1 ls 1 ls		40 696		1,695 33,181	2,400.48	2,400					25,000.00 737,140.14		35,695	55,86 1,173,34
	68 High Service Prog Station (New)		1.14		12,741		525,911	751,521.75	751,521	903,704,70	803,705	76,405.00	76,465	737,146.14		2,995,742	4,585,57
	06 High Service Pump Station		1 ls		14,058		589,327	764,021.75	764,022	914,704.70	854,703		78,455	3,549,640.14		5,894,159	8,989,60

Page 49

«File name»

-

Report Date: 6/11/2020 1:19 PM

82-06-31-022-080.008-029	CITY OF EVANSVILLE INDIANA	1400 WATERWORKS RD	640, Exempt, Municipality	MIXED USE FAIR 029 1/4
General Information	Ownership	Trans	fer of Ownership	Notes
Parcel Number	CITY OF EVANSVILLE INDIANA BOA	Date Owner	Doc ID Code Book/Page Adj Sale Price V/I	4/10/2019 EASE: 4/5/2019 Inst No 2019R6391 PLTR 11371 Electric Distribution Line ESMT for
82-06-31-022-080.008-029	1 NW MLK JR BLVD RM 300 EVANSVILLE, IN 47708	02/20/2019 CITY OF EVANSVILLE	pl track PT 19/3253 \$0 !	SIGECO at .452 AC and .009 AC.
Local Parcel Number 11-170-22-080-008				4/10/2019 SPLIT/COMBINE: 20p21 SPLT PLTR 11329 cut.253 AC from 2.311 AC in 22-080-005 &
Tax ID:	Legal	1		delete 13.049 AC in 22-080-004 to create 22-080- 008 with WD 2019R3253 and Waterworks
Routing Number	PT FRAC 31-8-10 & DUNHAM TRACT PT LT 26 AKA WATERWORKS PARCELIZATION PARCEL 2	•		Parcelization map. OUCC Attachment JTP-11
Property Class 640			Exempt	Cause No. 45545
Exempt, Municipality	Valuation Records (Mo	III III III rk In Progress values are not certified v		Page 1 of 3
Year: 2021	2021 Assessment Year	2021 2020	randes and an established a sharing a	5
Location Information	WIP Reason For Change			
County	02/26/2021 As Of Date	04/09/2021 05/01/2020		
Vanderburgh	Indiana Cost Mod Valuation Method	Indiana Cost Mod Indiana Cost Mod		
Township	1.0000 Equalization Factor	1.0000 1.0000		
PIGEON TOWNSHIP	Notice Required			
District 029 (Local 011)	\$566,400 Land	\$566,400 \$566,400		
EVANSVILLE CITY-PIGEON	\$0 Land Res (1)	\$0 \$0		
School Corp 7995 EVANSVILLE-VANDERBURGH	\$0 Land Non Res (2) \$566,400 Land Non Res (3)	\$0 \$0 \$566,400 \$566,400		
Neighborhood 456-029	\$812,700 Improvement \$0 Imp Res (1)	\$812,700 \$812,700 \$0 \$0		
MIXED USE FAIR 029	\$0 Imp Non Res (2)	\$0 \$0		
Section/Plat	\$812,700 Imp Non Res (3)	\$812,700 \$812,700		
31	\$1,379,100 Total \$0 Total Res (1)	\$1,379,100 \$1,379,100 \$0 \$0		Land Computations
Location Address (1)	\$0 Total Non Res (2)	\$0 \$0		Calculated Acreage 13.05
1400 WATERWORKS RD	\$1,379,100 Total Non Res (3)	\$1,379,100 \$1,379,100		Actual Frontage 0
EVANSVILLE, IN 47713	CARLS OF CONTRACT A DATE OF A DATE OF A DATE OF A DATE OF A DATE.	Mandalah dari Mandalah Mandalah Mandalah dari dari dari dari dari dari dari dari	_ot: Res 0' X 0', CI 0' X 0')	Developer Discount
Zoning	Land Pricing Soil Act Type Method ID Front.	Size Factor Rate Adj. Rate	Ext. Infl.% Res Market Value Value	Parcel Acreage 13.05
zoning			value Elig % Factor	81 Legal Drain NV 0.00
Subdivision		128,4 1,00 \$.1 \$.1	\$536,336 0% 0% 1.0000 \$536,340 \$30,013 0% 0% 1.0000 \$30,010	82 Public Roads NV 0.00
Suparvision	14 3 0 300	1/20.4 1.00 \$.1 \$.1	\$30,013 0% 0% 1.0000 \$30,010	83 UT Towers NV 0.00
Lot				9 Homesite 0.00
Löt				91/92 Acres 0.00
Market Model				Total Acres Farmland 13.05
456-029 - Commercial				Farmland Value \$0
Characteristics				Measured Acreage 0.00
Topography Flood Hazard				Avg Farmland Value/Acre 0.0 Value of Farmland \$0
				Classified Total \$0
Public Utilities ERA				Farm / Classified Value \$0
				Homesite(s) Value \$0
Streets or Roads TIF				91/92 Value \$0
				Supp. Page Land Value
لـــا Neighborhood Life Cycle Stage				CAP 1 Value \$0
Other				CAP 2 Value \$0
Printed Friday, May 7, 2021 Review Group 2024	Dete Device NVA		A 40/07/0000	CAP 3 Value \$566,400
Review Group 2024	Data Source N/A Coll	ector 12/27/2000 dj	Appraiser 12/27/2000 dj	Total Value \$566,400

...

