INDIANAPOLIS POWER AND LIGHT COMPANY (D/B/A AES INDIANA)

Cause No. 45911

VERIFIED DIRECT TESTIMONY

OF

BICKEY RIMAL

 ASSISTANT VICE PRESIDENT CONCENTRIC ENERGY ADVISORS, INC.
Table of Contents

I. INTRODUCTION AND QUALIFICATIONS 1
II. ALLOCATED COST OF SERVICE STUDY 5
A. Introduction to ACOSS 5
B. Principles of ACOSS Preparation 6
III. AES INDIANA'S ACOSS 11

1. Sources of the Underlying Data 12
2. Functionalization and Classification of Costs. 13
C. Allocations to Rate Classes 19
(1) Allocation of Demand-related Costs. 20
(2) Allocation of Energy-related Costs 22
(3) Allocation of Customer-related Costs 22
IV. RESULTS OF AES INDIANA'S ACOSS 25
V. RATE DESIGN 26
3. Rate Design Objectives and Principles 26
VI. DESCRIPTION OF PROPOSED CLASS REVENUE REQUIREMENTS 29
4. Mitigation of Class Impacts 30
D. Rate Design. 31
VII. REVENUE PROOF AND TYPICAL BILLS 38
VIII. SUMMARY AND CONCLUSIONS 39

VERIFIED DIRECT TESTIMONY OF BICKEY RIMAL ON BEHALF OF AES INDIANA

I. INTRODUCTION AND QUALIFICATIONS

Q1. Please state your name and business address.
A1. My name is Bickey Rimal and my business address is 1300 19th Street, Suite 620, Washington, DC 20036.

Q2. By whom are you employed and in what capacity?
A2. I am employed by Concentric Energy Advisors, Inc. ("Concentric") as an Assistant Vice President.

Q3. Please describe your professional background and education.
A3. I have over 12 years of experience in the utility industry. I hold a Bachelor of Arts degree from Colgate University. I hold a Masters in International Public Affairs with a focus on Energy Policy from the University of Wisconsin in Madison. I have provided expert testimony on cost allocation issues on multiple occasions for various electric, gas, water, and wastewater utility clients. A summary of my education and experience is provided as AES Indiana Attachment BR-1.

Q4. Have you presented expert testimony in other proceedings?
A4. Yes. I have testified before the Indiana Utility Regulatory Commission ("IURC" or the "Commission"). In addition to the IURC, I have testified previously before the Arizona Corporation Commission, Connecticut Public Utilities Regulatory Authority, Maine Public

Utilities Commission, Massachusetts Department of Public Utilities, New York State Department of Public Service, and Nova Scotia Utility and Review Board.

Q5. On whose behalf are you testifying?

A5. I am testifying on behalf of AES Indiana ("Company").

Q6. What is your assignment in this proceeding?

A6. AES Indiana retained Concentric to conduct a fully-allocated cost-of-service study ("ACOSS") to determine the embedded costs of serving its various retail electric customers, and design rates that would be reasonable and appropriate for recovering the test year revenue requirements from the various customers. In this regard, I am sponsoring the class cost of service study and rate design filed in this proceeding. In addition, I am also sponsoring the results of a scenario ACOSS and rate design analysis that treat large low load factor customers as a separate rate classification.

Q7. Please summarize the nature and purpose of your testimony?

A7. My testimony addresses the Company's cost of service and rate design studies. First, I discuss the purpose of an ACOSS and describe the Concentric Cost of Service Model ("Concentric Model") used in conducting AES Indiana's electric cost of service study. Second, I discuss various principles of cost allocation, factors that influence the cost allocation framework, and the underlying methodology and basis used in the Company's electric cost of service study.

Third, I describe the studies of relative costs and other analyses employed to assign the various categories of plant and operation and maintenance ("O\&M") expenses to the respective customer classes.

Fourth, I present the class-by-class rate of return results and corresponding revenue surpluses or deficiencies from AES Indiana's ACOSS. This presentation will include the resulting unit costs by class for customer, demand, and energy-related costs within the ACOSS.

Fifth, I describe the method used to apportion the Company's revenue deficiency to the various rate schedules. In particular, I describe the principles and methods used to mitigate the impacts on those classes that would otherwise receive large rate increases if the unmitigated results of the ACOSS were to be used to set the rates in this proceeding.

Sixth, I describe the process used to design the rates that are being proposed in this proceeding.

Finally, I discuss the bill impacts on customers resulting from the proposed rates.

Q8. Are you sponsoring any attachments?

A8. Yes. I am sponsoring the following attachments:

Attachment No.
AES Indiana Attachment BR-1
AES Indiana Attachment BR-2
AES Indiana Attachment BR-3
AES Indiana Attachment BR-4
AES Indiana Attachment BR-5
AES Indiana Attachment BR-6
AES Indiana Attachment BR-7
AES Indiana Attachment BR-8

Name
Résumé
Description of the ACOSS Model
Summary of Class Cost Allocation and Unit Costs
Proposed Mitigated Revenue Requirement by Class
Industrial Rate Design
Class Revenue Summary
Test Year Revenue Proofs at Current and Proposed Rates
Summary of Proposed Rate Design

AES Indiana Attachment BR-9	Residential Bill Impacts
AES Indiana Attachment BR-10	Industrial Low Load Factor Scenario Analysis
AES Indiana Attachment BR-11	TDSIC Allocation Factors

Workpapers	Name
AES Indiana Workpaper BR-1.0C	CONFIDENTIAL Cost of Service Model [Excel file]
AES Indiana Workpaper BR-1.1	Functionalization, Classification, and Allocation Factor Assignment
AES Indiana Workpaper BR-1.2	Internal Allocation Factors
AES Indiana Workpaper BR-1.3	Detail Results of ACOSS
AES Indiana Workpaper BR-2.0	Class Allocation Factors - External [Excel file]
AES Indiana Workpaper BR-2.1	Class Allocation Factors Summary
AES Indiana Workpaper BR-2.2	Primary Secondary Study
AES Indiana Workpaper BR-2.3	Minimum System Study
AES Indiana Workpaper BR-2.4	Peak Demands
AES Indiana Workpaper BR-2.5	Customer Account Analysis
AES Indiana Workpaper BR-2.6	Uncollectibles Analysis
AES Indiana Workpaper BR-2.7	Meters and Services
AES Indiana Workpaper BR-3.0C	CONFIDENTIAL Rate Design and Revenue Proof
AES Indiana Workpaper BR-4.0	Calculations [Excel file]
Lighting Rate Design Calculations [Excel file]	
AES Indiana Workpaper BR-5.0	Residential Bill Impact Calculations [Excel file]

The workpapers that end in zero (e.g., 1.0) are provided as excel files, while the workpapers with a non-zero suffix (e.g., 1.1) are provided as hardcopy excerpts from the excel files.

Q10. Are you sponsoring any financial exhibits in this case?

A10. Yes. I sponsor AES Indiana Financial Exhibit AESI-OPER, Schedule REV10 - Electric Operating Revenue Adjustment at Proposed Rates.

Q11. Were the attachments, workpapers, and financial exhibits that you sponsor prepared or assembled by you or under your direction and supervision?

A11. Yes.

II. ALLOCATED COST OF SERVICE STUDY

A. Introduction to ACOSS

Q12. Please describe the general approach used to develop the ACOSS?

A12. The purpose of the ACOSS in this proceeding is to allocate AES Indiana's overall revenue requirement to the various classes of service in a manner that reflects the relative costs of providing service to each class. This is accomplished through analyzing costs and assigning each customer or rate class its proportionate share of the utility's total revenues and costs within the test year. The results of these studies can be utilized to determine the relative cost of service for each customer class and help to determine the individual class revenue responsibility. The results also provide useful guidance in terms of designing rates for each class.

To allocate costs to the various classes, I reviewed AES Indiana's expense and plant accounts and worked with various AES Indiana personnel to develop studies of the relative costs of providing facilities and services for each rate class and analyzed the key factors that cause the costs to vary.

Q13. Please describe the Concentric Model that was used in conducting the ACOSS filed in this proceeding.

A13. AES Indiana has selected the Concentric Model for purposes of conducting the electric ACOSS in this general rate case. The same model was used in AES Indiana's most recent
rate cases in Cause Nos. 45029 and 44576. Concentric has developed a proprietary model for the purpose of conducting allocated cost of service and Concentric is using that model for purposes of conducting the electric ACOSS in this rate case. A brief description of the Concentric Model is provided with this testimony as AES Indiana Attachment BR-2.

Q14. Is an electronic copy of the Concentric Model provided to the Commission?

A14. Yes. The Concentric Model in Excel format with formulas intact is included with the workpapers provided to the Commission as Confidential AES Indiana Workpaper BR 1.0C supporting my Direct Testimony. In addition, hardcopy details of the cost functionalization, classification, and allocation results produced by the model are provided in workpapers AES Indiana Workpaper BR-1.1, AES Indiana Workpaper BR-1.2 and AES Indiana Workpaper BR-1.3.

B. Principles of ACOSS Preparation

Q15. What is the guiding principle that should be followed when performing an ACOSS?

A15. The fundamental principle underlying an ACOSS is that cost allocation should follow cost causation. Cost causation addresses the question of which customer or group of customers causes the utility to incur particular types of costs. In order to answer this question, it is necessary to establish a relationship between the services used by a utility's customers and the particular costs incurred by the utility in serving those customers.

Q16. What are the steps to performing an ACOSS?

A16. In order to establish the cost responsibility of each customer class, initially a three-step analysis of the utility's total operating costs must be undertaken. The three steps which are
the predicate for an ACOSS are: (1) cost functionalization; (2) cost classification; and (3) cost allocation.

Q17. Please describe cost functionalization.

A17. The first step is cost functionalization, where the plant investment costs and operating expenses are categorized by the operational functions with which they are associated. AES Indiana's primary functional cost categories associated with electric service include Production, Transmission, Primary Distribution, Secondary Distribution, and Customer Accounts and Services. In addition, various categories of costs within the distribution function are assigned to separate sub-functions to the extent their costs vary in response to different customer class characteristics. Indirect costs that support these functions, such as General Plant, and Administrative and General Expenses, are allocated to functions using allocation factors related to plant and/or labor ratios.

Q18. Please describe cost classification.

A18. The second step, cost classification, further separates the functionalized plant and expenses according to the primary driver of the costs. These factors are: (1) the number of customers; (2) the need to meet the peak demand requirements that customers place on the system; and (3) the amount of electricity consumed by customers. These classification categories have been identified for purposes of the ACOSS as 1) Customer Costs, 2) Demand Costs, and 3) Energy Costs, respectively.

Q19. How are these classification categories 1) Customer Costs; 2) Demand Costs and 3) Energy Costs related to the amount of costs incurred by the Company?

A19. Customer Costs are incurred to extend service to and attach a customer to the distribution system, meter any electric usage, and maintain the customer's account. Customer Costs are largely a function of the number of customers served and continue to be incurred whether the customer uses any electricity. They may include capital costs associated with minimum size distribution systems, services, meters, and customer billing and accounting expenses.

Demand Costs are capacity-related costs associated with plant that is designed, installed, and operated to meet maximum hourly or daily electric usage requirements, such as generating plants, transmission lines, transformers and substations, or more localized distribution facilities which are designed to satisfy individual customer maximum demands. Demand costs are fixed in nature, and do not vary with the number of customers or the amount of energy that customers receive.

Energy Costs are those costs which vary with the amount of kilowatt hours ("kWh") sold to customers. For example, included in the instant study are base fuel rates as well as some production operating costs that tend to vary with the amount of energy produced. However, except for fuel, the vast majority of AES Indiana's costs are fixed with respect to energy usage and very little of its remaining delivery service cost structure is energy related.

Q20. What is the process followed to appropriately classify costs as Customer, Demand, and Energy?

A20. Usually, a determination on the classification of costs can be made simply by knowing the type of activities or assets that reside within a particular FERC account. In these instances, the entire account can be classified into a single category. However, for some FERC
account functions it is beneficial to conduct classification studies to determine which portion of an account is associated with each classification category. Further discussion of the classification studies used in AES Indiana's ACOSS is provided in the section discussing studies of relative costs below.

Q21. Please describe cost allocation.

A21. The third and final step, cost allocation, is the allocation of each functionalized and classified cost element to the individual customer or rate class that cause the cost to be incurred. Customers generally are divided into customer classes based on the type and character of services that they require. Costs typically are allocated to these customer classes based on factors related to the number of customers and the amount of capacity demanded by customers. For example, much of the plant and equipment cost depends upon the peak demand of the customers and these costs were allocated based on the peak demands of the rate class. Other portions of the cost depend upon the number of customers on the system and these costs were allocated on a customer, or weighted-customer basis. In addition, certain variable production costs as well as fuel and purchased power costs primarily depend upon the amount of energy consumed by customers. These costs were allocated based on the amount of energy consumed, adjusted for losses of energy that occur across the transmission and distribution system.

Q22. How do you then establish the fully-allocated costs related to various utility services?
A22. To establish these relationships, one must analyze a utility's electric system design, physical configuration and operations, its accounting records, and its system and customer load data. From the results of those analyses, methods of direct assignment and common
cost allocation methodologies can be chosen for each of the utility's plant and expense elements.

Q23. Please explain the term "direct assignment."

A23. The term "direct assignment" means the assignment of costs to a specific customer or class of customers based on that customer's or class's exclusive identification with the particular plant or expense at issue. Usually, costs that are directly assigned relate to costs incurred exclusively to serve a specific customer or class of customer. Direct assignments best reflect the cost causative characteristics of serving individual customers or classes of customers. Therefore, in performing a cost of service study, one seeks to maximize the amount of plant and expense directly assigned to a particular customer or customer classes to avoid the need to rely upon other more generalized allocation methods. An alternative to direct assignment is an allocation methodology based on an analysis of factors that affect the relative costs of serving particular customer classes.

Q24. What prompts the need to perform a study of the relative costs?

A24. When direct assignment is not readily apparent from the description of the costs recorded in the various utility plant and expense accounts, further analysis will need to be conducted to derive an appropriate basis for cost allocation. For example, in evaluating the costs charged to certain operating or administrative expense accounts, it is customary to assess the underlying activities, the related services provided, and for whose benefit the services were performed.

Q25. Is it realistic to assume that a large portion of the plant and expenses of a utility can be directly assigned to a specific customer or certain customer classes?

A25. No. The nature of utility operations is characterized by the existence of facilities used jointly or commonly by multiple customers and classes. To the extent that a utility's plant and expenses cannot be directly assigned to customer classes, allocation methods based on cost causation must be derived to assign or allocate the remaining costs appropriately to the customer classes. The analyses discussed above facilitate the derivation of reasonable allocation factors for cost allocation purposes.

Q26. Please explain the considerations relied upon in determining the cost allocation methodologies that are used to perform an ACOSS.

A26. As stated above, to allocate costs within any cost of service study, the factors that cause the costs to be incurred must be identified and understood. The availability of data for use in developing alternative cost allocation factors is also a consideration. In evaluating any cost allocation methodology, appropriate consideration should be given to whether it provides a sound rationale or theoretical basis, whether the results reflect cost causation and are representative of the costs of serving different types of customers, as well as the stability of the results over time.

III. AES INDIANA'S ACOSS

Q27. What attachments and workpapers show the allocation of costs to the various rate classes?

A27. The results of the ACOSS are summarized in AES Indiana Attachment BR-3. The assignment of functionalization, classification and allocation factors to each cost item is shown on AES Indiana Workpaper BR-1.1 and the internal allocators used to assign various overhead costs to rate classes are shown on AES Indiana Workpaper BR-1.2. Once
the costs are functionalized and classified, they are allocated to rate classes. The details of those allocations are shown on AES Indiana Workpaper BR-1.3 and the primary class-cost allocation factors are shown on AES Indiana Workpaper BR-2.1. In addition, various special studies of relative costs used in the classification and allocation of costs are presented further in my testimony.

Q28. Are there new rate codes in the current ACOSS as compared to the one from the last case?

A28. Yes. AES Indiana is proposing to add a new rate for small metered devices owned by municipal customers. As discussed by Company witness Aliff, this new rate (Rate MD Metered Municipal Device (Small)) is intended to be used by municipal customers for metered traffic signals, public safety lighting, holiday lighting and public safety devices. These customers are currently taking service under rate code SS and are expected to migrate to Rate MD if approved. The ACOSS proposed in this instant case treats Rate MD as a separate rate classification and allocates cost to that class appropriately based on cost causation.

1. Sources of the Underlying Data

Q29. What is the source of the cost data analyzed in AES Indiana's ACOSS?

A29. All cost of service data have been extracted from the Company's total cost of service (i.e., the base rate revenue requirement) contained in this general rate case filing for the historical test year ending December 31, 2022. Where more detailed information was required to perform various analyses related to certain plant and expense elements, the data were
derived from the historical books and records of the Company and information provided by relevant company personnel.

Q30. Did you make any adjustments to the total cost of service as provided by AES Indiana?

A30. Yes. I made an adjustment to eliminate negative rate base that occurs for the APL lighting rate codes. This is the result of negative net plant balances associated with FERC account 371 - Installations on Customer Premises. A negative rate base incorrectly suggests a negative cost to providing lamps and equipment to these customers. To remedy this, I set the rate base for FERC account 371. As a result of this remedy, I needed to redistribute the negative rate base value to the other distribution accounts to ensure the total rate base was correct. This is similar to how the Company treated the negative rate base associated with FERC account 371 in its two most recent rate cases ${ }^{1}$.