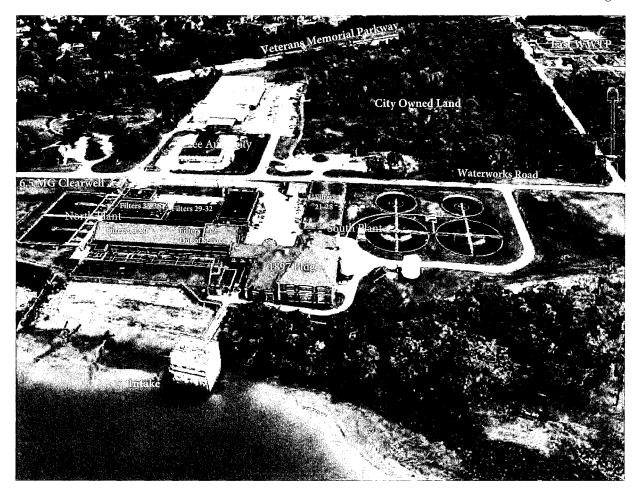
-

82-06-31-022-080	.008-029 General		ITY OF EVANS	/ILLE IND	ANA	1400 WA ⁻	TERWO	RKS RI	כ	640, Ex	empt, M	unicipali	•		D USE FA e Computat		2/4
Description C/I B	uilding uilding C 01	Pre. U Pre. Fr	se Small Sho raming Fire Resis	tant									Pricing Key Use	GCI INDOFF	GCI SMSHOP	2000/06/2011 - 176 (N	ttachment JTP-11 Cause No. 45545
Story Height 1		Pre. Fi		shed									Use Area	2532 sqft	2868 sqft		Page 2 of 3
Type N/A		# of Ur								1	50'		Area Not in Use	0 sqft	0 sqft		ruge z or z
	SB	В	where the rest of the second s	U.				•				ł	Use %	46.9%	53.1%		
Wall Type			1: 2(316))		Vander	burgh Lev	ee Autho	onty				Eff Perimeter	316'	316'		
Heating			5400 sqft		r		-100						PAR	6			
A/C			2532 sqft				100				5400	1	# of Units / AC	0/N	0/N		
Sprinkler											2.20		Avg Unit sz dpth				
Plumbing 9	RES/CI		Roofing										Floor	1	1		
A STATE OF A	a the second	NER NE	Built Up Tile	Metal	1		Ind Cnpy						Wall Height	16'	16'		
Full Bath (6	Wood Asphalt		60'				8	50 ¹ 08'	1s Cnort	108	Base Rate	\$94.09	\$65,66		
	0 0 0		Other		1		6000				S		Frame Adj	\$0.00	\$0.00		
Kitchen Sinks	0	0	GCK Adjustm	ante	1								Wall Height Adj	\$9.16	\$3.52		
Water Heaters	0	0	Low Prof Ext Shea	100 - 10 - 10 - 10 A		1							Dock Floor	\$0.00	\$0.00		
	0 0 6	6	SteelGP AuSR	Int Liner	1							Com	Roof Deck	\$0.00	\$0.00		
		12	HGSR PPS		l		100						Adj Base Rate	\$103.25	\$69.18		
Total (Sand Pnl								5	BPA Factor	1.00	1.00		
	Exterio	r Featu	승규는 것이 같이 있는 것이 같아. 것이 같아.						20		1] Sub Total (rate)	\$103,25	\$69,18		
Description			Area	Value							໌ ຣົກ		Interior Finish	\$0.00	\$0.00		
													Partitions	\$0.00	\$0.00		
													Heating	\$0.00	\$0.00		
													A/C	\$0.00	\$0.00		
													Sprinkler	\$0,00	\$0.00		
Special Feat	turês	2000 C	Other Plumbir	n -	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	s Ricke and		inina C	omputatio	ns -		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Lighting	\$0.00	\$0.00		
Description		Desc	ription	Value	1990 B.	l (all floors)	1	459,837	Garages			\$0 \$0	Unit Finish/SR	\$0.00	\$0.00		
Can, IT 6000sqft	\$86,760		ef Wat Cooler	\$1300		all/Squash	Ψ	\$0	Fireplaces			\$0	GCK Adj.	\$0.00	\$0.00		
Can, CT 50sqft	\$1,040			φ1000	Theater E			\$0	-	(building)		\$568,137	S.F. Price	\$103.25	\$69.18		
Call, CT SUSQIC	\$1,040				Plumbing	aloony		\$19,200	Quality (G			\$568,138	Sub-Total	φ100.20	405.10		
					Other Plu	mbina		\$1,300	Location N	'		1.00	Unit Cost	\$0,00	\$0,00		
						-											
					Special F			\$87,800	Repl. Cos	t New		\$568,137	Elevated Floor	\$0.00	\$0.00		
		-			Exterior F			\$0					Total (Use)	\$261,429	\$198,408		
							S. 1. 1. 1. 1. 1. 1. 1.	of Impr	ovements		Second L.			نې کې د د د دې ک			
Description	Res	s Sto	ry Construction	Grade Ye		Eff Co	Base	LCM	Adj	s	lize	RCN	Norm Remain		PC Nbhd	Mrkt	Improv
-	eligib 0%	Heig	μn	ьu		Age nd	Rate		Rate				Dep Valu		0004 4 0000	1 0000	Value
1: C/I Building C 01			1 Concrete			54 A	≜ 0 54	1.00	#0 E4	5,400	•	568,137	80% \$113,63		00% 1.0000		\$113,600
2: Paving C 01	0%	0	1 Concrete	C 19	57 1967	54 A	\$3.51	1.00	\$3.51	20,162	sqit	\$70,769	80% \$14,15	0 0%1	00% 1.0000	1.0000	\$14,200

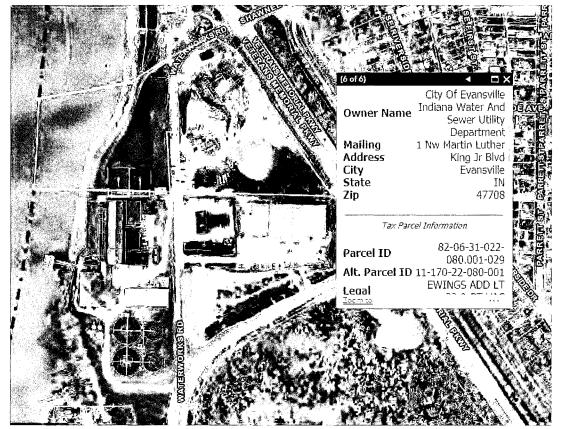
Total all pages \$812,700

Total this page \$127,800

		Gener	al Infe	ormation										Floor/Use	Computations.	
)ccupancy	C/I Buildi	۱g	Pr	e. Use	Commerci	ial Garage							Pricing Key	GCI		
escription	C/I Buildi	ng C 02	2 Pr	. Framing	Fire Resis	tant							Use	COMGAR		
tory Height	1		Pre	e. Finish	Semi-Finis	shed							Use Area	52800 sqft		
уре	N/A		# c	f Units	0								Area Not in Use	0 sqft	OUCC Atta	ahm ant ITD
	SE	rege		3 3 3 5 5 5 5		U							Use %	100.0%		
lall Type		- 11 July 10		29 1 2068 6	1: 2(1004	and the second							Eff Perimeter	1004'	Ca	use No. 455
eating				5;	2800 sqft	,		212 1.1	Cnpy 20 42	72 24			PAR	2		Page 3 of
ic					2800 sqft			44 Ind I	Cnpy 2 42	<u></u>			# of Units / AC	0/N		
prinkler					2800 sqft								Avg Unit sz dpth			
	bing RES	r.			Roofing	建立 计算法			City Garag	8				1		
A MARY & CONTRACTOR	елцен NI-SS # Т	- 10 A	TF	Built U	1.4.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Metal			52800				Wall Height	20'		
ull Bath	" '	05		Wood	· •				1s Cncπ		*0050	Ind Cnp	Base Rate	\$37.97		
alf Bath	-	0 0		Other			50'		3		150 12000	152 4100	^{B2} Frame Adj	\$0.00		
tchen Sinks		0 0	0		K Adjustm	onfe			-			· ·	Wall Height Adj	\$3,78		
ater Heaters		0	0	Low Pro		1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A						<u> </u>	Dack Floor	\$0,00		
dd Fixtures	0	05	5	SteelGF	-								Roof Deck	\$0.00		
otal	0	0 10	20			Sand Pni			352'				Adj Base Rate	\$41.75		
				atures									BPA Factor	1.00		
escription		LACE		saturea	Area	Value							Sub Total (rate)	\$41.75		
soription					Area	Value							Interior Finish	\$0.00		
													Partitions	\$0.00		
													Heating	\$0.00		
													A/C	\$3.99		
													Sprinkler	\$2.68		
and the second	al Feature		S 7	1. 242 . The state of the	er Plumbir	1010 M 11 M		A 751 (Co. 1)		omputation			Lighting	\$0.00		
escription		Val	ue D	escription		Value	Sub-Total (a	ll floors)	\$2,556,576	Garages		\$0	Unit Finish/SR	\$0.00		
ezz 12000sqft	:	\$346,3	20 3	x Ref Wat	Cooler	\$3900	Racquetball/S	Squash	\$0	Fireplaces		\$0	GCK Adj.	\$0,00		
, LD 4100sqft		\$30,7	50 1	x Emerg S	hower	\$1400	Theater Balco	ony	\$0	Sub-Total (b	uilding)	\$3,092,006	S.F. Price	\$48.42		
n, IT 4100sqft		\$59,2					Plumbing		\$32,000	Quality (Grad	ie)	\$3,092,007	Sub-Total			
n, IT 4272sqft		\$61,7	70				Other Plumbi	ng	\$5,300	Location Mu	tiplier	1.00	Unit Cost	\$0.00		
							Special Featu	ires	\$498,130	Repl. Cost N	lew	\$3,092,006	Elevated Floor	\$0,00		
							Exterior Featu	ures	\$0				Total (Use)	\$2,556,576		