2. Functionalization and Classification of Costs

Q31. How did you functionalize and classify AES Indiana's costs?

A31. The process starts with the assignment of the Company's FERC accounts to a specific function. In some instances, the costs in an account are first split into separate functions or classifications if the costs in the account are incurred to perform more than one function, or the costs in an account can be said to vary significantly with respect to more than one factor. For example, the accounts for distribution system poles, towers and fixtures, and conductors and conduits, have been separated into two functions: primary distribution and secondary distribution. In addition, these costs have been further separated into demand

[^0]and customer classifications. Similarly, a portion of the production O\&M expenses other than fuel have been classified as either fixed (demand-related) costs or variable (energyrelated) costs.

Plant and O\&M costs related to production, transmission and distribution generally can be assigned directly to specific functions, but various indirect costs related to overhead such as intangible plant and general plant, as well as administrative and general expenses are allocated to functions using "internal allocators" that are based on the relative amount of certain costs that have been directly assigned to each function. The specific functionalization allocators used to assign overhead costs have been selected to reflect the type of direct costs that each overhead account generally supports.

Q32. Do you have a workpaper that provides details of the functionalization and classification process?

A32. Yes. The assignment of functionalization and classification factors are shown on AES Indiana Workpaper BR-1.1. Each cost item and the amount of dollars therein, is shown in the first column of costs shown on the workpaper. If an account is split into sub-functions, or into separate classifications, those splits are also shown in that first column. As mentioned previously, a few accounts, such as poles and conductors, have split classifications to reflect the fact that a portion of the costs are demand-related, and a portion of the costs are customer-related. Similarly, a portion of the O\&M expenses of the generating plants are classified as either fixed (demand-related) costs or variable (energyrelated) costs.

Q33. Please explain the primary-secondary study.

A33. Since the costs associated with distribution facilities are not specifically identified in the financial accounting records as being Primary Distribution ($480 \mathrm{~V}-34.5 \mathrm{kV}$) or Secondary Distribution (< 480 V), the distribution costs in Accounts 364-367 have been assigned to Primary or Secondary distribution functions based on cost-related ratios that were developed from analyses of the distribution plant records.

Distribution poles were functionalized between primary and secondary voltages based on the relative cost of replacing all primary poles versus secondary poles. Using AES Indiana's Geographic Information System ("GIS"), the number of poles carrying primary versus secondary voltage by height and class was obtained. For each category of pole, the pole count was multiplied by the replacement cost of that pole type to obtain the total replacement cost of that pole type. Using the total costs of all poles by voltage, the ratio of primary poles to secondary poles was calculated. The results of this analysis are provided on AES Indiana Workpaper BR-2.2 - Primary Secondary Study.

Distribution conductors were functionalized between primary and secondary voltages by utilizing length of conductors and replacement costs of conductors serving primary versus secondary distribution systems. Using AES Indiana's GIS, the length of conductors carrying primary versus secondary voltage was obtained. For each conductor type, the length of the conductor was multiplied by the replacement cost of that conductor to obtain the total cost of that conductor type. Using the total costs of all conductors by voltage, the ratio of primary conductors to secondary conductors was calculated. The results of this analysis are also provided on AES Indiana Workpaper BR-2.2 - Primary Secondary Study.

Q34. Please explain the Minimum System Study.

A34. The costs associated with a distribution system are related to both the peak amount of load that the system is designed to deliver and the number of customers and premises that it is designed to serve. Consequently, it is appropriate to allocate a portion of the distribution system costs on a demand-related basis and a portion on a customer-related basis. In order to classify a certain portion of the distribution system costs as demand-related or customerrelated, a Minimum System Study was conducted which included an analysis for poles and an analysis for conductors. The minimum system analysis compares the cost of a hypothetical minimum system (i.e., a system sized to simply connect customers) to the total cost of the entire system. The minimum system cost represents the customer-related costs; whereas the total costs less the minimum system costs represent the demand-related costs (i.e., total cost is split between the customer component and the demand component). The Primary and Secondary Analysis for poles described above provided the total cost and total count of primary and secondary poles. This total count of primary poles was multiplied by the replacement cost of a minimum sized primary pole to calculate the minimum system replacement cost of primary poles. This was then compared to the total replacement cost of primary poles to determine the portion of primary poles that is customer related and demand related. A similar analysis was conducted for secondary poles. The results of this analysis are provided on AES Indiana Workpaper BR-2.3 Minimum System Study.

The Primary and Secondary Analysis for conductors described above provided the total cost and total circuit miles of primary and secondary conductors. A hypothetical minimum system replacement cost was calculated by taking the total circuit feet of conductor that related to the primary system and multiplying it by the replacement cost of a minimum
sized primary conductors. The minimum system replacement cost was then compared to the total system replacement costs to arrive at the customer related and demand related costs for primary conductors. A similar analysis was conducted for secondary conductors. The results of this analysis also are provided on AES Indiana Workpaper BR-2.3 Minimum System Study.

Q35. Please explain the functionalization of production O\&M into fixed and variable components.

A35. As a general matter, with the exception of fuel costs, most production $O \& M$ expenses tend to fluctuate very little in response to changes in a generating plant's output. In reviewing production O\&M expenses with Company personnel, it was determined that certain production operating expenses related to materials such as limestone and chemicals are clearly variable; specifically, certain portions of Accounts 502, 505, 506, and 513. These expenses were calculated for the test year, and it was determined that about four percent of non-fuel production $\mathrm{O} \& \mathrm{M}$ expense was variable.

Q36. How are the costs then assigned to functions?

A36. The next step in the process is to spread the costs listed in the first column of costs on AES Indiana Workpaper BR-1.1 to the various columns that designate the classifications and functions. In addition, several categories of revenue are designated on AES Indiana Workpaper BR-1.1 so that they ultimately will be credited to the cost of service of the various rate classes.

Q37. How were direct costs functionalized?

A37. The direct costs of distribution plant and O\&M expenses are directly assigned to their proper function and classification. O\&M costs that are readily-identified with a specific function are assigned directly to the corresponding function. Distribution Supervision and Engineering expenses (Accounts 580 and 590) are allocated to functions using factors based on direct distribution operation labor and direct distribution maintenance labor. Miscellaneous Distribution Expense (Accounts 588) and Rents (Account 589) are allocated to distribution functions using factors based on total distribution plant.

Q38. How did the ACOSS allocate distribution-related O\&M expenses?

A38. In general, these expenses were allocated based on the cost allocation methods used for the Company's corresponding plant accounts. This is based on the assumption that a utility's distribution-related O\&M expenses are generally thought to support the utility's corresponding plant in service accounts. Put differently, the existence of particular plant facilities necessitates the incurrence of operating cost (i.e., expenses by the utility to operate and maintain those facilities). Thus, the allocation basis for a particular expense account will be the same basis as that used to allocate the corresponding plant account.

Q39. How are overhead costs functionalized?

A39. Indirect plant costs are allocated to functions based on ratios derived from direct plant costs. For example, Intangible Plant is allocated based on the relative amount of production, transmission and distribution plant directly assigned to each function. General Plant is assigned using the "Direct Labor" allocator.

Administrative and General Expenses were allocated to various functions using three different allocators. First, Salaries, Office Supplies, Administrative Expenses Transferred,

Injuries and Damages, Employee Pensions and Benefits, and Maintenance of General Plant were allocated using the direct labor allocation factor. Second, Property Insurance was allocated using the relative amount of rate base associated with each function. Third, Outside Services, Regulatory Commission Expense, General Advertising Expense, and Rents were allocated using a combination of the direct labor and the direct plant allocators.

Q40. How were taxes other than income taxes assigned to functions?

A40. All taxes, except for income taxes, were functionalized in a manner that reflects the specific cost associated with the particular tax expense category. Generally, taxes can be functionalized using the tax assessment method established for each tax category, (e.g., payroll, property, or sales taxes). Depending on the method of assessment, other taxes were assigned or allocated to functions using either: (1) direct labor ratios; or (2) plant ratios.

Q41. How were income taxes assigned to functions?

A41. Because income taxes are a function of the return on rate base, income taxes were allocated to functions based on the amount of rate base associated with each function.
C. Allocations to Rate Classes

Q42. What was the next step in the ACOSS?
A42. After functionalizing and classifying the costs as shown on AES Indiana Workpaper BR1.1, the functionalized and classified costs were allocated to the individual rate codes or classes on AES Indiana Workpaper BR-1.3 - Allocation to Rate Classes.
(1) Allocation of Demand-related Costs

Q43. How were the demand-related costs allocated in the proposed ACOSS?

A43. I utilized a coincident peak demand method to allocate production and transmission costs, and a non-coincident peak demand method to allocate demand-related distribution system costs. "Coincident Peak" refers to the demand of a class at the time when the overall system demand is at its peak. "Non-coincident Peak" refers to the highest level of demand that an individual class experienced during the year or month. This non-coincident peak for a given class may coincide with the overall system peak but, generally it occurs at other times that are off-peak for the system as a whole. The factors used to allocate costs to rate classes are developed in AES Indiana Workpaper BR-2.0, and the resulting allocation factors are shown on AES Indiana Workpaper BR-2.1 - Class Allocation Factors Summary. Coincident and Non-Coincident peak demands for each of the classes are also shown on AES Indiana Workpaper BR-2.4.

Q44. What was the source of the data used to develop the demand-related allocation factors?

A44. This data were provided to Concentric by AES Indiana based on information collected and calculated as part of the Company's ongoing load research program. The peak demand allocators utilized in the ACOSS are shown on AES Indiana Workpaper BR-2.4. The determination of peak demand allocators is described in more detail by AES Indiana witness Fox.

Q45. Which coincident peak demand allocation method did you utilize to allocate production and transmission demand-related costs?

A45. I utilized the coincident peaks during each of the twelve months of the test period ("12CP") to allocate demand-related costs associated with the production and transmission functions. This is the method the Company used in its two most recent rate cases ${ }^{2}$. In addition, I applied the FERC's cost allocation tests to AES Indiana's load characteristics. As shown in the table below, AES Indiana met two of these three tests for the test year (both actual and normal), which indicates that the 12CP method continues to be appropriate.

	Peak - Off-Peak $\%$ Difference	Low/Annual Peak Ratio	Avg/Annual Peak Ratio
Use 12 CP if:	$\leq 19.0 \%$	$\geq 66.0 \%$	$\geq 81.0 \%$
Test Year - Normal	15.5%	59.3%	82.5%
Test Year - Actual	14.7%	56.8%	81.5%

Q46. Which peak demand method did you use to allocate the costs of demand-related distribution costs?

A46. I used the non-coincident peak demands of customer classes to allocate the costs of demand-related distribution costs. Although the production and transmission facilities are designed to meet the coincident peak demands of the entire system, as the system moves further from the generating plants and closer to the ultimate retail consumers, the primary factor affecting the planning and sizing of facilities is the level of peak demands in local areas. To the extent that customer classes have their individual peaks at different times, the Company must plan and install facilities to accommodate those individual peaks. In addition, to the extent that these facilities may be used jointly by different classes, the non-

[^1]coincident peak method ensures that all classes share in the costs of these facilities. As a result, non-coincident peak demands of each class were used in allocating demand-related costs associated with these distribution system facilities.

(2) Allocation of Energy-related Costs

Q47. How are the energy-related costs allocated in the ACOSS?

A47. Energy-related costs are allocated to the various rate classes based on the amount of energy used by each class during the test year, adjusted for abnormal weather effects, where appropriate, and energy losses that occur in serving customers at different voltage levels.

Q48. Were the energy and demand cost allocation data adjusted for line losses in the electric system?

A48. Yes. Because some energy and power are lost in the process of transmitting and distributing electricity to customers, the amount of usage that is recorded at a meter is less than the amount of energy, power and capacity that is required at the production and transmission levels. The amount of system losses is greatest for customers that take service at the secondary voltage levels, and somewhat less for customers at primary, sub-transmission and transmission levels, respectively. To account for the different amount of losses experienced in serving customers at different voltage levels, the factors used to allocate demand-related costs to the various classes have been adjusted for the line losses that occur at each stage in the distribution system. The result is to appropriately allocate somewhat more of these costs to customers who take service at successively lower voltage levels.
(3) Allocation of Customer-related Costs

Q49. How have the customer-related costs been allocated in the ACOSS?

A49. Because a significant portion of the distribution system costs are incurred simply to attach a customer to the system and are the same regardless of the amount of energy that the customer might consume, significant portions of the distribution system costs and customer-related costs are allocated to classes using allocators that are related to the number of customers in the class. However, because there generally is a very wide difference between the customer classes in terms of the level of customer-related costs required per customer, many of the allocations of customer-related costs are weighted to reflect the relative differences in the average cost per customer of providing customerrelated facilities or services for particular rate codes or classes. Thus, customer-related costs such as meters, service lines, billing and customer service are allocated based on the cost-weighted number of customers in each class. The customer-related allocation factors and the relative-cost weights assigned to each class are shown in AES Indiana Workpaper BR-2.1 - Class Allocation Factors Summary. The general methods used to develop the customer-related allocation factors are discussed below.

Q50. How were metering costs allocated to rate classes?

A50. Every customer, except lighting customers, requires a meter, but Commercial and Industrial meters generally cost considerably more and require more equipment compared to Residential meters. For this reason, meter weights were developed for each of the customer classes based on a list of the number and types of meters installed for each rate code and the associated embedded costs of each type of meter. In addition, an analysis was conducted to account for cabinets and transformers required by some meters by rate codes. The embedded meter cost along with cabinet and transformer requirement provided an estimate of the relative cost of providing metering service for each rate code. The relative-
weight factor was then multiplied times the number of customers in the class to develop the factors shown on AES Indiana Workpaper BR-2.1 - Class Allocation Factors Summary that were used to allocate metering costs to each class. Further backup for the meter allocations is provided as AES Indiana Workpaper BR-2.7 - Meters and Services Study.

Q51. How were service lines allocated to each class?

A51. AES Indiana provided an estimate of the costs per service for residential and commercial customers for those served from overhead systems and those served from underground systems. This provided a relative weighting between residential and commercial customers which was multiplied by the number of customers in the class. The weighting factors and the allocation factors used for services are shown on AES Indiana Workpaper BR-2.1 Class Allocation Factors Summary and the additional backup is provided as AES Indiana Workpaper BR-2.7 - Meters and Services Study.

Q52. How were customer service costs allocated?

A52. AES Indiana conducted an analysis of various Company departments and sub-functions dedicated to the customer service functions. In the course of the analysis, the costs of certain departments or sub-functions were allocated based on the estimates of department managers as to the proportion of the time and expenses incurred that are related to a particular customer class. For other departments or sub-functions, the costs were allocated on customer counts or allocated based on the results of combined departments. The relative weighting and allocation factors used are presented on AES Indiana Workpaper BR-2.1 Class Allocation Factors Summary with additional information provided as AES Indiana Workpaper BR-2.5 - Customer Account Analysis.

Q53. Are there any other methods used to assign customer-related costs?

A53. Yes. The costs associated with meter reading and customer-related primary and secondary distribution costs were allocated on the basis of customer counts. Meter reading is an automated process for AES Indiana so there is no expectation that meter reading costs vary materially between rate classes. Uncollectible costs were allocated based on the amount of uncollectibles by rate class category. Details relating to uncollectibles are provided in AES Indiana Workpaper BR-2.6 - Uncollectibles Analysis.

IV. RESULTS OF AES INDIANA'S ACOSS

Q54. Please describe the results of the ACOSS with respect to rate of return under the Company's rate classes.

A54. The summary of the results of the ACOSS and the relative rates of return produced by each class for the historical test year ending December 31, 2022, are presented in AES Indiana Attachment BR-3 and summarized in Table 1 below. This attachment is organized into two sections: the first half shows the costs and revenues of serving each of the four consolidated rate classes (Residential, Small Commercial and Industrial, Large Commercial and Industrial, and Lighting); and the second half shows the same information broken out into separate rate codes (RS, SS, SH, etc.). As shown on line 18 of this attachment (on pages 8 and 13) and table below, at present rates the ACOSS shows a wide variation in the rates of return by rate schedule.

Rate Class	Rate Code	Return at Current Rates	Relative Rate of Return	Current Subsidy
Residential	RS	2.00%	0.46	$(\$ 49,116,033)$
Secondary Small	SS	9.42%	2.17	$\$ 21,424,126$
Small Metered Service	MD	28.71%	6.62	$\$ 158,926$
Space Conditioning	SH	3.91%	0.90	$(\$ 770,844)$
Space Conditioning - Schools	SE	12.35%	2.85	$\$ 299,993$
Water Heating - Controlled	CB	-9.72%	-2.24	$(\$ 28,864)$
Water Heating - Uncontrolled	UW	0.55%	0.13	$(\$ 14,809)$
Secondary Large	SL	7.01%	1.62	$\$ 23,234,457$
Primary Large	PL-HL	6.29%	1.45	$\$ 11,851,772$
Process Heating	PH	5.08%	1.17	$\$ 55,344$
Automatic Protective Lighting	APL	-13.71%	-3.16	$(\$ 2,794,728)$
Municipal Lighting	MU1	-9.88%	-2.28	$(\$ 4,299,340)$
Total System		4.34%	1.00	$\$ 0$

Q55. What is the amount of the rate increase or decrease that each customer class would need in order for each class to produce the system average required rate of return?