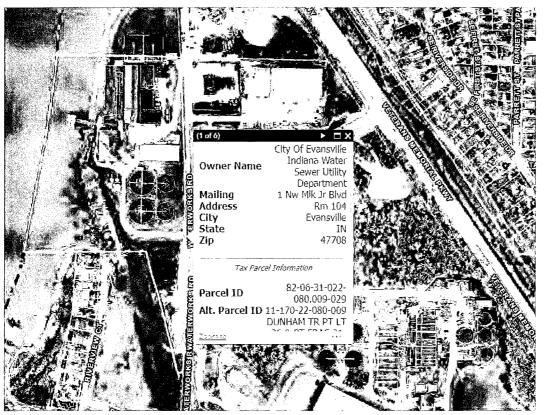

							1.1	Summary	of Impr	ovements							ST See	C
Description	Res	Story	Construction	Grade	Year	Eff	Eff Co	Base	LCM	Adj	Cine	RCN	Norm	Remain.	Abn	PC Nbhd	Mrkt	Improv
Description	Eligibl	Height	Construction	Graue	Built	Year	Age nd	Rate	LOW	Rate	Size	RUN	Dep	Value	Obs	PC NDIA	MIKU	Value
1: C/I Building C 02	0%	.1	Concrete	С	1985	1985	36 A		1.00		52,800 sqft	\$3,092,006	78%	\$680,240	0%	100% 1.0000	1.0000	\$680,200
2: Paving	0%	1	Concrete	С	1985	1985	36 A	\$3.51	1.00	\$3.51	6,648 sqft	\$23,334	80%	\$4,670	0%	100% 1.0000	1.0000	\$4,700

Total all pages \$812,700

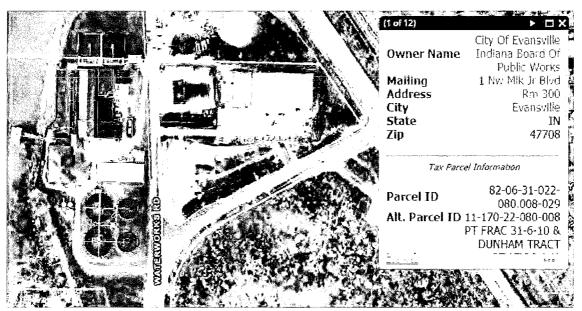

Total this page \$684,900

_

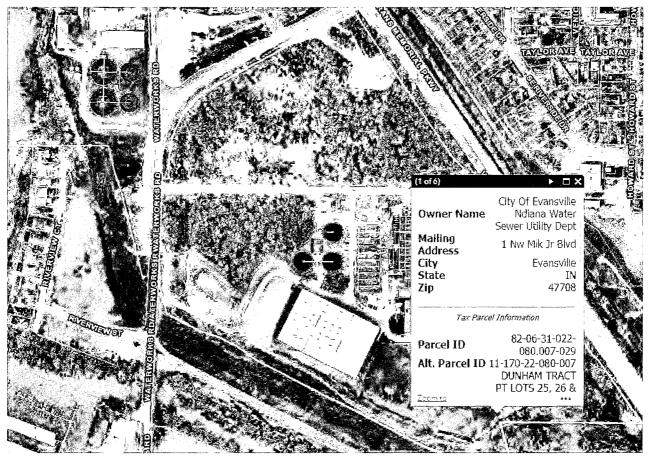
OUCC Attachment JTP-12 Cause No. 45545 Page 1 of 14

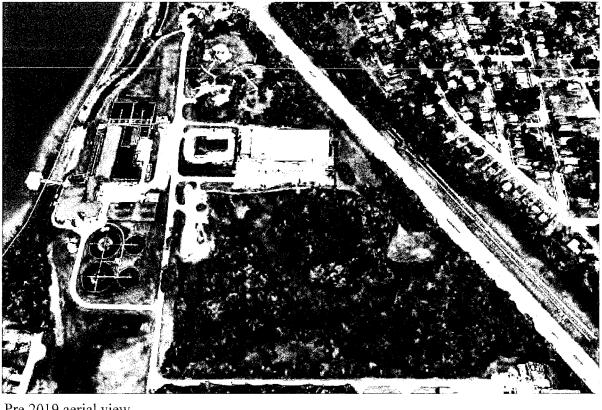


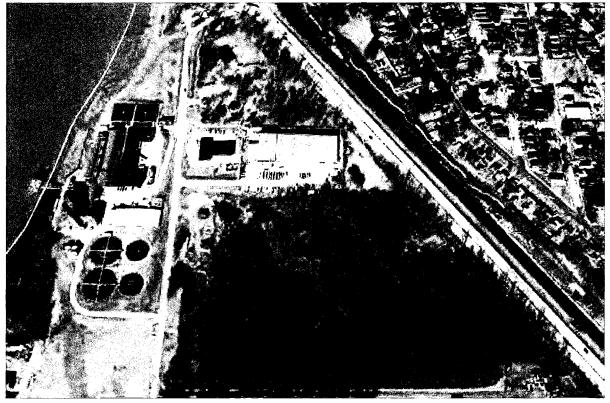
OUCC Attachment JTP-12 Cause No. 45545 Page 2 of 14



Existing Evansville Water Treatment Plant site (Parcel 1 of 2) showing the North Plant Primary Sedimentation tanks, High Service Pump Station No. 3 and the 6.5 MG Clearwell (not visible due to its underground location). 1200 Waterworks Road

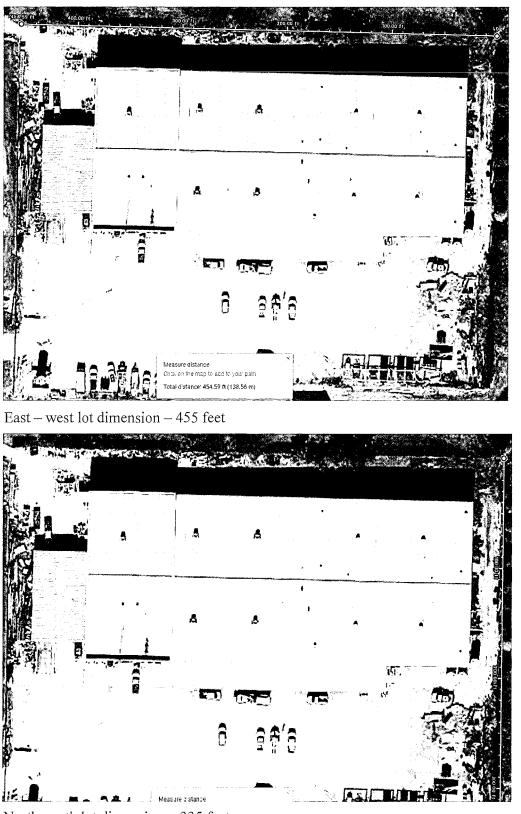

OUCC Attachment JTP-12 Cause No. 45545 Page 3 of 14


Existing Evansville Water Treatment Plant site (Parcel 2 of 2) - 1301 Waterworks Road. This parcel includes the majority of the water treatment plant but does not include the North Plant Primary Sedimentation tanks, a portion of High Service Pump Station No. 3 or the 6.5 MG Clearwell,


1400 Waterworks Road (13.05 acres). The exiting WTP is at the left. The Levee Authority Building is at the upper left of the parcel and the City garage is at the upper right.

1500 Waterworks Road (East WWTP) 62.80 acres

Pre 2019 aerial view


2/11/2018

OUCC Attachment JTP-12 Cause No. 45545 Page 6 of 14

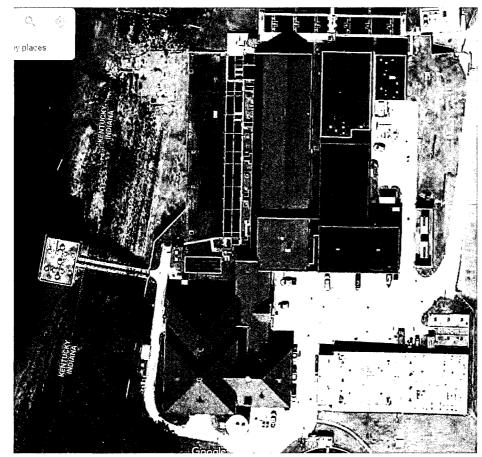
2019 aerial photo

OUCC Attachment JTP-12 Cause No. 45545 Page 7 of 14

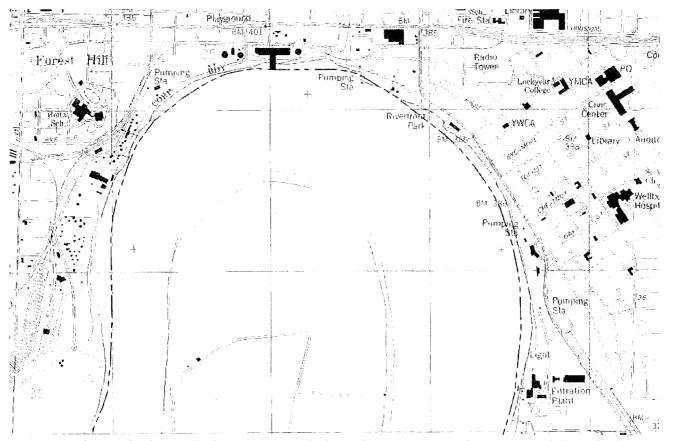
North-south lot dimension = 335 feet

Total site acreage = 455 ft (E-W) x 335 feet (N-S) = 152,425 square feet = 3.5 acres.

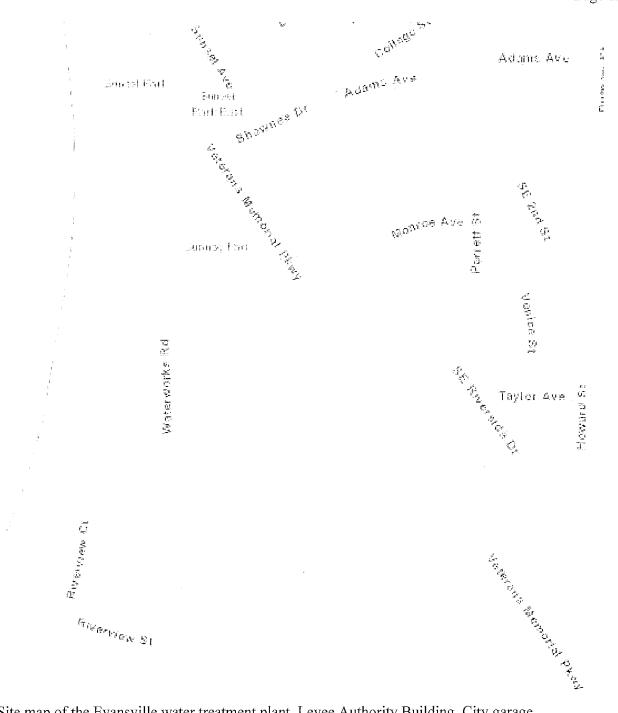
OUCC Attachment JTP-12 Cause No. 45545 Page 8 of 14