A55. Line 31 of AES Indiana Attachment BR-3 indicates the current subsidy received (negative) or provided (positive) by each class. The current subsidy is the amount of rate increase or decrease that would be required for each rate class if the goal were to have all classes produce equal rates of return at the current level of cost recovery. Line 44 shows the amount of increase that would be required for each class to pay its fully-allocated cost of service.
V. RATE DESIGN

1. Rate Design Objectives and Principles

Q56. Are there general rate design principles that are accepted by the utility industry?

A56. Yes. As a general matter, utility rate analysts have followed the general rate design criteria proposed by Professor James C. Bonbright in his seminal book "Principles of Public Utility Rates" first published in $1961 .{ }^{3}$ The following eight rate design criteria have remained viable for more than five decades now and are still relevant:

1. The related, "practical" attributes of simplicity, understandability, public acceptability, and feasibility of application.
2. Freedom from controversies as to proper interpretations.
3. Effectiveness in yielding total revenue requirements under the fair-return standard.
4. Revenue stability from year to year.
5. Stability of the rates themselves, with a minimum of unexpected changes seriously adverse to existing customers.
6. Fairness of the specific rates in the apportionment of total costs of service among the different consumers.
7. Avoidance of "undue discrimination" in rate relationships.
8. Efficiency of the rate classes and rate blocks in discouraging wasteful use of service while promoting all justified types and amount of use.

Q57. Are these general rate criteria for rate structures all consistent with one another?
A57. No, they are not required to be. For example, designing rates strictly based on cost of serving a particular class could conflict with the goal of achieving rate stability and gradualism. Hence, there will be conflict among these rate criteria, based on the specific facts and circumstances of any company.

Q58. Are some of these general rate design criteria more important than others?
A58. Yes. I agree with Professor Bonbright's assessment (page 292) that the rate criteria designated as items (3), (6), and (8) above are considered to be the primary ones. Item (3) relates to the recovery of the authorized revenue requirement under the "fair return"

[^2]standard; item (6) relates to the "fair cost apportionment objective" and item (8) relates to the efficiency objective. Even within these three criteria, the "fair return" standard is paramount because a rate structure that meets all the other rate design criteria but fails to recover the required return on and return of capital, will threaten the basic viability of the utility and its ability to provide service.

Q59. What are the principles and objectives of AES Indiana for designing rates in this proceeding?

A59. AES Indiana had three primary policy objectives in the development of the rates proposed in this proceeding, which are in alignment with the Bonbright criteria mentioned above: (1) the charge for any service provided is just and reasonable; (2) the rates and charges should provide AES Indiana an opportunity to recover its revenue requirement; (3) the rates should provide incentives for efficient usage of the system by promoting justified usage while discouraging wastefulness. In addition, gradualism in rate changes on customers was another important objective of the Company. In light of gradualism and affordability considerations, the Company proposes to mitigate the impact of rate changes on any one rate schedule in this rate case. This results in proposed rates that are adjusted only part of the way in the direction of fully-allocated costs. To achieve that goal, I have capped the increases to any rate schedule and ensured that no customer class receives a revenue decrease. In addition, I did not increase the level of customer charges for the residential and small commercial rate classes to a level that fully recovers fixed costs at this time and retained the current inclining block structure of the customer charges, so as to mitigate the impacts on smaller customers in the residential and small commercial rate classes.

VI. DESCRIPTION OF PROPOSED CLASS REVENUE REQUIREMENTS

Q60. What total electric revenue requirement is the Company proposing in this proceeding?

A60. The Company has a total revenue requirement of approximately $\$ 1,738$ million as shown on line 46 of AES Indiana Attachment BR-3. Because the Company collects miscellaneous other revenue including ancillary charges and off-system sales margin that are reflected as a credit against that total revenue requirement, the proposed rates are designed to collect Base Rate revenue of approximately $\$ 1,688$ million from the retail customers, as shown on line 49 of AES Indiana Attachment BR-3.

Q61. Have you examined the percentage rate increases that would be required for each rate schedule according to the Allocated Cost of Service Study?

A61. Yes. Column C of AES Indiana Attachment BR-4 presents normalized revenues that AES Indiana can expect to recover from each rate schedule at current rates, while column D of that attachment shows the allocated cost of service for each schedule. Column F shows the percentage increase/decrease in base rates that would be required if unmitigated ACOSSbased rates were to be applied. Although the overall rate increase that the Company is requesting is approximately nine percent, the unmitigated ACOSS indicates that the residential class would require a rate increase of around 18 percent and the controlled water heating rate schedule would require a rate increase of as much as 74 percent. Column G shows the subsidy that each class and rate schedule is paying or receiving at current rates. Even though the goal is to move all rate classes to their cost of service, consistent with the policy of the state, the Company considered affordability for each of the customer classes
and determined that the percentage rate increases experienced by individual rate schedules should be mitigated to moderate the impacts on individual rate schedules.

1. Mitigation of Class Impacts

Q62. How did you go about mitigating the class rate increases?

A62. The proposed revenue allocation to each rate class was derived based on discussion with the Company. The criteria used for proposed revenue allocation are: 1) the increase to any rate schedule was capped at 1.5 times the overall system increase; and 2) no rate schedule receives a rate reduction. ${ }^{4}$ I believe that this approach reduces the inter-class subsidies and moves classes closer to their cost of service, while ensuring that impacts on any one particular class is moderated.

Q63. Did you consider other alternate revenue allocation approaches?
A63. Yes. I also considered applying the subsidy reduction approach that the IURC has approved in prior rates cases for AES Indiana as well as other utility rate cases. This subsidy reduction approach first calculates the subsidy that each rate schedule is currently paying, which is equal to the difference between the revenue collected during the test year, and the amount of revenue that was required in order for each rate schedule to generate the system-wide average rate of return. This approach then determines a proportion of the subsidy at current rates to be eliminated. However, given the wide disparity in the rate of

[^3]return at current rates by rate schedule, it was not possible to get reasonable revenue allocation results by simply eliminating a fixed proportion of the current subsidy.

Q64. Please describe the results of your mitigation approach.
A64. Column Q of AES Indiana Attachment BR-4 shows the final mitigated revenue requirement by rate class and rate schedule. Column P shows the final rate increase for each rate class and rate schedule. Column S shows the percentage of current subsidy removed as a result of the proposed mitigation approach. Finally, Column T shows the ratio of final mitigated revenue requirement to revenue requirement resulting from the ACOSS. This ratio ranges from 0.65 to 1.25 based on the proposed mitigated revenue requirement. Page 2 of AES Indiana Attachment BR-6 supports AES Financial Exhibit AES-OPER, Schedule REV10.

Q65. What rate of return would be generated by each rate schedule at the proposed mitigated revenue requirements?

A65. The pro forma rates of return that would be generated by each rate schedule at the proposed mitigated revenue requirements are shown on line 64 of AES Indiana Attachment BR-3.
D. Rate Design

Q66. Were there certain general principles that you followed in designing rates for individual rate schedules?

A66. One principle that I applied was to move towards alignment of the rate structures with cost structures. I relied on the results of the ACOSS to inform changes to the magnitude of individual rate components for each rate schedule. To increase the alignment of rate
structures and cost structures, I generally increased the customer charges and/or the demand charges to a level that recovers a higher proportion of the fixed costs of service. As a result, I have attempted to reduce the proportion of the fixed costs recovered through variable energy charges.

I started with the amount of the revenue requirement for each rate schedule and subtracted out the base fuel costs to derive the amount of the margin that would need to be collected. If a particular rate had a customer charge and demand charge, I changed the customer charge to be closer to the level of customer-related costs calculated by the ACOSS, which is presented on AES Indiana Attachment BR-3. For rate schedules that have demand charges, I designed the rates to recover most of the remaining fixed costs in a demand charge. Energy charges for these rate schedules (i.e., rate classes with demand charges) are designed to recover the fuel and variable energy costs, plus a margin of approximately one mill per kWh . For rate schedules that do not have demand charges, I set the energy charge at a level that would recover the remaining portion of the revenue requirement, generally through a declining block energy charge.

Q67. Did you have additional considerations for residential rate design?

A67. Yes. I designed residential rates such that customers who consume more energy receive larger increases in dollar terms in their monthly bill as compared to the smaller customers. This resulted in larger residential customers experiencing a larger dollar increase, but a lower percentage increase, in their monthly bills than smaller customers. I also ensured that the smallest customers (customers using less than 325 kWh per month) receive increases of less than $\$ 7.20$ per month.

Q68. How were the proposed rates for each rate schedule calculated?
A68. Detailed calculations for each rate component of each rate schedule and a proof of proposed revenues by rate schedule is shown on AES Indiana Attachment BR-7 and in AES Indiana Workpaper BR-3.0C. As the attachment shows, the proposed total revenue requirement for each rate schedule will be achieved by implementing the proposed rates.

Q69. What levels of monthly customer charges are you proposing for the residential and small commercial rate schedules?

A69. The proposed rates would increase the Residential monthly customer charge, which is a discrete charge within the total residential rate structure, for the small customers (< 325 $\mathrm{kWh} /$ month) from its current level of $\$ 12.31$ to the proposed level of $\$ 16.50$, and the customer charge for the larger customers (> $325 \mathrm{kWh} /$ month) would be increased from $\$ 16.75$ to $\$ 25.00$. It is important to clarify that this proposed change in this isolated component (i.e., customer charge) does not reflect the Company's proposed change in the overall residential rate. I discuss the residential rate impact from proposed rates later in my testimony. Similarly, the Small Secondary service monthly customer charges would be increased from its current level of $\$ 39.40$ to the proposed level of $\$ 40.00$ for the smallest customers on that rate schedule, and the largest customers would receive an increase from the current level of $\$ 54.18$ to the proposed level of $\$ 55.00$. All of these changes are being made in order to more closely reflect the costs of serving each customer, as indicated by the ACOSS. For example, the unit costs resulting from the ACOSS are shown near the bottom of AES Indiana Attachment BR-3. To reflect the actual fixed costs to serve customers, for the Residential class the cost-based customer charge would be approximately $\$ 103$ and for the Small Secondary rate schedule the cost-based customer
charge would be approximately $\$ 192$. Thus, although the increases in customer charges for these rate schedules move in the direction of recovering more of the actual fixed costs in the customer charge, a substantial portion of fixed costs will still be recovered in the variable energy charge component of the rates for these customers. For the Residential class, the proposed $\$ 25$ customer charge only recovers about 24% of the fixed costs and for the Small Secondary rate schedule, the proposed $\$ 40$ customer charge only recovers about 21% of the fixed costs. The increase in customer charges as proposed is consistent with the Commission's recognition that "[c]ost recovery design alignment with cost causation principles sends efficient price signals to customers, allowing customers to make informed decisions regarding their consumption of the service being provided."5

Q70. How are you proposing to recover the remaining fixed costs in the variable energy charge component of the residential and small commercial rate schedules?

A70. The existing declining-block rate structure for these two rate schedules is retained in the proposed rates. For the residential (RS) class the rates per kWh are higher for the first 500 kWh and lower for amounts over 500 kWh . Residential water heating (RC) and space heating (RH) customers also are eligible for a lower third block for consumption over 1,000 kWh in a month. For the small commercial (SS) customers, the first $5,000 \mathrm{kWh}$ consumed each month will be charged at a higher rate, and a lower rate will be charged for amounts over $5,000 \mathrm{kWh}$.

Since the residential and small commercial customers do not have a demand charge, a declining block rate structure is an alternative way to recover the fixed costs that are not

[^4]recovered in the customer charge. AES Indiana's declining block rate structure for these rate schedules helps ensure that an appropriate level of fixed costs is recovered from each customer while also reducing the amount of fixed costs loaded into the marginal energy charges. This blocking structure provides better price signals for efficient consumption and also reduces the variability of the Company's earnings that may result from year-toyear fluctuations in consumption, in spite of the fixed nature of the costs incurred.

Q71. How did you design the rates for large industrial customers?

A71. Similar to AES Indiana's last rate filing, costs were allocated to the PL and HL classes as a single group in the cost allocation process. The calculation of the cost of service for each of the rate codes in this group are shown on AES Indiana Attachment BR-5 and the "Industrial Cost Allocation" tab of AES Indiana Workpaper BR-3.0C.

First, the allocated Production and Transmission costs were assigned to each rate code based on the loss-adjusted demand billing determinants. This resulted in each rate code having a Production and Transmission Demand Charge component that was distinguished by the level of line losses incurred in providing service at different voltage levels.

Second, the allocated Distribution demand-related costs were assigned only to the PL and HL1 customers. None of these costs were assigned to the HL2 or HL3 customers, who take service at sub-transmission and transmission voltages and therefore do not use the distribution system.

Third, the allocated Distribution customer-related costs were assigned to the PL and HL1 rate codes based on the number of customers so that the same customer-related Distribution costs would be reflected in the rates for each of these rate codes.

Fourth, the allocated Meter costs were assigned to each rate code based on the weighted average cost of meters for customers on each rate code because meters for sub-transmission and transmission voltage customers tend to cost considerably more than meters for primary voltage customers.

Fifth, allocated fuel and energy costs were assigned to each rate code based on the lossadjusted energy usage of each class. This ensured that the fuel and energy costs per kWh appropriately reflected the differences in line losses attributable to each rate code.

Finally, credits for Other Revenues, and adjustments for rate mitigation were assigned to each rate code based on rate code specific ratios.

Once the total revenue requirement for each of these large industrial rate codes was determined, the final rates were calculated on the corresponding tab of AES Indiana Workpaper BR-3.0C. These final rate design calculations are also shown in AES Indiana Attachment BR-7.

Q72. What other changes have you made to the rate design?

A72. As discussed earlier and by Company witness Aliff, AES Indiana is proposing to create a new rate for small metered devices owned by municipal customers (Rate MD), and I have designed rates to recover the mitigated revenue requirement assigned to this new rate. The charges for Rate MD consist of a fixed monthly customer charge and single, volumetric charge. The proposed rates are closely aligned with the results of the ACOSS.

Q73. Is AES Indiana proposing to change the lighting provisions in its tariff?

A73. Yes. AES Indiana currently has separate lighting rates for lights installed prior to March 31, 2016, which are designated as "VINTAGE" in the tariff, and separate rates for lights
installed after March 31, 2016, which are designated as "NEW" in the tariff. AES Indiana designed rates for the Automatic Protective Lights (APL) and Municipal Lights (MU) by applying an across the board increase to each light to recover the revenue allocated to each rate code. AES Indiana is also proposing new tariff rates for lights, where customers have made or will make a Contribution in Aid of Construction ("CIAC"). As discussed by Company witness Aliff, AES Indiana is proposing to have new tariff rates for lights with CIAC payments to avoid having to renew or create contracts for these situations in the future.

Q74. Did you perform any rate design scenario analysis?

A74. Yes. As a part of the Settlement Agreement approved by the Commission in AES Indiana's last rate case in Cause No. 45029, AES Indiana "agreed to prepare an analysis that separately allocates costs to low load factor customers and a proposed rate structure to recover those allocated costs". In compliance with this provision, I conducted a scenario ACOSS and rate design analysis that reflects large low load factor customers as a separate rate classification. The results of this scenario analysis and a summary of the illustrative rate design are filed as AES Indiana Attachment BR-10.

Q75. Is AES proposing to update the Transmission, Distribution, and Storage System Improvement Charge ("TDSIC") revenue allocation factors?

A75. Yes. Using the results of the ACOSS, I have developed the updated TDSIC revenue allocation factors by rate code based on firm load. AES Indiana Attachment BR-11 shows the TDSIC revenue allocation factors by rate class and code.

Q76. Is AES proposing to make changes to any of the rate components in Rate CGS?

A76. Yes. Rate CGS allows a customer to receive a cost-justified reduction in their demand charge by taking back-up or maintenance power as curtailable power, subject to certain conditions specified in the Rate CGS tariff. The daily generation component as well as the transmission and distribution component of the demand charge of Rate CGS are being updated to reflect the results of the ACOSS.

VII. REVENUE PROOF AND TYPICAL BILLS

Q77. Do you have an attachment that shows the rate components and revenue that will be collected from each rate schedule at the proposed rates?

A77. Yes. AES Indiana Attachment BR-7 demonstrates that the targeted total revenue for each rate schedule will be achieved using the proposed rates and normalized test period billing determinants. Note that detailed calculations for customers taking service at transmission voltage levels are considered confidential and are omitted from AES Indiana Attachment BR-7; instead, those calculations can be found in AES Indiana Workpaper BR-3.0C. AES Indiana Attachment BR-8 summarizes the new rates that are being proposed in this proceeding.

Q78. Do you have an attachment that shows how the proposed rates will affect various residential customers?