Pre 2019 aerial photo

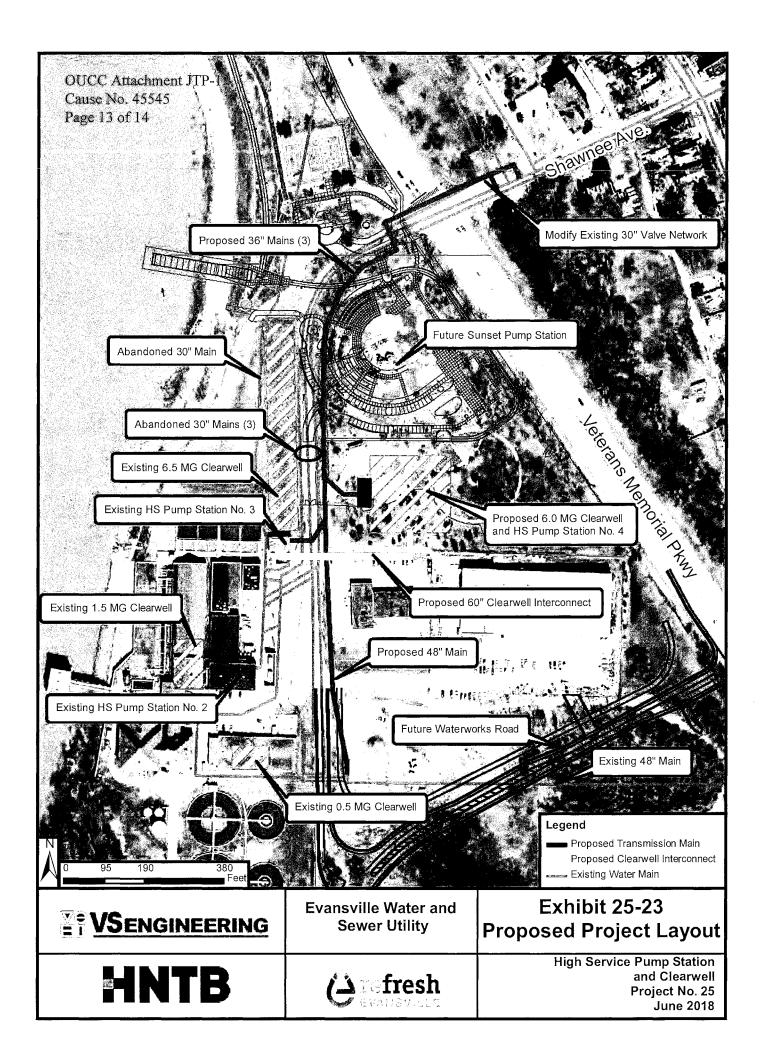
OUCC Attachment JTP-12 Cause No. 45545 Page 9 of 14

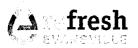

10 feet contour interval – DNR website 05/25/21 (pre 2019 aerial photo)

OUCC Attachment JTP-12 Cause No. 45545 Page 10 of 14


Evansville water treatment plant

OUCC Attachment JTP-12 Cause No. 45545 Page 11 of 14




1999 Topographic map showing the Filtration plant, Levee Authority and Street Department Maintenance garage (at lower right)

OUCC Attachment JTP-12 Cause No. 45545 Page 12 of 14

Site map of the Evansville water treatment plant, Levee Authority Building, City garage, Veterans Memorial Parkway, and Waterworks Road

OUCC Attachment JTP-12 Cause No. 45545 Page 14 of 14

ltem No.	Item Description	Quantity	Unit	Unit Cost	Total Cost
1	36" Water Main, Ductile Iron (Open Cut)	3,200	lft	\$600	\$1,920,000
2	36" Water Main, Ductile Iron (Jack/Bore)	500	LFT	\$1,500	\$750,000
3	48" Water Main, Ductile Iron	600	LFT	\$700	\$420,000
4	36" Fittings	20	EA	\$15,000	\$300,000
5	48" Fittings	5	EA	\$25,000	\$125,000
6	36" Gate Valve	12	EA	\$40,000	\$480,000
7	36" Valve Bevel Kit	12	EA	\$15,000	\$180,000
8	Valve Vault	12	EA	\$15,000	\$180,000
9	Flow Meter	2	EA	\$50,000	\$100,000
10	Connection to Existing 30" Main	6	EA	\$25,000	\$150,000
11	Granular Backfill/Paving	1	LS	\$150,000	\$150,000
12	Meter Telemetry and Electrical	1	LS	\$50,000	\$50,000
13	Water Main Abandonment (Cellular Grout Fill)	3,700	LF	\$100	\$370,000
Clearwell	Interconnection				
14	60" Equalizer Piping	500	LF	\$1,500	\$750,000
15	Equalizer Gate Structure	2	LS	\$200,000	\$400,000
Clearwell	and HSPs				
16	Clearwell (Post Tension)	1	LS	\$4,225,000	\$4,225,000
17	Clearwell Appurtenances (7% Clearwell Estimate)	1	LS	\$295,750	\$295,750
18	Excavation (10% Clearwell Estimate)	1	LS	\$422,500	\$422,500
19	Auger Cast Piles	484	EA	\$4,500	\$2,178,000
20	High Service Pump Station	1	LS	\$3,000,000	\$3,000,000
21	36" Discharge Piping, Ductile Iron (Open Cut)	300	LF	\$600	\$180,000
				Subtotal	\$16,626,250
22	Mob./Demob., Clearing ROW, and MOT	1	15%	\$2,493,938	\$2,493,938
23	Contingency	1	10%	\$1,912,019	\$1,912,019
		Tota	l Const	ruction Cost	\$21,032,206

Table 25-9: Alternative 3A - Preliminary Project Cost Summary

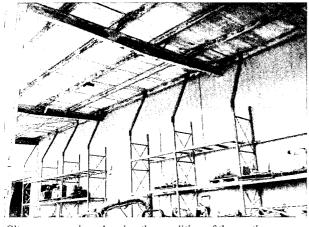
D. Proposed Schedule

The proposed schedule spans **Time**, beginning with the notice to proceed in **Month** of 2020 and culmination with final completion of construction in **Month 2021**. Phasing of the proposed booster station will not be required for the proposed project. The proposed project schedule is shown in **Table 25-10**.

OUCC Attachment JTP-13 Cause No. 45545 Page 1 of 4

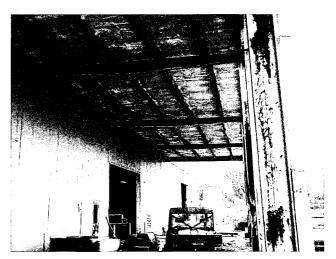

City garage - view looking north (OUCC photos - July 21, 2021)

City garage - view looking northeast of the south canopy



City garage - view looking northeast of the two-story office

City garage lot - view looking east of the equipment yard


OUCC Attachment JTP-13 Cause No. 45545 Page 2 of 4

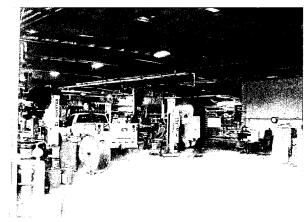
City garage - view showing the condition of the south canopy

City garage – view looking east from south canopy

City garage - south canopy steel condition

View west with the water treatment plant in the background

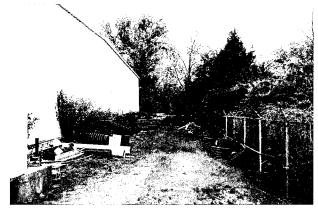
OUCC Attachment JTP-13 Cause No. 45545 Page 3 of 4


City garage - view looking east

City garage - view looking west

OUCC Attachment JTP-13 Cause No. 45545 Page 4 of 4

_


City garage - interior view

City garage - interior view

City garage - interior view

City garage – view looking north along east side of garage

OUCC Attachment JTP-14 Cause No. 45545 Page 1 of 2

1922 Evansville Water Department Report Water Mains

Eise In. Inches	Laid S'rto	r ta 1922	food During 1022		Removed	Aban doned	TOTAL		
	Feet	Milte	₽'++t	Miles	1.001	Kent	Feet	Miles	
11,	6.161	1 14	1	1			4,151	1 1 4	
2	35,371	4 R.F	4,264	1 11 1	1		25 625	8 5.61	
7	1 7.204	9 B		* *	1		F 240	y 4	
4	19.822	13 41					TO, 根212	13 41	
r,	433,00	82 (54	. <u>8-014</u>	1.52	750		4411,2511	43 30	
8	96,817	15.33	10 815	2 65		1	197,652	- 20.40	
111	12,789	1.42					12,188	2.42	
17	66,774	12.63	2.036				68,769	2.3. (14)	
14	1 20,020	5 6 6					29,929	- 5 GK	
14	រ រភព	66					3.5 -	<u>н</u> 6	
_ (A	11,920	2.76		·		1	11 126	2.24	
24	1 . 200	44			1		7 306	- 46	
7.0	11,230	1 1 2			•		,		
Tutat	1 761,882	144.20	25134	4.76	750	1	785,766	148.40	

Summary of Water Mains

Valves in Distribution System, Dec. 31, 1922

Exclusive of Service

	15		T	6.4	ș E	110	11st	<u>16. 30.</u>	<u>.</u>	0 Total
Listribution Maine	4	66	1 147	1 3 0 24	1 199	20	105	24 1 14	1 1 1	4 [1.612
Ridranta	* *	1.	6	96#	1					974
Fire / Heterns			•	37	ō 1	1 9		1 4		
TTAID+		4	6	11	' -	5	_ +			17
Tatal	4	66	1 1 4 1	2.040	1.80	• ()	<u>ີ່</u> 105 ີ	26 14	1	4 1 2 44D
					10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		in a second s			