A78. Yes. The bill impacts for residential customers are shown on AES Indiana Attachment BR-9. It can be seen in Col. E of that attachment that the smallest residential customers (customers consuming about 325 kWh per month) will experience an increase in their monthly bill of less than $\$ 7.20$ per month and a majority of customers will experience a rate increase of less than $\$ 19.00$ per month. A residential customer who uses $1,000 \mathrm{kWh}$
per month will experience an increase of $\$ 17.49$ per month, which is an increase of approximately 13.2%. My attachment details how these rate impacts were calculated.

VIII. SUMMARY AND CONCLUSIONS

Q79. Please provide a summary of your testimony.

A79. Using the Concentric Cost of Service Model, I have allocated AES Indiana's overall revenue requirements to the various classes of service in a manner that reflects the relative costs of providing service to each class. This is accomplished through analyzing costs and assigning each customer or rate class its proportionate share of the utility's total revenues and costs within the test year. The ACOSS followed the industry standard three step approach of functionalization, classification, and allocation to establish cost responsibility of each rate class. The results of the ACOSS indicate that at present rates, there is a wide variation in the rates of return by rate schedule. Even though the goal is to move each rate code to its cost of providing service, the proposed revenue allocation moves classes closer to their cost of service due to gradualism and affordability considerations. Using the results of the ACOSS as a guide and in collaboration with the Company, I allocated the revenue requirement to classes such that the current subsidy associated with each class was reduced. I then designed rates to increase the alignment of rate structures and cost structures by reducing the proportion of the fixed costs recovered through variable energy charges. Even though my proposed increases to customer charges for residential and small commercial customers move in the direction of recovering more of the fixed costs in the customer charge, a substantial portion of fixed costs will still be recovered in the variable energy charge component of the rates for these customers. My proposed rates and rate structures
for large industrial customers are very closely aligned with the unit costs resulting from the ACOSS. As a result, I believe that my proposed rate structure and rates are just, reasonable, and not unreasonably preferential or discriminatory. Further, the proposed rate structure and rates are expected to provide AES Indiana with a reasonable opportunity to earn the required return on its invested capital and recover its necessary and reasonable operating expenses.

Q80. Does this conclude your prepared Direct Testimony?
A80. Yes, it does.

VERIFICATION

I, Bickey Rimal, Assistant Vice President for Concentric Energy Advisors, Inc., affirm under penalties for perjury that the foregoing representations are true to the best of my knowledge, information, and belief.

Bickey Rimal
Dated: June 28, 2023

BICKEY RIMAL

Assistant Vice President

Bickey Rimal has over 13 years of progressive experience in the energy and environmental sector. Mr. Rimal has contributed to projects involving revenue requirement, cost of service, rate design, expert testimony preparation, energy market assessments, and utility performance benchmarking. His work often involves financial modeling, statistical analysis, and regulatory research. Mr. Rimal has provided expert testimony on cost allocation issues on multiple occasions. Mr. Rimal has extensively used Concentric's Excel-based macro-driven Allocated Class Cost-of-Service ("ACCOS") model for various electric, gas, and water utility clients. He has modified and updated the model as needed to suit the specific needs of the clients. Mr. Rimal has a Masters in International Public Affairs with a focus on Energy Policy from the University of Wisconsin in Madison. Prior to enrolling in the graduate program, Mr. Rimal worked at ICF International, a global energy and environmental consulting firm, for three years. At ICF, Mr. Rimal was extensively involved in projects dealing with policy design and implementation, economic impact analysis, regulatory evaluation, and environmental risk assessment.

REPRESENTATIVE PROJECT EXPERIENCE

Regulatory Proceedings and Litigation Support

Mr. Rimal has been involved in projects dealing with all aspects of regulatory ratemaking process. Mr. Rimal has extensively used Concentric's excel-based macro driven Allocated Class Cost-of-Service ("ACCOS") model for various utility clients and provided testimony supporting ACCOS studies. He has modified and updated the model as needed to suit the specific needs of the clients.

Representative engagements have included:

- Conducted ACCOS studies and designed rates for a north-eastern gas distribution company and filed testimony supporting those studies.
- Conducted ACCOS studies and designed rates for multiple water districts for a south-western water utility and filed testimony supporting those studies.
- Conducted various cost allocation studies, functional studies, and minimum system studies and filed testimony supporting those studies for a vertically integrated Midwest electric utility.
- Supported the development of an allocated class cost of service study and rate design for another vertically integrated Midwest electric utility. Mr. Rimal was directly involved in conducting special cost allocations and functional studies; developing cost of service studies; designing the rates and calculating the associated bill impacts.
- Supported the development of an allocated class cost of service study and rate design for a distribution only electric utility in Pennsylvania. Mr. Rimal modified Concentric's ACCOS model to incorporate three distinct test years simultaneously and automated the results creation process.
- Responsible for the development of various cost allocation studies for two electric utilities in New York as part of the cost of service study.
- Supported the developed revenue requirement model to comply with a new performance based formula ratemaking process for a Midwest electric utility.
- Supported cash working capital studies on multiple cases by conducting billing lag analysis involving extremely large data sets utilizing SPSS and R software.
- Created model in R to statistically compare hourly load data between two distinct types of meters to assist a utility in its load research program.
- Created an excel based benchmarking model that have been used on multiple occasions to assess performance of several utilities against various peer groups.
- Supported the development of a rate model to calculate the annual cost of service rates as well as a levelized rate for conversion of an oil pipeline into a natural gas pipeline.

Market Assessment and Asset Optimization Review

- Involved on projects, with two different gas utilities in the Northwest, that forecasted the evolution of demand for compressed natural gas and liquefied natural gas in the transportation sector in their respective territories. Mr. Rimal developed models to analyze the market penetration of different transportation fuels under various fuel price spread scenarios and other market dynamics.
- Estimated the impact on electricity prices due to pre-mature closure of certain nuclear facilities using regression analysis. Validated the price impacts by analyzing the generation supply curve for the location in question.
- Annual assessment of asset manager's performance on multiple occasions by conducting asset optimization analysis of client's natural gas portfolio consisting of both transportation and storage assets.

Valuation

- Created a Discounted Cash Flow ("DCF") model to value a generic regulated natural gas local distribution company ("LDC"). The model was customized to create valuation for any LDC covered by SNL Financial by automating the data retrieval process from SNL based on user input. The model had an added functionality of triggering a revenue enhancement when the earned ROE was outside certain pre-established thresholds.
- Created Discounted Cash Flow ("DCF") models to assess the profitability of various generic units operating in the New York Control Area for NYISO.
Capacity Price Forecasting
- Updated and modified Concentric's Capacity model used to forecast capacity prices for various regions within NYISO based on existing and planned generation, planned retirements, transmission constraints, market mitigation rules, gross and net CONE estimates, and other relevant demand curve parameters.

Relevant ICF Experience

- While at ICF, Mr. Rimal was part of a team that assisted the EPA's Clean Air Market Division (CAMD) in analyzing the effect of environmental policies on power generation sector. As a part of this effort, he was significantly involved in executing as well as maintaining and updating the Technology Retrofit and Updating Model (TRUM). The TRUM model simulates the action of the electric utilities industry under a multi-pollutant emissions trading program.
- Assisted in the creation of an excel model that assessed the impacts of GHG mitigation policies on the competitiveness of the US manufacturing industries.
- Provided support to the Hours of Service regulation by analyzing different crash related data to identify main causes of fatigue among drivers by utilizing logistic regression models.

PROFESSIONAL HISTORY

Concentric Energy Advisors, Inc. (2011 - Present)
Assistant Vice President
Senior Project Manager
Project Manager
Senior Consultant
Consultant
Assistant Consultant
Associate
ICF International (2006-2009)
Associate
Analyst
Research Assistant

EDUCATION

University of Wisconsin - Madison
M.A., International Public Affairs, 2011

Colgate University

B.A., Chemistry, Colgate University, 2006

ARTICLES AND PUBLICATIONS

Nemet Gregory F., Braden Peter, Cubero Ed, Rimal Bickey. Four decades of multiyear targets in energy policy: aspirations or credible commitments? WIREs Energy Environ. 2014, 3: 522-533.

AVAILABLE UPON REQUEST

Extensive client and project references, and specific references.

SPONSOR	DATE	CASE/APPLICANT	DOCKET	SUBJECT
Arizona Corporation Commission				
Epcor Water Arizona Inc.	2020	Epcor Water Arizona Inc.	Docket No. WS-01303A- 20-0177	Embedded Cost of Service and Rate Design; Weather Normalization Adjustment
Epcor Water Arizona Inc.	2022	Epcor Water Arizona Inc.	Docket No. WS-01303A- 22-0236, et al.	Embedded Cost of Service and Rate Design
Connecticut Public Utilities Regulatory Authority				
The Connecticut Water Company	2021	The Connecticut Water Company	Docket No. 20- $12-30$	Allocated Cost of Service, Rate Design and Rate Consolidation
The United Illuminating Company	2022	The United Illuminating Company	Docket No. 22- 08-08	Allocated Cost of Service and Rate Design
Indiana Utility Regulatory Commission				
Northern Indiana Public Service Co.	2015	Northern Indiana Public Service Co.	Cause No. 44688	Cost Allocation
Northern Indiana Public Service Co.	2018	Northern Indiana Public Service Co.	$\begin{aligned} & \text { Cause No. } \\ & 45159 \end{aligned}$	Cost Allocation
Indianapolis Power \& Light Co.	2019	Indianapolis Power \& Light Co.	$\begin{aligned} & \text { Cause No. } \\ & 45211 \end{aligned}$	Cost Allocation as it relates to a Special Contract
Maine Public Utilities Commission				
Central Maine Power Company	2022	Central Main Power Company	$\begin{aligned} & \text { Docket No. } \\ & \text { 2022-00152 } \end{aligned}$	Embedded Cost of Service Study
Massachusetts Department of Public Utilities				
Boston Gas Company d/b/a National Grid	2020	Boston Gas Company d/b/a National Grid	DPU 20-120	Embedded Cost of Service and Rate Design
New York State Department of Public Service				
New York State Electric \& Gas Corporation, and Rochester Gas and Electric Corporation	2022	 Gas Corporation, and Rochester Gas and Electric Corporation	$\begin{aligned} & \text { Case 22-E- } \\ & 0317 \end{aligned}$	Embedded Cost of Service and Rate Design

Attributes of the Concentric Cost of Service Model

The Concentric Energy Advisors ("Concentric") allocated cost of service model (the "Model") contains many features that promote ease of use, efficiency and adaptability. These include:

- Information linked, not transferred - Rather than transferring or copying tables of data between worksheets, the Concentric model uses the linking capabilities of the software to directly reference information in one area that is used later in the cost of service process.
- Color Coding - Cells are shaded specific colors to indicate factor related inputs, data related inputs, data transferred from another worksheet, data checking and formulas that shouldn't normally be modified.
- Expandable customer class specification - The model is configured to allow up to 19 rate classes. Additional customer classes can be created with minor modifications to the model.
- Centralized inputs - Instead of having external input data located throughout the model, inputs have been centralized to three worksheets. This has been done to simplify data entry and to help prevent the user from forgetting to update information in a particular file or worksheet.
- Automated functionalization, classification, and allocation - The model automatically changes the allocation percentages whenever the user changes a functionalization, classification, or allocation factor of an account. There is no need to recode the allocation percentages or change cell formulas.
- Cost tracking - Costs can be tracked on a functional basis allowing for the calculation of functional revenue requirements and functional unit rates. Additional functional categories can be created with minor modifications to the model.
- User-friendly buttons for running macros - Instead of having to remember commands to run the macros to calculate the model and print various pages, the macros run off of clicking buttons in CONTROLS.

Concentric COS: Overview of Important Concepts

A. Worksheet overvien

The Model contains 14 worksheets as follows:

1. CONTROLS - Contains buttons to run the macros to calculate the model and print various worksheets.
2. INPUTS - Provides for the user to specify customer classes, functional factors and classification factors.
3. CLASSIFIERS - Contains areas for data input of external classifiers based on user specified classifications on the INPUTS worksheet.
4. EXTERNAL - Contains areas for data input of user specified external allocators.
5. INTERNAL - Provides for the specification of internal allocation factors.
6. ACCOUNTS - Contains sections for the user to specify plant and expense information by account for the test year. The user can assign functions, classification, n and allocation factors to the various cost elements in this sheet.
7. CLASS - Takes line item cost data and factor information from ACCOUNTS and spreads them out over classification factors.
8. FUNCALLOC - Takes cost data from CLASS and spreads it out to functional/allocation factor categories.
9. CLASS ALLOC - Takes the functional/allocated plant and expense totals and spreads them to customer classes.
10. ACCT DETAIL - Shows, by account, the allocation factor used and the resulting allocation of costs by rate class and cost classification.
11. ACCTFAC - Calculates the factors needed for ACCT DETAIL.
12. REV REQ - The REV REQ sheet calculates the income tax as needed for the SUMMARY. Taking specific lines of data from CLASSALLOC and INPUTS, it calculates income taxes based on the fully functionalized, classified, and allocated costs.
13. SUMMARY - Summarizes results of functionalization, classification and allocation of data into total cost of service, functional rate base, functional revenue requirements and unit costs at equalized rates of return.
14. ErrorCheck - Produce a report of error conditions by row from four worksheets.

AES Indiana Witness BR Attachment 1 AES Indiana 2023 Basic Rates Case

B. Explanation of functional/ allocation factors

One of the ways the revised model has achieved efficiencies while tracking functionalization is through the use of combined functional/allocation factors for grouping costs before spreading to customer classes.

In ACCOUNTS all cost items that are not assigned an internal factor are assigned a functional factor, classification factor, and allocation factor by which the cost will be distributed to the customer classes. Each cost item is carried into CLASS, which separates each cost into the assigned classification categories (e.g., 100% to DEM) and a macro creates the functional/allocation factor combinations for each cost item. These combinations are the name of the functional factor, an underscore, and the name of the allocation factor (e.g., F_PRODU_CP) assigned to that cost item. At the top of FUNCALLOC there are column headings which contain all of the possible functional/allocation factor combinations. Each cost item is then carried into FUNCALLOC and the portion of the costs associated with each functional/allocation factor is entered into the correct column. The rate base and expense totals in each functional/allocation factor column are pulled into CLASSALLOC, where the grouped costs are split into customer classes based on the allocation factor portion of the combined functional/allocator. The functionalization factor portion of the combined functional/allocation factors allows for subtotaling rate base and expenses by function that will be used throughout the rest of the model. Therefore, tracking grouped costs using the functional/allocators allows for calculating functionalized revenue requirements and unit costs.

All external and internal allocation factors must be assigned a name. In addition, each external allocation factor must be assigned a classification. Use of an unnamed allocation factor will cause an error condition which will be flagged in the orange "Check" column and reported on the ErrorCheck worksheet when the user runs the error check macro. Using an allocation factor in a different classification column on ACCOUNTS than that specified for the allocator on EXTERNAL may cause an error condition. To avoid any potential problems do not use allocator for more than one classification. Instead, create a second allocator with a different name. There are no problems that occur if an allocator on EXTERNAL or INTERNAL is not used. However, creating unnecessary allocation factors expands the size of the model.

Class Cost of Service Study

Summary of Results

Line No.	Description		System Total		Residential		Small C\&I		Large C\&I		Lighting
	(A)	(B)		(C)		(D)		(E)		(F)	
	Rate Base										
1	Plant in Service	\$	6,441,607,550	\$	3,165,451,758	\$	939,223,678	\$	2,186,089,396	\$	150,842,718
2	Accumulated Reserve		(3,407,234,585)		(1,655,825,854)		$(505,776,100)$		(1,122,803,444)		$(122,829,187)$
3	Other Rate Base Items		447,532,786		216,721,612		65,052,018		156,158,853		9,600,304
4	Total Rate Base	\$	3,481,905,751	\$	1,726,347,516	\$	498,499,595	\$	1,219,444,805	\$	37,613,835
	Revenues at Current Rates										
5	Retail Sales	\$	1,549,470,354	\$	669,367,989	\$	239,873,810	\$	622,556,777	\$	17,671,779
6	Other Revenue		25,440,327		16,281,991		2,714,724		6,174,433		269,179
7	Sales for Resale		28,612,056		12,590,714		4,116,118		11,837,492		67,732
8	Total Revenues	\$	1,603,522,737	\$	698,240,694	\$	246,704,651	\$	640,568,702	\$	18,008,690
	Expenses at Current Rates										
9	Operations \& Maintenance Expenses	\$	518,818,335	\$	266,117,779	\$	72,886,461	\$	163,568,287	\$	16,245,808
10	Depreciation Expense		277,353,828		137,219,058		41,044,126		96,606,200		2,484,445
11	Amortization Expense		54,256,114		24,833,614		7,839,059		21,057,765		525,676
12	Taxes Other Than Income Taxes		27,273,590		13,655,824		3,912,741		8,831,412		873,614
13	Fuel Expenses		512,591,028		202,546,097		69,403,163		237,570,930		3,070,839
14	Non-FAC Trackable Fuel Expenses		48,077,469		21,100,924		6,905,939		19,952,314		118,293
15	Income Taxes		14,111,753		$(1,751,340)$		5,763,475		11,204,489		$(1,104,871)$
16	Total Expenses - Current	\$	1,452,482,118	\$	663,721,956	\$	207,754,964	\$	558,791,397	\$	22,213,802
17	Current Operating Income		151,040,619		34,518,738		38,949,688		81,777,305		$(4,205,112)$
18	Return at Current Rates		4.34\%		2.00\%		7.81\%		6.71\%		-11.18\%
19	Relative Rate of Return		1.00		0.46		1.80		1.55		(2.58)
	Revenue Requirement at Equal Rates of Return at Current Rates										
20	Required Return		4.34\%		4.34\%		4.34\%		4.34\%		4.34\%
21	Required Operating Income	\$	151,040,619	\$	74,886,748	\$	21,624,275	\$	52,897,956	\$	1,631,640

Summary of Results

Summary of Results

Summary of Results

Summary of Results

Line No.	Description		System Total		Residential		Small C\&I		Large C\&I		Lighting
	(A)		(B)		(C)		(D)		(E)		(F)
	Total Revenue Requirement										
223	Demand	\$	986,865,711	\$	445,764,878	\$	142,117,666	\$	396,023,758	\$	2,959,409
224	Customer	\$	213,372,414	\$	155,978,369	\$	29,913,552	\$	7,109,284	\$	20,371,209
225	Energy	\$	24,935,353	\$	9,852,998	\$	3,376,166	\$	11,556,806	\$	149,383
226	Fuel	\$	512,591,028	\$	202,546,097	\$	69,403,163	\$	237,570,930	\$	3,070,839
227	Total	\$	1,737,764,507	\$	814,142,342	\$	244,810,547	\$	652,260,779	\$	26,550,839
228	Zero-Check		-		-		-		-		-
	Billing Determinants										
229	Demand		14,051,478		0		0		14,051,478		0
230	Customer Bills (Count *12)		6,341,275		5,606,853		667,874		54,558		11,990
231	Energy		13,039,005,303		5,125,131,351		1,756,145,046		6,080,025,837		77,703,069
232	Fuel		13,039,005,303		5,125,131,351		1,756,145,046		6,080,025,837		77,703,069
	Unit Costs										
233	Demand			\$	-	\$	-	\$	28.18	\$	-
234	Customer			\$	107.32	\$	257.58	\$	130.31	\$	1,945.84
235	Energy			\$	0.001922	\$	0.001922	\$	0.001901	\$	0.001922
236	Fuel	.		\$	0.039520	\$	0.039520	\$	0.039074	\$	0.039520
237	Demand Revenue			\$	-	\$	-	\$	396,023,758	\$	-
238	Customer Revenue				601,743,247		172,031,218		7,109,284		23,330,617
239	Energy Revenue				9,852,998		3,376,166		11,556,806		149,383
240	Fuel Revenue				202,546,097		69,403,163		237,570,930		3,070,839
241	Total Revenue				814,142,342		244,810,547		652,260,779		26,550,839
242	Zero-Check			\$	-	\$	-	\$	-	\$	-

Adjusted Revenue Requirement (Excluding Other Revenue and Off-System Sales Margin)

243	Ratio of Base Revenue to Total Revenue		95.92\%		95.57\%		96.45\%		96.05\%		98.78\%
	Total Revenue Requirement										
244	Demand	\$	946,361,687		426,006,870		137,064,285		380,367,403		2,923,128
245	Customer	\$	204,888,344		149,064,809		28,868,450		6,832,186		20,122,898
246	Energy	\$	23,919,427		9,416,276		3,256,425		11,099,172		147,554
247	Fuel	\$	512,591,028	\$	202,546,097	\$	69,403,163	\$	237,570,930	\$	3,070,839
248	Total	\$	1,687,760,486	\$	787,034,051	\$	238,592,324	\$	635,869,692	\$	26,264,419
249	Zero-Check		-		-		-		-		-

Summary of Results

Line No.	Description		System Total		Residential		Small C\&I		Large C\&I		Lighting
	(A)		(B)		(C)		(D)		(E)		(F)
	Billing Determinants										
250	Demand		14,051,478		0		0		14,051,478		0
251	Customer Bills (Count *12)		6,341,275		5,606,853		667,874		54,558		11,990
252	Energy		13,039,005,303		5,125,131,351		1,756,145,046		6,080,025,837		77,703,069
253	Fuel		13,039,005,303		5,125,131,351		1,756,145,046		6,080,025,837		77,703,069
	Unit Costs										
254	Demand	.		\$	-	\$	-	\$	27.07	\$	-
255	Customer	.		\$	102.57	\$	248.45	\$	125.23	\$	1,922.10
256	Energy			\$	0.001837	\$	0.001854	\$	0.001826	\$	0.001899
257	Fuel	.		\$	0.039520	\$	0.039520	\$	0.039074	\$	0.039520
258	Demand Revenue			\$	-	\$	-	\$	380,367,403	\$	-
259	Customer Revenue				575,071,679		165,932,736		6,832,186		23,046,026
260	Energy Revenue				9,416,276		3,256,425		11,099,172		147,554
261	Fuel Revenue				202,546,097		69,403,163		237,570,930		3,070,839
262	Total Revenue	.			787,034,051		238,592,324		635,869,692		26,264,419
263	Zero-Check	.		\$	-	\$	-	\$	-	\$	-
	Grid Facility										
264	Grid Facility - Revenue Requirement	\$	469,384,914		276,055,504		67,280,102		104,665,839		21,383,468
265	Grid Facility - Unit Costs	\$	74.02	\$	49.24	\$	100.74	\$	1,918.43	\$	1,783.44
	Mitigated Revenue Requirement (Excluding Other Revenue and Off-System Sales Margin)										
266	Ratio of Base Revenue to Total Revenue		97.12\%		96.67\%		97.46\%		97.49\%		98.92\%
267	Mitigated Amount		0		0		0		0		0
	Total Revenue Requirement										
268	Demand	\$	956,319,374		405,224,410		145,758,470		403,152,029		2,184,466
269	Customer	\$	194,930,657		141,792,782		31,249,100		7,254,046		14,634,728
270	Energy	\$	23,919,427	\$	9,416,276	\$	3,256,425	\$	11,099,172	\$	147,554
271	Fuel	\$	512,591,028	\$	202,546,097	\$	69,403,163	\$	237,570,930	\$	3,070,839
272	Total	\$	1,687,760,486	\$	758,979,565	\$	249,667,157	\$	659,076,177	\$	20,037,587
273	Zero-Check		-		$(28,054,487)$		11,074,834		23,206,485		$(6,226,833)$
	Billing Determinants										
274	Demand		14,051,478		0		0		14,051,478		0
275	Customer Bills (Count *12)		6,341,275		5,606,853		667,874		54,558		11,990
276	Energy		13,039,005,303		5,125,131,351		1,756,145,046		6,080,025,837		77,703,069
277	Fuel		13,039,005,303		5,125,131,351		1,756,145,046		6,080,025,837		77,703,069

Summary of Results

Line No.	Description	System Total		Residential		Small C\&I		Large C\&I		Lighting	
	(A)		(B)	(C)		(D)		(E)		(F)	
	Unit Costs										
278	Demand			\$	-	\$	-	\$	28.69	\$	-
279	Customer			\$	97.56	\$	265.03	\$	132.96	\$	1,402.77
280	Energy			\$	0.001837	\$	0.001854	\$	0.001826	\$	0.001899
281	Fuel			\$	0.039520	\$	0.039520	\$	0.039074	\$	0.039520
282	Demand Revenue			\$	-	\$	-	\$	403,152,029	\$	-
283	Customer Revenue				547,017,193		177,007,570		7,254,046		16,819,194
284	Energy Revenue				9,416,276		3,256,425		11,099,172		147,554
285	Fuel Revenue				202,546,097		69,403,163		237,570,930		3,070,839
286	Total Revenue				758,979,565		249,667,157		659,076,177		20,037,587
287	Zero-Check	.		\$	-	\$	-	\$	-	\$	-
Total Revenue Requirement (Excluding Fuel)											
288	Demand	\$	956,319,374	\$	405,224,410	\$	145,758,470	\$	403,152,029	\$	2,184,466
289	Customer	\$	194,930,657	\$	141,792,782	\$	31,249,100	\$	7,254,046	\$	14,634,728
290	Energy	\$	23,919,427	\$	9,416,276	\$	3,256,425	\$	11,099,172	\$	147,554
291	Total	\$	1,175,169,458	\$	556,433,468	\$	180,263,995	\$	421,505,247	\$	16,966,748
292	Percent of Total		100.00\%		47.35\%		15.34\%		35.87\%		1.44\%
293	Zero-Check		(0)		$(28,054,487)$		11,074,834		23,206,485		$(6,226,833)$

Class Cost of Service Study Summary of Results

Summary of Results

Summary of Results

Functional Revenue Requirement

Demand																	
189	Production	\$	711,021,342	\$	312,884,412	\$	69,319,431	\$	35,905	\$	32,174,016	\$	688,469	\$	18,490	\$	50,912
190	Transmission	\$	101,626,050	\$	44,720,468	\$	9,907,804	\$	5,132	\$	4,598,622	\$	98,403	\$	2,643	\$	7,277
191	Distribution	\$	51,596,047	\$	25,645,071	\$	4,537,243	\$	1,982	\$	2,730,448	\$	56,882	\$	1,639	\$	5,419
192	Distribution Primary	\$	104,397,019	\$	51,889,033	\$	9,180,444	\$	4,010	\$	5,524,660	\$	115,093	\$	3,317	\$	10,965
193	Distribution Secondary	\$	18,225,252	\$	10,625,895	\$	1,879,801	\$	821	\$	1,131,346	\$	23,569	\$	679	\$	2,245
194	Customer	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
195	Customer Service	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
196	Fuel Expenses	\$		\$		\$		\$		\$		\$		\$		\$	
197	Total	\$	986,865,711	\$	445,764,878	\$	94,824,723	\$	47,851	\$	46,159,092	\$	982,415	\$	26,768	\$	76,818
198	Zero-Check		-				-		-		-		-		-		-
Customer																	
199	Production	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
200	Transmission	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
201	Distribution	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$		\$	-
202	Distribution Primary	\$	66,515,141	\$	58,811,613	\$	6,437,970	\$	67,215	\$	476,904	\$	2,895	\$	10,689	\$	9,818
203	Distribution Secondary	\$	22,196,237	\$	19,633,320	\$	2,148,415	\$	22,439	\$	159,207	\$	966	\$	3,568	\$	3,278
204	Customer	\$	74,007,300	\$	40,603,550	\$	10,873,466	\$	46,405	\$	940,964	\$	7,004	\$	14,677	\$	14,356
205	Customer Service	\$	50,653,735	\$	36,929,886	\$	8,036,236	\$	12,573	\$	595,298	\$	3,614	\$	13,342	\$	12,255
206	Fuel Expenses	\$		\$		\$	-	\$		\$	-	\$		\$		\$	
207	Total	\$	213,372,414	\$	155,978,369	\$	27,496,087	\$	148,632	\$	2,172,372	\$	14,479	\$	42,276	\$	39,707
208	Zero-Check		-		-		-		-		-		-		-		-
Energy																	
209	Production	\$	24,935,353	\$	9,852,998	\$	2,392,290	\$	1,721	\$	949,735	\$	29,582	\$	749	\$	2,090
217	Total	\$	24,935,353	\$	9,852,998	\$	2,392,290	\$	1,721	\$	949,735	\$	29,582	\$	749	\$	2,090
218	Zero-Check	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Fuel																	
219	Fuel Expenses	\$	512,591,028	\$	202,546,097	\$	49,177,815	\$	35,374	\$	19,523,504	\$	608,115	\$	15,388	\$	42,967
220	Total	\$	512,591,028	\$	202,546,097	\$	49,177,815	\$	35,374	\$	19,523,504	\$	608,115	\$	15,388	\$	42,967
221	Zero-Check		-		-		-		-		-		-		-		-
222	Total		1,737,764,507		814,142,342		173,890,914		233,577		68,804,702		1,634,591		85,180		161,582
Total Revenue Requirement																	
223	Demand	\$	986,865,711	\$	445,764,878	\$	94,824,723	\$	47,851	\$	46,159,092	\$	982,415	S	26,768	\$	76,818
224	Customer	\$	213,372,414	\$	155,978,369	\$	27,496,087	\$	148,632	\$	2,172,372	\$	14,479	\$	42,276	\$	39,707
225	Energy	\$	24,935,353	\$	9,852,998	\$	2,392,290	\$	1,721	\$	949,735	\$	29,582		749	\$	2,090
226	Fuel	\$	512,591,028	\$	202,546,097	\$	49,177,815	\$	35,374	\$	19,523,504	\$	608,115	\$	15,388	\$	42,967
227	Total	\$	1,737,764,507	\$	814,142,342	\$	173,890,914	\$	233,577	\$	68,804,702	\$	1,634,591	\$	85,180	\$	161,582

Summary of Results

LineNo.	Description	System Total				Secondary Small			Municipal Device	Space Conditioning		Conditioning Schools		Water Heating Controlled		Water Heating Uncontrolled	
					RS		Ss		MD		SH		SE		CB		UW
	(A)		(B)		(C)		(D)		(E)		(F)		(G)		(H)		(I)
	Billing Determinants																
229	Demand		14,051,478		0		0		0		0		0		0		0
230	Customer Bills (Count *12)		6,341,275		5,606,853		613,769		6,408		45,466		276		1,019		936
231	Energy		13,039,005,303		5,125,131,351		1,244,372,341		895,098		494,013,569		15,387,457		389,372		1,087,210
232	Fuel		13,039,005,303		5,125,131,351		1,244,372,341		895,098		494,013,569		15,387,457		389,372		1,087,210
	Unit Costs																
233	Demand			\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
234	Customer	.		\$	107.32	\$	199.29	\$	30.66	\$	1,063.02	\$	3,611.94	\$	67.76	\$	124.49
235	Energy			\$	0.001922	\$	0.001922	\$	0.001922	\$	0.001922	\$	0.001922	\$	0.001922	\$	0.001922
236	Fuel	.		\$	0.039520	\$	0.039520	\$	0.039520	\$	0.039520	\$	0.039520	\$	0.039520	\$	0.039520
237	Demand Revenue	.		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	
238	Customer Revenue				601,743,247		122,320,810		196,482		48,331,464		996,894		69,043		116,525
239	Energy Revenue				9,852,998		2,392,290		1,721		949,735		29,582		749		2,090
240	Fuel Revenue				202,546,097		49,177,815		35,374		19,523,504		608,115		15,388		42,967
241	Total Revenue				814,142,342		173,890,914		233,577		68,804,702		1,634,591		85,180		161,582
242	Zero-Check			\$	-	\$	-	\$	-	\$	-	\$	-	\$,	\$	-
	Adjusted Revenue Requirement		Revenue and Of		tem Sales Marg												
243	Ratio of Base Revenue to Total Revenue		$\underline{\text { 95.92\% }}$		95.57\%		96.52\%		97.01\%		96.29\%		96.13\%		97.77\%		94.91\%
	Total Revenue Requirement																
244	Demand	\$	946,361,687	\$	426,006,870	\$	91,525,619	\$	46,417	\$	44,448,739	\$	944,432	\$	26,171	\$	72,907
245	Customer	S	204,888,344	\$	149,064,809	\$	26,539,454	\$	144,180	\$	2,091,878	\$	13,919	\$	41,333	\$	37,686
246	Energy	\$	23,919,427	\$	9,416,276	\$	2,309,058	\$	1,669	\$	914,544	\$	28,438	\$	732	+	1,984
247	Fuel	\$	512,591,028	\$	202,546,097	\$	49,177,815	\$	35,374	\$	19,523,504	\$	608,115	\$	15,388		42,967
249	Total	\$	1,687,760,486	\$	787,034,051	\$	169,551,947	\$	227,641	\$	66,978,664	\$	1,594,905	\$	83,624	-	155,543
	Zero-Check				-		-		,		,				-		
	Billing Determinants																
250	Demand		14,051,478		0		0		0		0		0		0		0
251	Customer Bills (Count *12)		6,341,275		5,606,853		613,769		6,408		45,466		276		1,019		936
252	Energy		13,039,005,303		5,125,131,351		1,244,372,341		895,098		494,013,569		15,387,457		389,372		1,087,210
253	Fuel		13,039,005,303		5,125,131,351		1,244,372,341		895,098		494,013,569		15,387,457		389,372		1,087,210
	Unit Costs																
254	Demand	.		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
255	Customer	.		\$	102.57	\$	192.36	\$	29.74	\$	1,023.64	\$	3,472.29	\$	66.25	\$	118.15
256	Energy	.		\$	0.001837	\$	0.001856	\$	0.001865	\$	0.001851	\$	0.001848	\$	0.001880	\$	0.001825
257	Fuel	.		\$	0.039520	\$	0.039520	\$	0.039520	\$	0.039520	\$	0.039520	s	0.039520	\$	0.039520
258	Demand Revenue	.		\$	-	\$	-	\$,	\$	-	\$	-	\$	-	\$	-
259	Customer Revenue	.			575,071,679		118,065,074		190,598		46,540,617		958,351		67,504		110,592
260	Energy Revenue	.			9,416,276		2,309,058		1,669		914,544		28,438		732		1,984
261	Fuel Revenue	.			202,546,097		49,177,815		35,374		19,523,504		608,115		15,388		42,967
262	Total Revenue	.			787,034,051		169,551,947		227,641		66,978,664		1,594,905		83,624		155,543
263	Zero-Check	.		\$	7,034,051	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
	Grid Facility																
264	Grid Facility - Revenue Requirement	\$	469,384,914	\$	276,055,504	\$	51,157,376	\$	155,768	\$	15,558,758	\$	296,500	\$	49,427	\$	62,273
265	Grid Facility - Unit Costs	\$	74.02	\$	49.24	\$	83.35	\$	24.31	\$	342.21	\$	1,074.28	\$	48.51	\$	66.53