1922 Evansville Water Department Report Water Mains OUCC Attachment JTP-14 Cause No. 45545 Page 2 of 2 22

Water Mains Laid During Year of 1922

1 3	T'Er - St	T a a	F≥et		Hтя	kateori "on*	A BEELAT Cart	Tute Office
See en fra la conta	وهي المرز ا	Each the St	113.	14*	- No.19	11 107 24	to for all	ំផ្ទោតន៍ទី
こう消むとした ふうかせい こうし	医胆氨酸 医脑膜上成的	We and only the second states of the second states	វី ស្រឹង	3-		461.000	1.5.17.5.2	1.809.5%
\$\$144韩元帝的"军兵"。	创新的 医周的内部炎 超合脉冲	Fug Constant fig		1			-, -	1
ijakų arbahanana j£ak	Harting Mane	hanna in the second second second	第 9章商	' a-		1.51343	7.148.47	8,367.05
N Langelle 27	The har want	The Development of the Albert		1				1 1 1 1
	Emmedine ±t	a Maral Asser in a constraint		1				
Dept date in the	and factories that	·城市415+ ·流	1732	8	2	有主体 想到	1.371 ちょ	三 "我的新节节吧
金轮制材证料解 油水 。	"Tolepezhor Ane	Rame Britter Bucktern und d	0.24	8 ,0	1	131 100	1.411 10	1,612.06
在F-15621605-16-1649	新小组织新护的名 使生命	二十四四日本 的过去时间的	<u>j</u> téé	h ~	4			
	二羟丙基丙酮酯 口口心	 Fangelinn i fighe rägter i die 	17 2 F 4	r, **	ł	3, 175, 20	前,后午后,直接	 Berger 24
Ⅰ报报承令将承认兼代1996	ವಿಗೆ ನವ್ ಕೊಂಗಿ ಮೊಗಗಳು	机机械 法财利税的利润 网络金属	29	¥. =				
【6月19月19月2日	Balt Here we are the state	计通知性 机进行的月间 法定任	5.2	, t , `				·
金帽 机油水料 化非利用剂	建糖硷 墨丽丽拉树 打仗	C. Whatere Association (1	16	<u>é</u> *				
21 Juliusian An	Plante Alte	🖳 🚊 i Taqidanaa kaalaa 👘	5.51	* ; ^{**}	1	257,50	490.00	121118
鮮白性のわたし	riter St	Es a native at a t	524	ñ.*	1	194.10	179 200	1 281 112
Lu Through Com	, likerator, etc.	The Argent States of States and S	177	£."	-	110.00	251.14	1 161 10
They lead the second second	NE-PARATA STATE	kalan sa P	Tree for	ĘΨ		野り合 異色	272.86	144.50
anti antinon i	后回我的现在分词	Elforodze njaro	3 *	· 6*				
B LE FRIT M P. S. E. HARRA	្មអល់ ស្ទុះ	, 主法规则以详细 "我会会	11	، ۲				4
Elene Eller El Gallaria	计输起 医颈肌的 机材 制件	. 1-++++ ## 3.1	45	£≞				
Maapar Asr	Distant Disst	S N DUTAN	र होता.	74		1218 700	705 F.O	1 106 70
Tables Ave	来到新闻之后日 人名法	1. ····································			ł			
Schille Mar	Techy All,	an all the state of the state o	367	i i i	1 1	主張登 制料系	물질을 가서	1, 1808, 291
CERCELED AT A CONTRACT OF A	theraid et in the	 a constant: St 	1.1	(p. 14	1 1	112 80	202.64	145,60
Tenfermin Alson in	法利利的遗嘱的 法发生	THERE AVE.	147	63 ²²	1 T	ាលផ្លូវដំដ	41111	615% 80
En il Sanat Sana	Haraman Than in this	CHUNCE ALE 1	ŤŤĭ	. 6 ¹	1 1	±69.3µ ±	5 36 97	. A. P. 1. 1
Tente a ware different	Samally Ars	1 Harthath Nat	16	6 H	-	1		1
教育行業に行わっ	2 HHO 11 3 1	Eline At .	L.		1			
Interactional	, Frienzen bis erstellt im b	Torica Filma	25	÷ , н	·			
Here and Annas	Shangt on TH	€ ¹ star (st. 17) han é	ាត់ក្	₹.P		203.40	967 1	677.85
I him where A are	the instance is increased	1.00 (17) iver	£ia [∓]	5.0		1 200.000		1
Full-mbiana inte	Contraction Ref.	46 mar - 194 - 2010	医鼻囊	7 P	Ť	1 20 20	248.13	748.20
المرجب أحجره وتداغ	1. RTR LOTAL HEIL	મન્દ્રો કે કે સ્ટેટ લ	1117	2.4		÷1.37	28 EF	935 22 91 19
tenders a st	Mr.Dought Ave	Thran S. Hr.	19.	: 6 .			24 039	1.1
Jufate 2-6	17000 A.M.	Come said	11-55	1 24	1	· · · ·	-	1
المراجب المواجر الموليد بمدو ووالهدورا	17 John Mars Angels	Earth and the	F B 7	- F-4	1	s		