Summary of Results

Mitigated Revenue Requirement (Excluding Other Revenue and Off-System Sales Margin)
266

Total Revenue Requirement
Demand
Energy
Fuel
Zero-Check

Billing Determinants
Demand
Customer Bills (Count *12)
Energy
Fuel
Unit costs
Demand
Customer
Energy
Fuel
Demand Revenue
Customer Revenue
Energy Revenue
Fuel Revenue
Total Revenue
Zero-Check

Class Cost of Service Study Summary of Results

Line No.	Description	System Total		Industrial		Industrial		Process Heating		Protective Lighting		Municipal Lighting	
					SL		PL-HL		PH		APL		MU1
	(A)		(B)		(J)		(K)		(L)		(M)		(N)
	Rate Base												
1	Plant in Service	\$	6,441,607,550	\$	1,281,747,470	\$	893,349,661	\$	10,992,265	\$	64,568,146	\$	86,274,572
2	Accumulated Reserve		(3,407, 234,585)		(658,929,084)		$(458,194,665)$		$(5,679,695)$		(55,914,260)		(66,914,927)
3	Other Rate Base Items		447,532,786		90,876,611		64,506,617		775,625		4,084,789		5,515,514
4	Total Rate Base	\$	3,481,905,751	\$	713,694,997	\$	499,661,614	\$	6,088,195	\$	12,738,675	\$	24,875,160
	Revenues at Current Rates												
5	Retail Sales	\$	1,549,470,354	\$	357,787,560	\$	261,996,771	\$	2,772,447	\$	8,888,080		8,783,699
6	Other Revenue		25,440,327		3,600,063		2,544,834		29,536		118,723		150,456
7	Off-System Slaes Margin		28,612,056		6,835,562		4,952,308		49,622		38,474		29,258
8	Total Revenues	\$	1,603,522,737	\$	368,223,185	\$	269,493,912	\$	2,851,605	\$	9,045,278	\$	8,963,412
	Expenses at Current Rates												
9	Operations \& Maintenance Expenses	\$	518,818,335	\$	97,226,873	\$	65,529,861	\$	811,553	\$	7,787,335	\$	8,458,473
10	Depreciation Expense		277,353,828		56,465,390		39,695,685		445,124		1,013,583		1,470,861
11	Amortization Expense		54,256,114		12,216,866		8,747,386		93,513		237,900		287,776
12	Taxes Other Than Income Taxes		27,273,590		5,222,729		3,564,148		44,535		404,112		469,502
13	Fuel Expenses		512,591,028		128,504,645		108,037,241		1,029,044		1,725,711		1,345,128
14	Non-FAC Trackable Fuel Expenses		48,077,469		11,500,527		8,368,068		83,719		67,150		51,143
15	Income Taxes		14,111,753		7,030,440		4,139,403		34,646		$(443,691)$		(661,180)
16	Total Expenses - Current	\$	1,452,482,118	\$	318,167,470	\$	238,081,792	\$	2,542,135	\$	10,792,099	\$	11,421,703
17	Current Operating Income		151,040,619		50,055,715		31,412,120		309,470		$(1,746,821)$		$(2,458,291)$
18	Return at Current Rates		4.34\%		7.01\%		6.29\%		5.08\%		-13.71\%		-9.88\%
19	Relative Rate of Return		1.00		1.62		1.45		1.17		(3.16)		(2.28)
	Revenue Requirement at Equal Rates of Return at Current Rates												
20	Required Return		4.34\%		4.34\%		4.34\%		4.34\%		4.34\%		4.34\%
21	Required Operating Income	\$	151,040,619	\$	30,959,176	\$	21,674,682	\$	264,098	\$	552,587	\$	1,079,053
	Expenses at Required Return												
22	Operations \& Maintenance Expenses	\$	518,818,335	\$	97,226,873	\$	65,529,861	\$	811,553	\$	7,787,335	\$	8,458,473
23	Depreciation Expense		277,353,828		56,465,390		39,695,685		445,124		1,013,583		1,470,861
24	Amortization Expense		54,256,114		12,216,866		8,747,386		93,513		237,900		287,776
25	Taxes Other than Income		27,273,590		5,222,729		3,564,148		44,535		404,112		469,502
26	Fuel Expenses		512,591,028		128,504,645		108,037,241		1,029,044		1,725,711		1,345,128
27	Non-FAC Trackable Fuel Expenses		48,077,469		11,500,527		8,368,068		83,719		67,150		51,143
28	Income Taxes		14,111,753		2,892,522		2,025,069		24,675		51,628		100,816
29	Total Expense - Required	\$	1,452,482,118	\$	314,029,552	\$	235,967,458	\$	2,532,163	\$	11,287,419	\$	12,183,699
30	Total Revenue Requirement at Equal Return	\$	1,603,522,737	\$	344,988,728	\$	257,642,140	\$	2,796,261	\$	11,840,006	\$	13,262,752
31	Current Subsidy	\$	-	\$	23,234,457	\$	11,851,772	\$	55,344	\$	$(2,794,728)$		$(4,299,340)$

Summary of Results

Summary of Results

Line			Industrial	Industrial	Process Heating	Protective Lighting	Municipal Lighting
No.	Description	System Total	SL	PL-HL	PH	APL	MU1

Functional Revenue Requirement

189	Pemaduction
190	Transmission
191	Distribution
192	Distribution Primary
193	Distribution Secondary
194	Customer
195	Customer Service
196	Fuel Expenses
197	Total
198	Zero-Check
	Customer
199	Production
200	Transmission
201	Distribution
202	Distribution Primary
203	Distribution Secondary
204	Customer
205	Customer Service
206	Fuel Expenses
207	Total
208	Zero-Check
	Energy
209	Production
217	Total
218	Zero-Check
	Fuel
219	Fuel Expenses
220	Total
221	Zero-Check
	Total
222	
	Total Revenue Requirement
223	Demand
224	Customer
225	Energy
226	Fuel
227	Total
228	Zero-Check

Summary of Results

Lin	Description	Industrial				Industrial		Process Heating		Protective Lighting		Municipal Lighting	
No.			System Total		SL		PL-HL		PH		APL		MU1
	(A)		(B)		(J)		(K)		(L)		(M)		(N$)$
Billing Determinants													
229	Demand		14,051,478		8,673,249		5,378,229		0		0		0
230	Customer Bills (Count *12)		6,341,275		52,422		1,884		252		0		11,990
231	Energy		13,039,005,303		3,251,621,209		2,802,366,178		26,038,450		43,666,570		34,036,499
232	Fuel		13,039,005,303		3,251,621,209		2,802,366,178		26,038,450		43,666,570		34,036,499
	Unit Costs												
233	Demand			\$	26.61	\$	30.36	\$	-	\$	-	\$	-
234	Customer			\$	129.81	\$	143.52	\$	-		\#DIV/0!	\$	1,068.39
235	Energy			\$	0.001922	\$	0.001875	\$	0.076849	\$	0.001922	\$	0.001922
236	Fuel	.		\$	0.039520	\$	0.038552	\$	0.039520	\$	0.039520	\$	0.039520
237	Demand Revenue			\$	230,838,108	\$	163,268,691	\$	-	\$	-	\$	-
238	Customer Revenue				6,804,877		270,385		-		\#DIV/0!		12,809,984
239	Energy Revenue				6,251,199		5,255,548		2,001,040		83,948		65,435
240	Fuel Revenue				128,504,645		108,037,241		1,029,044		1,725,711		1,345,128
241	Total Revenue				372,398,829		276,831,865		3,030,085		\#DIV/0!		14,220,547
242	Zero-Check			\$	-	\$	-	\$	-		\#DIV/0!	\$	-
	Adjusted Revenue Requirement (Excluding Other Revenue and O												
243	$\underline{\text { Ratio of Base Revenue to Total Revenue }}$	95.92\%			96.11\%		95.96\%		96.41\%		98.76\%		98.80\%
	Total Revenue Requirement												
244	Demand	\$	946,361,687	\$	221,850,502	\$	156,668,808	\$	1,848,094	\$	1,742,745	\$	1,180,383
245	Customer	\$	204,888,344	\$	6,539,931	\$	259,455	\$	32,800	\$	8,647,128		11,475,770
246	Energy	\$	23,919,427	\$	6,007,811	\$	5,043,101	\$	48,260	\$	82,905		64,649
247	Fuel	\$	512,591,028	\$	128,504,645	\$	108,037,241	\$	1,029,044	\$	1,725,711	\$	1,345,128
248	Total	\$	1,687,760,486	\$	362,902,889	\$	270,008,605	\$	2,958,198	\$	12,198,489	\$	14,065,930
249	Zero-Check		-		-		-		-				
	Billing Determinants												
250	Demand		14,051,478		8,673,249		5,378,229		0		0		0
251	Customer Bills (Count *12)		6,341,275		52,422		1,884		252		0		11,990
252	Energy		13,039,005,303		3,251,621,209		2,802,366,178		26,038,450		43,666,570		34,036,499
253	Fuel		13,039,005,303		3,251,621,209		2,802,366,178		26,038,450		43,666,570		34,036,499
	Unit Costs												
254	Demand			\$	25.58	\$	29.13	\$	-	\$	-	\$	-
255	Customer			\$	124.76	\$	137.72	\$	7,463.86		\#DIV/0!	\$	1,055.56
256	Energy			\$	0.001848	\$	0.001800	\$	0.074089	\$	0.001899	\$	0.001899
257	Fuel	.		\$	0.039520	\$	0.038552	\$	0.039520	\$	0.039520	\$	0.039520
258	Demand Revenue			\$	221,850,502	\$	156,668,808	\$	-	\$	-	\$	-
259	Customer Revenue	.			6,539,931		259,455		1,880,893		\#DIV/0!		12,656,153
260	Energy Revenue	.			6,007,811		5,043,101		1,929,154		82,905		64,649
261	Fuel Revenue	.			128,504,645		108,037,241		1,029,044		1,725,711		1,345,128
262	Total Revenue	.			362,902,889		270,008,605		4,839,091		\#DIV/0!		14,065,930
263	Zero-Check	.		\$	-	\$	-	\$	1,880,893		\#DIV/O!	\$	-
	Grid Facility												
264	Grid Facility - Revenue Requirement	\$	469,384,914	\$	65,137,600	\$	38,836,174	\$	692,065	\$	9,445,652	\$	11,937,817
265	Grid Facility - Unit Costs	\$	74.02	\$	1,242.56	\$	20,613.68	\$	2,746.29		\#DIV/0!	\$	995.65

Summary of Results

Line				Industrial			Industrial	Process Heating		Protective Lighting		Municipal Lighting	
No.	Description		System Total		SL		PL-HL		PH		APL		MU1
	(A)		(B)		(J)		(K)		(L)		(M)		(N)
	Mitigated Revenue Requirement (Excluding Other Revenue and O												
266	Ratio of Unmitigated Revenue to Mitigated Revenue		100.00\%		106.21\%		105.71\%		103.27\%		79.59\%		67.55\%
267	$\underline{\text { Mitigated Amount }}$		(0)		14,177,177		8,967,869		61,439		(2,120,518)		$\underline{(4,106,315)}$
	Total Revenue Requirement												
268	Demand	\$	956,319,374	\$	235,621,717	\$	165,621,850	\$	1,908,462	\$	1,387,060	\$	797,406
269	Customer	\$	194,930,657	\$	6,945,893	\$	274,282	\$	33,871	\$	6,882,295	\$	7,752,433
270	Energy	\$	23,919,427	\$	6,007,811	\$	5,043,101	\$	48,260	\$	82,905	\$	64,649
271	Fuel	\$	512,591,028	\$	128,504,645	\$	108,037,241	\$	1,029,044	\$	1,725,711	\$	1,345,128
272	Total	\$	1,687,760,486	\$	377,080,066	\$	278,976,474	\$	3,019,637	\$	10,077,971	\$	9,959,616
273	Zero-Check		-		-		-		-		-		-
	Billing Determinants												
274	Demand		14,051,478		8,673,249		5,378,229		0		0		0
275	Customer Bills (Count *12)		6,341,275		52,422		1,884		252		0		11,990
276	Energy		13,039,005,303		3,251,621,209		2,802,366,178		26,038,450		43,666,570		34,036,499
277	Fuel		13,039,005,303		3,251,621,209		2,802,366,178		26,038,450		43,666,570		34,036,499
	Unit Costs												
278	Demand	.		\$	27.17	\$	30.79	\$	-	\$	-	\$	-
279	Customer	.		\$	132.50	\$	145.59	\$	7,707.67		\#DIV/0!	\$	713.08
280	Energy			\$	0.001848	\$	0.001800	\$	0.076448	\$	0.001899	\$	0.001899
281	Fuel	.		\$	0.039520	\$	0.038552	\$	0.039520	\$	0.039520	\$	0.039520
282	Demand Revenue			\$	235,621,717	\$	165,621,850	\$	-	\$	-	\$	-
283	Customer Revenue	.			6,945,893		274,282		1,942,333		\#DIV/0!		8,549,838
284	Energy Revenue				6,007,811		5,043,101		1,990,593		82,905		64,649
285	Fuel Revenue	\$	-		128,504,645		108,037,241		1,029,044		1,725,711		1,345,128
286	Total Revenue				377,080,066		278,976,474		4,961,970		\#DIV/0!		9,959,616
287	Zero-Check	.		\$	-	\$	-	\$	1,942,333		\#DIV/0!	\$	-
	Total Revenue Requirement (Excluding Fuel)												
288	Demand	\$	956,319,374	\$	235,621,717	\$	165,621,850	\$	1,908,462	\$	1,387,060	\$	797,406
289	Customer	\$	194,930,657	\$	6,945,893	\$	274,282	\$	33,871	+	6,882,295	\$	7,752,433
290	Energy	\$	23,919,427	\$	6,007,811	\$	5,043,101	\$	48,260	\$	82,905	\$	64,649
291	Total	\$	1,175,169,458	\$	248,575,421	\$	170,939,233	\$	1,990,593	\$	8,352,261	\$	8,614,487
292	Percent of Total		100.00\%		21.15\%		14.55\%		0.17\%		0.71\%		0.73\%
293	Zero-Check		-		-		-		-		-		-

		Current Revenue		Proposed Revenue		Acoss Deficiency at 7.22\% ROR		Acoss Rate Increase	Current Subsidy at 4.34% ROR	
System Total		\$	1,549,470,354	\$	1,687,760,486	\$	$(138,290,132)$	8.92\%		
Residential	RS	\$	669,367,989	\$	787,034,051	\$	$(117,666,063)$	17.58\%	\$	$(49,116,033)$
Secondary Small [1]	Ss	\$	177,532,838	\$	169,779,588	\$	7,753,251	-4.37\%	\$	21,583,051
Space Conditioning	SH	\$	60,392,654	\$	66,978,664	\$	$(6,586,010)$	10.91\%	\$	$(770,844)$
Space Conditioning - Schools	SE	\$	1,772,196	\$	1,594,905	\$	177,291	-10.00\%	\$	299,993
Water Heating - Controlled	CB	\$	48,109	\$	83,624	\$	$(35,515)$	73.82\%	\$	$(28,864)$
Water Heating - Uncontrolled	Uw	\$	128,012	\$	155,543	\$	$(27,531)$	21.51\%	\$	$(14,809)$
Secondary Large	SL	\$	357,787,560	\$	362,902,889	\$	$(5,115,330)$	1.43\%	\$	23,234,457
Primary Large	PL-HL	\$	261,996,771	\$	270,008,605	\$	$(8,011,834)$	3.06\%	\$	11,851,772
Process Heating	PH	\$	2,772,447	\$	2,958,198	\$	$(185,751)$	6.70\%	\$	55,344
Automatic Protective Lighting	APL	\$	8,888,080	\$	12,198,489	\$	$(3,310,409)$	37.25\%	\$	$(2,794,728)$
Municipal Lighting	MU1	\$	8,783,699	\$	14,065,930	\$	$(5,282,231)$	60.14\%	\$	$(4,299,340)$

Notes:
[1] Includes new rate code MD (Small Metered Device)
Increase Capped at 1.5 times System Increase

	Current Revenue		Proposed Revenue		Acoss Deficiency at 7.22\% ROR		ACOSS Rate Increase	Current Subsidy at $4.34 \% \mathrm{ROR}$	
System Total	\$	1,549,470,354	\$	1,687,760,486	\$	$(138,290,132)$	8.92\%		
Residential	\$	669,367,989	\$	787,034,051	\$	$(117,666,063)$	17.58\%	\$	$(49,116,033)$
Small C\&I	\$	239,873,810	\$	238,592,324	\$	1,281,486	-0.53\%	\$	21,068,528
Large C\&I	\$	622,556,777	\$	635,869,692	\$	(13,312,915)	2.14\%	\$	35,141,573
Lighting	\$	17,671,779	\$	26,264,419	\$	(8,592,640)	48.62\%	\$	$(7,094,068)$

Notes:
Increase Capped at 1.5 times System Increase

AES Indiana

Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

			Primary Service (Large)	High Load Factor (Primary Distribution)	High Load Factor (Sub transmission)	High Load Factor (Transmission)
Line No.	Description	Industrial Total	PL	HLI	HL2	HL3
	(A)	(B)	(C)	(D)	(E)	(F)

Functional Revenue Requirement

Allocation of the Revenue Requirement - Demand Component

Production

Allocated Production Demand Cost	$\$$	$123,066,876$	$\$$	$54,258,437$	$\$$	$51,404,576$	$\$$	$7,838,584$

Transmission										
Allocated Transmission Demand Cost	17,589,909		\$	7,755,141	\$	7,347,239	\$	1,120,366	\$	1,367,162
Demand Billing Determinants		5,378,229		2,361,422		2,237,217		350,806		428,784
Loss Factor Adjustment				1.058		1.058		1.029		1.027
Adjusted Demand Billing Determinants		5,666,151		2,498,125		2,366,730		360,898		440,397
Cost Allocation Factors		100.00\%		44.09\%		41.77\%		6.37\%		7.77\%
Transmission Demand Charge	\$	3.27	\$	3.28	\$	3.28	\$	3.19	\$	3.19
Total Production and Transmission	\$	140,656,784	\$	62,013,578	\$	58,751,816	\$	8,958,950	\$	10,932,441
Demand Billing Determinants		5,378,229		2,361,422		2,237,217		350,806		428,784
$\underline{\text { Production and Transmission Demand Charge }}$	\$	26.15	\$	26.26	\$	26.26	\$	25.54	\$	25.50

Distribution and Distribution Primary

Allocated Station Equipment	$\$$	$7,479,082$ $15,132,824$
Allocated Primary Distribution Demand Cost	$\$$	$22,611,906$
Total Distribution		

Demand Billing Determinants	5,378,229		2,361,422		2,237,217		350,806		428,784	
Loss Factor Adjustment			1.058		1.058		-			-
Adjusted Demand Billing Determinants	4,864,855		2,498,125		2,366,730					-
Cost Allocation Factors	100.00\%		51.35\%		48.65\%		0.00\%			0.00\%
Total Distribution and Distribution Primary	\$	22,611,906	\$	11,611,317	\$	11,000,590	\$	-	\$	-
Demand Billing Determinants		5,378,229		2,361,422		2,237,217		350,806		428,784
Distribution Demand Charge	\$	4.20	\$	4.92	\$	4.92	\$	-	\$	-
Total Revenue Requirement - Demand Component	\$	163,268,691	\$	73,624,894	\$	69,752,405	\$	8,958,950	\$	10,932,441
Demand Billing Determinants		5,378,229		2,361,422		2,237,217		350,806		428,784
Total Demand Charge	\$	30.36	\$	31.18	\$	31.18	\$	25.54	\$	25.50

Allocation of the Revenue Requirement - Customer Component

Distribution Primary

Allocated Distribution Primary Cost	\$	19,762								
Number of Customers		151								
Distribution Primary Cost Per Customer	\$	131								
Number of Customers by Rate Class	151			125		26		-		-
Total Distribution Primary Cost	\$	19,762	\$	16,359	\$	3,403	\$		\$	

39 Meter Costs

AES Indiana

Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

AES Indiana
Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

				Primary Service (Large)		High LoadFactor (PrimaryDistribution)		High Load Factor (Sub transmission)		High Load Factor (Transmission)	
Line No.	Description	Industrial Total			PL		HLI		HL2		HL3
	(A)		(B)		(C)		(D)		(E)		(F)
86 Adjusted Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)	Adjusted Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)										
87	Other Revenue \& Sales for Resale										
88	Total Base Revenue Excl. Fuel		161,971,364								
89	Total Revenue Excl. Fuel		168,794,624								
90	Ratio of Base Revenue to Total Revenue		95.96\%								
91	Total Functional Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)										
92	Demand	\$	156,668,808	\$	70,648,722	\$	66,932,773	\$	8,596,799	\$	10,490,514
93	Customer		259,455		199,781		46,986		8,535		4,153
94	Energy		5,043,101		2,010,651		2,279,587		314,020		438,843
95	Fuel		108,037,241		43,073,726		48,835,087		6,727,182		9,401,247
96	Total Revenue Requirement Excl. Other Revenue	\$	270,008,605	\$	115,932,880	\$	118,094,432	\$	15,646,536	\$	20,334,757
97	Check		TRUE								
98	Billing Determinants										
99	Demand		5,378,229		2,361,422		2,237,217		350,806		428,784
100	Customer Bills		1,896		1,500		312		60		24
101	Energy		2,736,049,378		1,087,387,867		1,232,832,303		173,222,008		242,607,200
102	Fuel		2,736,049,378		1,087,387,867		1,232,832,303		173,222,008		242,607,200
103	Unit Costs										
104	Demand	\$	29.13	\$	29.92	\$	29.92	\$	24.51	\$	24.47
105	Customer	\$	136.84	\$	133.19	\$	150.60	\$	142.25	\$	173.04
106	Energy	\$	0.001843	\$	0.001849	\$	0.001849	\$	0.001813	\$	0.001809
107	Fuel	\$	0.039487	\$	0.039612	\$	0.039612	\$	0.038836	\$	0.038751

Mitigated Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)

Mitigation

Total Mitigated Functional Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)

Demand	\$	165,621,850	\$	74,686,035	\$	70,757,733	\$	9,088,074	\$	11,090,008
Customer		274,282		211,198		49,671		9,023		4,390
Energy		5,043,101		2,010,651		2,279,587		314,020		438,843
Fuel		108,037,241		43,073,726		48,835,087		6,727,182		9,401,247
Total Mitigated Revenue Requirement Excl. Other Revenue	\$	278,976,474	\$	119,981,609	\$	121,922,078	\$	16,138,298	\$	20,934,489
Check		TRUE								
Billing Determinants										
Demand		5,378,229		2,361,422		2,237,217		350,806		428,784
Customer Bills		1,896		1,500		312		60		24
Energy		2,736,049,378		1,087,387,867		1,232,832,303		173,222,008		242,607,200
Fuel		2,736,049,378		1,087,387,867		1,232,832,303		173,222,008		242,607,200
Unit Costs										
Demand	\$	30.79	\$	31.63	\$	31.63	\$	25.91	\$	25.86
Customer	\$	144.66	\$	140.80	\$	159.20	\$	150.38	\$	182.93
Energy	\$	0.001843	\$	0.001849	\$	0.001849	\$	0.001813	\$	0.001809
Fuel	\$	0.039487	\$	0.039612	\$	0.039612	\$	0.038836	\$	0.038751

AES Indiana

Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

Line No.	Description		dustrial Total	Primary Service (Large)		High Load Factor (Primary Distribution)		High Load Factor (Sub transmission)		High LoadFactor(Transmission)	
	(A)		(B)		(C)		(D)		(E)		(F)
134	Comparison of Current and Proposed Pro Forma Revenues										
135	Total Current Revenue	\$	261,996,771								
136	Large Commercial Sales Revenue	\$	261,875,526	\$	108,385,986	\$	116,091,486	\$	16,730,719	\$	20,667,336
137	Cost Allocation Factors		100.00\%		41.39\%		44.33\%		6.39\%		7.89\%
138	Total Current Revenue Allocated	\$	261,996,771	\$	108,436,167	\$	116,145,235	\$	16,738,465	\$	20,676,905
139	Unmitigated Proposed Revenue	\$	270,008,605	\$	115,932,880	\$	118,094,432	\$	15,646,536	\$	20,334,757
140	Mitigated Proposed Revenue	\$	278,976,474	\$	119,981,609	\$	121,922,078	\$	16,138,298	\$	20,934,489
141	Increase: Unmitigated - Current (\$)	\$	8,011,834	\$	7,496,713	\$	1,949,198	\$	$(1,091,929)$	\$	$(342,147)$
142	Increase: Mitigated - Current (\$)	\$	16,979,703	\$	11,545,443	\$	5,776,843	\$	$(600,166)$	\$	257,584
143	Increase: Unmitigated - Current (\%)		3.06\%		6.91\%		1.68\%		-6.52\%		-1.65\%
144	Increase: Mitigated - Current (\%)		6.48\%		10.65\%		4.97\%		-3.59\%		1.25\%
145	Industrial Rates Additional Mitigation										
146	No Rate Reduction		600,166		-		-		600,166		-
147	Mitigate Rates with Increase		600,166		273,967		278,398		-		47,802
148	Mitigation		-		$(273,967)$		$(278,398)$		600,166		$(47,802)$
149	Final Mitigated Proposed Revenues	\$	278,976,474	\$	119,707,642	\$	121,643,680	\$	16,738,465	\$	20,886,687
150	Increase: Mitigated - Current (\%)		6.48\%		10.39\%		4.73\%		0.00\%		1.01\%
151	Total Mitigated Functional Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)										
152	Demand	\$	165,622,241	\$	74,412,841	\$	70,479,531	\$	9,687,645	\$	11,042,225
153	Customer		273,891		210,425		49,476		9,618		4,371
154	Energy		5,043,101		2,010,651		2,279,587		314,020		438,843
155	Fuel		108,037,241		43,073,726		48,835,087		6,727,182		9,401,247
156	Total Mitigated Revenue Requirement Excl. Other Revenue	\$	278,976,474	\$	119,707,642	\$	121,643,680	\$	16,738,465	\$	20,886,687
157	Check		TRUE								
158	Billing Determinants										
159	Demand		5,378,229		2,361,422		2,237,217		350,806		428,784
160	Customer Bills		1,896		1,500		312		60		24
161	Energy		2,736,049,378		1,087,387,867		1,232,832,303		173,222,008		242,607,200
162	Fuel		2,736,049,378		1,087,387,867		1,232,832,303		173,222,008		242,607,200
163	Unit Costs										
164	Demand	\$	30.79	\$	31.51	\$	31.50	\$	27.62	\$	25.75
165	Customer	\$	144.46	\$	140.28	\$	158.58	\$	160.30	\$	182.15
166	Energy	\$	0.001843	\$	0.001849	\$	0.001849	\$	0.001813	\$	0.001809
167	Fuel	\$	0.039487	\$	0.039612	\$	0.039612	\$	0.038836	\$	0.038751

AES Indiana

Comparison of Current and Proposed Pro Forma Revenues

Line No.	Rate Class	Rate Code	Current Revenue [1]		Unmitigated Proposed Revenue [1]		Mitigated Proposed Revenue [1]		Increase: Unmitigated Current		Increase: Mitigated [2]		Increase: Mitigated [3]
	(A)	(B)		(C)		(D)		(E)		(F)		(G)	(H)
1	Residential Service (Rate RS) - Codes RS, RC, RH	RS	\$	669,367,989	\$	787,034,051	\$	758,979,565	\$	117,666,063	\$	89,611,576	13.39\%
2	Secondary Service (Small) (Rate SS)	SS		177,168,155		169,551,947		179,935,305		$(7,616,209)$		2,767,150	1.56\%
3	Municipal Device (Rate MD)	MD		364,683		227,641		284,552		$(137,042)$		$(80,132)$	-21.97\%
4	Electric Space Conditioning-Secondary Service (Rate SH)	SH		60,392,654		66,978,664		67,475,406		6,586,010		7,082,751	11.73\%
5	Electric Space Conditioning-Schools (Rate SE)	SE		1,772,196		1,594,905		1,772,196		$(177,291)$		-	0.00\%
6	Water Heating-Controlled Service (Rate CB/CW)	CB		48,109		83,624		54,550		35,515		6,441	13.39\%
7	Water Heating-Uncontrolled Service (Rate UW)	UW		128,012		155,543		145,150		27,531		17,138	13.39\%
8	Secondary Service (Large) - (Rate SL)	SL		357,787,560		362,902,889		377,080,066		5,115,330		19,292,506	5.39\%
9	Primary Service (Large) - (Rate PL)	PL		108,436,167		115,932,880		119,707,642		7,496,713		11,271,476	10.39\%
10	Process Heating (Rate PH)	PH		2,772,447		2,958,198		3,019,637		185,751		247,191	8.92\%
11	High Load Factor (Rate HL-1) (Primary Distribution)	HLI		116,145,235		118,094,432		121,643,680		1,949,198		5,498,445	4.73\%
12	High Load Factor (Rate HL-2) (Sub transmission)	HL2		16,738,465		15,646,536		16,738,465		$(1,091,929)$		-	0.00\%
13	High Load Factor (Rate HL-3) (Transmission)	HL3		20,676,905		20,334,757		20,886,687		$(342,147)$		209,782	1.01\%
15	Automatic Protective Lighting (APL)	APL		8,888,080		12,198,489		10,077,971		3,310,409		1,189,891	13.39\%
16	Municipal Lighting (MU)	MUI	\$	8,783,699	\$	14,065,930	\$	9,959,616	\$	5,282,231	\$	1,175,917	13.39\%
17	TOTAL SYSTEM		\$	1,549,470,354	\$	1,687,760,486	\$	1,687,760,486	\$	138,290,132	\$	138,290,132	8.92\%

[1] From ACOSS.
[2] Col. (E) - (C) + (G)

AES Indiana

Comparison of Current and Proposed Pro Forma Revenues

Line No.		Rate Class		Current Revenue [1]			Unmitigated Proposed Revenue [1]		Mitigated Proposed Revenue [1]		Increase: Unmitigated Current		Increase: Mitigated [2]
		(A)	(B)		(C)		(D)		(E)		(F)		(H)
1	Residential				669,367,989		787,034,051		758,979,565	\$	117,666,063	\$	89,611,576
2	Small C\&l				239,873,810		238,592,324		249,667,157	\$	$(1,281,486)$	\$	9,793,348
3	Large C\&l				622,556,777		635,869,692		659,076,177	\$	13,312,915	\$	36,519,400
4	Lighting				17,671,779		26,264,419		20,037,587	\$	8,592,640	\$	2,365,808
5	TOTAL SYSTEM			\$	1,549,470,354	\$	1,687,760,486	\$	1,687,760,486	\$	138,290,132	\$	138,290,132

AES Indiana
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022
Residential Service (RS, RC, RH, CR/CW)

AES Indiana
Pro Forma Revenue at Proposed Rates
est Year Ended December 31, 2022 Residential Service (RS, RC,RH, CR/CW)

Solved for Yellow Highlighted Cells Targeted Difference at Zero

Line
No.

Annualize
\longrightarrow

Billed kwh											
First 500 kWh	2,424,883,300	\$	0.104854	\$	254,258,713	\$		\$		\$	254,258,713
Over 500 kWh	1,791,614,708	\$	0.089389	\$	160,150,647	\$		\$		\$	160,150,647
Over 1,000	908,577,588	\$	0.076975	\$	69,937,760	\$		\$		\$	69,937,760
Resid (CR/CW)	55,755	\$	0.053587	\$	2,988	\$	-	\$		\$	2,988
Total kWh	5,125,131,351	\$	0.094505	\$	484,350,108	\$		\$		\$	484,350,10

Contract Riders

1 Electric Vehicle Revenue
2 No. 3 TDSIC
3 No. 6 Fuel Cost Adjustment
4 No. 7 Employee Discount
No. 9 Net Metering
No. 13 Air Conditioning Load Management
No. 20 Environmental Compliance Cost Recovery
No. 21 Green Power
No. 24 Capacity Adjustment
21 No. 26 Regional Transmission Organization Rider
22 Total Rider

23 Grand Total
Balancing Adjustment $\quad 1.00000$

Total Revenue \$ 669,367,989
$\$ \quad 669,369,860$
\$
No. 3 TDSIC

Grand Tota
 20,447,776 43,779,058 (115,630) 507,222 271,000
$22,279,604$ $22,279,604$
$7,661,000$ 591,000 95,457,201

Grad

Contract Riders
Electric Vehicle Revenue
No. 6 Fuel Cost Adjustment
No. 7 Employee Discount
No. 9 Net Metering
No. 13 Air Conditioning Load Management
No. 20 Environmental Compliance Cost Recovery
No. 21 Green Power
No. 22 Demand-Side Management Adjustment
No. 24 Capacity Adjustment No. 26 Regional Tdustment
otal Rider
$\xlongequal{\$ 758,979,565}$ \$
$\xlongequal{\$ 758,979,565}$

	\$	36,171	\$	-	\$	-	\$	36,171
	\$	-	\$	-	\$	-	\$	-
	\$	-	\$	-	\$	-	\$	-
	\$	$(171,292)$	\$	-	\$		\$	$(171,292)$
	\$	-	\$	-	\$	-	\$	-
	\$	-	\$	-	\$	-	\$	-
overy	\$	-	\$	-	\$	-	\$	-
	\$	271,000	\$	-	\$	-	\$	271,000
ent	\$	14,014,000	\$	-	\$	-	\$	14,014,000
	\$	-	\$	-	\$	-	\$	-
ider	\$	-	\$	-	\$	-	\$	-
	\$	14,149,879	\$	-	\$	-	\$	14,149,879
	\$	758,979,565	\$	-	\$	-	\$	58,979,565
	TR							

AES Indiana Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022 Secondary Service (SS)

Line		Annualized		Annualized			
No.	Description	Volumes	Current Rate	Revenue	Adjustment	Adjustment	Total Revenue
	(A)	(B)	(C)	(D)	(E)	(F)	(G)
Billed kwh							
1	First $5,000 \mathrm{kWh}$	876,812,165	0.103072	90,374,784	\$ -	\$ -	90,374,784
2	Over 5,000	367,560,176	\$ 0.088592	\$ 32,562,891	\$ -	\$ -	32,562,891
3	Total kWh	1,244,372,341		\$ 122,937,675	\$ -	\$ -	122,937,675

AES Indiana

Pro Forma Revenue at Proposed Rates Solved for Yellow Highlighted Cells

Test Year Ended December 31, 2022 secondary Service (SS)

Targeted Difference at Zero

Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022
Municipal Device (Small) (MD)

AES Indiana
Pro Forma Revenue at Proposed Rates Solved for Yellow Highlighted Cells Test Year Ended December 31, 2022 Municipal Device (Small) (MD)

AES Indiana
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022
Secondary Service - Electric Space Conditioning Separately Metered (SH)

Line	Description	Annualized	Curre	ent Rate	Annualized Revenue		Adjustment		Adjustment	Total Revenue	
	(A)	(B)		(C)		(D)		(E)	(F)		(G)
Billed kwh											
1	All kWh	494,013,569	\$	0.094917	\$	46,890,286		\$	\$ -	\$	46,890,286
Customer Charge											
2	All Customers	45,466	\$	54.18	\$	2,463,348		\$	\$	\$	2,463,348
3	Secondary Service (SH)				\$	49,353,634		\$	\$ -	\$	49,353,634
Contract Riders											
4	No. 3 TDSIC				\$	1,909,225		\$	\$ -	\$	1,909,225
5	No. 6 Fuel Cost Adjustment				\$	4,219,417		\$	\$	\$	4,219,417
6	No. 9 Net Metering				\$	-		\$	\$ -	\$	-
7	No. 13 Air Conditioning Load Management				\$	-		\$	\$ -	\$	-
8	No. 15 Load Displacement				\$	-		\$	\$ -	\$	-
9	No. 20 Environmental Compliance Cost Recovery				\$	47,360		\$	\$ -	\$	47,360
10	No. 21 Green Power				\$	29,418		\$	\$ -	\$	29,418
11	No. 22 Demand-Side Management Adjustment				\$	4,063,445		\$	\$ -	\$	4,063,445
12	No. 24 Capacity Adjustment				\$	715,076		\$	\$ -	\$	715,076
13	No. 26 Regional Transmission Organization Rider				\$	55,136		\$	\$ -	\$	55,136
14	Total Rider				\$	11,039,076		\$	\$	\$	11,039,076
15	Grand Total				\$	60,392,709		\$	\$ -	\$	60,392,709
16							Balancing Adjustment				0.999999
17									Total Revenue	\$	60,392,654

AES Indiana Solved for Yellow Highlighted Cells
 Pro Forma Revenue at Proposed Rates
 Test Year Ended December 31, 2022
 Secondary Service - Electric Space Conditioning Separately Metered (SH)

Description	Annualized Volumes		Proposed Rate		Revenue		Adjustment		Adjustment		al Revenue
(H)	(I)		(J)		(K)		(L)		(M)		(N$)$
Billed kwh											
All kWh	494,013,569	\$	0.128816	\$	63,637,011	\$	-	\$	-	\$	63,637,011
			Targe	\$	63,637,011						
			Difference	\$	0						
Customer Charge						\$		\$	-	\$	2,500,630
All Customers	45,466	\$	55.00	\$	2,500,630		-				
			Targe	\$	2,500,630						
			Difference	\$	-						
Secondary Service (SH)				\$	66,137,641	\$	\$ -	\$	\$	\$	66,137,641
			Target	\$	66,137,641						
			Difference	\$	0						

Contract Riders

No. 3 TDSIC	\$	-	\$	-	\$	-	\$	-
No. 6 Fuel Cost Adjustment	\$	-	\$	-	\$	-	\$	-
No. 9 Net Metering	\$	-	\$	-	\$	-	\$	-
No. 13 Air Conditioning Load Management	\$	-	\$	-	\$	-	\$	-
No. 15 Load Displacement	\$	-	\$	-	\$	-	\$	-
No. 20 Environmental Compliance Cost Recovery	\$	-	\$	-	\$	-	\$	-
No. 21 Green Power	\$	29,418	\$	-	\$	-	\$	29,418
No. 22 Demand-Side Management Adjustment	\$	1,308,346	\$	-	\$	-	\$	1,308,346
No. 24 Capacity Adjustment	\$	-	\$	-	\$	-	\$	-
No. 26 Regional Transmission Organization Rider	\$	-	\$	-	\$	-	\$	-
Total Rider	\$	1,337,765	\$	-	\$	-	\$	1,337,765
Grand Total	\$	67,475,406	\$	-	\$	-	\$	67,475,406

AES Indiana
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022
Secondary Service - Electric Space Conditioning Separately Metered Schools (SE)

Line No.	Description	Annualized Volumes	Current Rate		Annualized Revenue	Adjustment	Adjustment	Total Revenue
	(A)	(B)	(C)		(D)	(E)	(F)	(G)
Billed kwh								
1	First $5,000 \mathrm{kWh}$	1,124,896	\$ 0.116280	\$	130,803	\$ -	\$ -	\$ 130,803
2	Over 5,000 kWh	1,949,520	\$ 0.101800	\$	198,461	\$ -	\$ -	\$ 198,461
3	Excess of $155 \times$ Connected load	12,313,041	\$ 0.088108	\$	1,084,877	\$ -	\$ -	\$ 1,084,877
	Total kWh	15,387,457		\$	1,414,141	\$ -	\$ -	\$ 1,414,141
	Customer Charge							
4	All Customers	276	54.18	\$	14,954	\$ -	\$ -	\$ 14,954
5	Secondary Service (SE)			\$	1,429,095	\$ -	\$ -	\$ 1,429,095
	Contract Riders							
6	No. 3 TDSIC			\$	59,468	\$ -	\$ -	\$ 59,468
7	No. 6 Fuel Cost Adjustment			\$	131,426	\$ -	\$ -	\$ 131,426
8	No. 9 Net Metering			\$	-	\$ -	\$ -	\$ -
9	No. 13 Air Conditioning Load Management			\$	-	\$ -	\$ -	\$ -
10	No. 15 Load Displacement			\$	-	\$ -	\$ -	\$ -
11	No. 20 Environmental Compliance Cost Recovery			\$	1,475	\$ -	\$ -	\$ 1,475
12	No. 21 Green Power			\$	173	\$ -	\$ -	173
13	No. 22 Demand-Side Management Adjustment			\$	126,568	\$ -	\$ -	\$ 126,568
14	No. 24 Capacity Adjustment			\$	22,273	\$ -	\$ -	\$ 22,273
15	No. 26 Regional Transmission Organization Rider			\$	1,717	\$	\$ -	\$ 1,717
16	Total Rider			\$	343,100	\$ -	\$ -	\$ 343,100
17	Grand Total			\$	1,772,195	\$ -	\$ -	\$1,772,195
18						Balancing Adjustment		1.0000
19							otal Revenue	\$1,772,196
							Check	true

AES Indiana
Pro Forma Revenue at Proposed Rates
Test Year Ended December 31, 2022
Secondary Service - Electric Space Conditioning Separately Metered Schools (SE)

Solved for Yellow Highlighted Cells Targeted Difference at Zero

Contac
No. 3 TDSIC
No. 6 Fuel Cost Adjustment
No. 9 Net Metering
No. 13 Air Conditioning Load Managemen
No. 15 Load Displacement
No. 20 Environmental Compliance Cost Recovery No. 21 Green Power
No. 22 Demand-Side Management Adjustment No. 24 Capacity Adjustment
No. 26 Regional Transmission Organization Rider
otal Rider
Grand Total

AES Indiana
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022
Water Heating-Controlled Service (Rate CB)

Pro Forma Revenue at Proposed Rates
est Year Ended December 31, 2022
Water Heating-Controlled Service (Rate CB)

Description	Annualized Volumes	Proposed Rate			Revenue	Adjustment			Adjustment		Total Revenue	
(H)	(I)		(J)		(K)		(L)		(M)			(N)
Billed kwh												
All kWh	389,372	\$	0.072022	\$	28,043		\$		\$	-	\$	28,043
			Target	\$	28,043							
			Difference	\$	-							
Customer Charge												
All Customers	1,019	\$	25.00	\$	25,475		\$		\$	-	\$	25,475
			Target	\$	25,475							
			Difference	\$	-							
Water Heating - Controlled (CB)				\$	53,518		\$		\$		\$	53,518
			Target	\$	53,518							
			Difference	\$								

Contract Riders
No. 3 TDSIC
No. 6 Fuel Cost Adjustment
No. 9 Net Metering
No. 13 Air Condilitoning Load Management No. 20 Environmental Compliance Cost Recovery No. 21 Green Power
No. 22 Demand-Side Management Adjustmen No. 24 Capacity Adjustment
No. 26 Regional Iransmission Organization Rider Total Rider

Grand Total

Check $\xlongequal[\text { TRUE }]{\$ \quad 54,550} \$ \quad-\quad \$ \quad-\quad$| \$ 54,550 |
| :--- |

AES Indiana
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022 Water Heating - Uncontrolled Service (UW)

AES Indiana
 Pro Forma Revenue at Proposed Rates
 Test Year Ended December 31, 2022
 Water Heating - Uncontrolled Service (UW)

Description	Annualized Volumes		roposed Rate		Revenue	Adjustment	Adjustment		Total Revenue
(H)	(I)		(J)		(K)	(L)	(M)		(N$)$
Billed kwh									
All kWh	1,087,210	\$	0.096421	\$	104,830	\$ -	\$ -	\$	104,830
			Target	\$	104,830				
			Difference	\$	0				
Customer Charge									
All Customers	936	\$	40.00	\$	37,440	\$ -	\$	\$	37,440
			Target	\$	37,440				
			Difference	\$	-				
Water Heating - Uncontrolled (UW)				\$	142,270	\$ -	\$ -		142,270
			Target	\$	142,270				
			Difference	\$	0				

Contact rid
No. 3 TDSIC
No. 6 Fuel Cost Adiustment
No. 9 Net Metering
No. 13 Air Conditioning Load Management
No. 20 Environmental Compliance Cost Recovery No. 21 Green Power
No. 22 Demand-Side Management Adjustment No. 24 Capacity Adjustment
No. 26 Regional Iransmission Organization Rider otal Rider

Targeted Difference at Zero

Grand Total

AES Indianc
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022 Process Heating (PH)

AES Indiana
Pro Forma Revenue at Proposed Rates
Test Year Ended December 31, 2022
Process Heating (PH)

AES Indiana
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022 Secondary Service (Large) (SL)

AES Indiana	Solved for Yellow Highlighted Cells
Pro Forma Revenue at Proposed Rates	Targeted Difference at Zero

Secondary Service (Large) (SL)

AES Indiana
Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022 Primary Service (Large) (PL)

AES Indian
 Pro Forma Revenue at Proposed Rates
 Test Year Ended December 31, 2022

Primary Service (Large) (PL)

Description	Annualized Volumes	Propo	osed Rate		Revenue	Adjustment			Adjustment		Total Revenue	
(H)	(1)		(J)		(K)		(L)			(M)		(N)
Billed kwh												
All kWh	1,087,387,867	\$	0.044734	\$	48,643,109	\$		-	\$	-	\$	48,643,109
			Target	\$	48,643,109							
			Difference	\$	-							
Billed kW												
All kW	2,361,422	\$	29.59	\$	69,874,477	\$		-	\$	-	\$	69,874,477
			Target	\$	69,874,477							
			Difference	\$								
Power factor				\$	(3,213,111)						\$	(3,213,111)
Customer Charge												
All Customers	1,500	\$	130.00	\$	195,000	\$		-	\$	-	\$	195,000
			Target	\$	195,000							
			Difference	\$	-							
Primary Service (Large) (PL)				\$	115,499,475	\$		-	\$	-		115,499,475
		Targe		\$	115,499,475							
		Differ	rence	\$	-							
Contract Riders												
Special Contract Revenue				\$	-	\$		-	\$	-	\$	-
Allocated CSC Revenues + DSM				\$	1,460,124	\$		-	\$	-	\$	1,460,124
No. 3 TDSIC				\$	-	\$		-	\$	-	\$	-
No. 4 Additional Charges for other facilities				\$	-	\$		-	\$	-	\$	-
No. 6 Fuel Cost Adjustment				\$	-	\$		-	\$	-	\$	-
No. 8 Off Peak Service				\$	$(180,277)$	\$		-	\$	-	\$	$(180,277)$
No. 9 Net Metering				\$	-	\$		-	\$	-	\$	-
No. 14 Interruptible Power				\$	-	\$		-	\$	-	\$	-
No. 15 Load Displacement				\$	-	\$		-	\$	-	\$	-
No. 17 Curtailment Energy				\$	-	\$		-	\$	-	\$	-
No. 18 Curtailment Energy II				\$	-	\$		-	\$	-	\$	-
No. 20 Environmental Compliance Cost Recovery				\$	-	\$		-	\$	-	\$	-
				\$	390,855	\$		-	\$	-	\$	390,855
No. 22 Demand-Side Management Adjustment				\$	2,537,466	\$		-	\$	-	\$	2,537,466
No. 24 Capacity Adjustment				\$	-	\$		-	\$	-	\$	-
$\frac{\text { No. } 26 \text { Regional Transmission Organization Rider }}{\text { Total Rider }}$				\$	-	\$		-	\$	-	\$	-
				\$	4,208,168	\$		-	\$	-	\$	4,208,168
Grand Total				\$	119,707,642	\$		-	\$	-		119,707,642

Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022
High Load Factor Service - Primary (HL1)

AES Indiana
 Pro Forma Revenue at Proposed Rates
 Test Year Ended December 31, 2022
 High Load Factor Service - Primary (HL1)

Pro Forma Revenue at Current Rates
Test Year Ended December 31, 2022
High Load Factor Service - Sub transmission (HL2)

Pro Forma Revenue at Proposed Rates
est Year Ended December 31, 2022
High Load Factor Service - Sub transmission (HL2)

AES Indiana
Lighting Revenue Proof

Code Description	Inventory (Light Count)	kWh per Light	Total kWh	Separately Metered	Current Annual	Current Base	ProForma Adjustments	Current Revenue Proforma @ Present Rates	Current Rate with ECCR, RTO, DSM, CAP, TDSIC, and Fuel (Base Fuel and FCA)
(A) (B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)
APL Company Installed, Owned, and Maintained (APL)									
68175 WATL LIGHT	9,251	832	7,696,832		\$99.60	\$921,400	\$98,753	\$1,020,152	\$110.27
69400 WATT MV REDDY SENT.	1,245	1,880	2,340,600		\$187.92	\$233,960	\$30,031	\$263,991	\$212.04
701000 WATT MV REDDY SENT.	75	4,315	323,625		\$331.80	\$24,885	\$4,152	\$29,037	\$387.16
71100 WATT LIGHT	6,316	485	3,063,260		\$88.08	\$556,313	\$39,303	\$595,616	\$94.30
72150 WAT HPS REDDY SENT.	975	733	714,675		\$186.24	\$181,584	\$9,170	\$190,754	\$195.64
73250 WAT HPS REDDY SENT.	1,027	1,194	1,226,238		\$247.20	\$253,874	\$15,733	\$269,607	\$262.52
74400 WATT HPS REDDY SENT.	1,115	1,848	2,060,520		\$286.32	\$319,247	\$26,437	\$345,684	\$310.03
78175 WATT MV - SEC. METERED - OVERHEAD	68	832	56,576	Yes	\$72.12	\$4,904	\$0	\$4,904	\$72.12
79400 WATT MV - SEC. METERED OVERHEAD	16	1,880	30,080	Yes	\$139.80	\$2,237	\$0	\$2,237	\$139.80
801000 WATT MV - SEC. METERED - OVERHEAD	1	4.315	4,315	Yes	\$216.72	\$217	\$0	\$217	\$216.72
81100 WAT HPS - SEC. METERED - OVERHEAD	19	485	9.215	Yes	\$74.76	\$1,420	\$0	\$1,420	\$74.76
82150 WAT HPS - SEC. METERED - OVERHEAD	1	733	733	Yes	\$170.88	\$171	\$0	\$171	\$170.88
83250 WAT HPS - SEC. METERED - OVERHEAD	2	1,194	2,388	Yes	\$216.00	\$432	\$0	\$432	\$216.00
84400 WATT HPS - SEC. METERED - OVERHEAD	12	1,848	22,176	Yes	\$238.20	\$2,858	\$0	\$2,858	\$238.20
85 ENERGY AND CONTROL ONLY	1	0	0		\$42.24	\$42	\$0	\$42	\$42.24
86400 WAT MV FLOOD - OVERHEAD	495	1,880	930,600		\$188.16	\$93,139	\$11,940	\$105,079	\$212.28
87150 WATT HPS FLOOD - OVERHEAD	490	733	359,170		\$186.72	\$91,493	\$4,608	\$96,101	\$196.12
88250 WATT HPS FLOOD - OVERHEAD	707	1,194	844,158		\$247.32	\$174,855	\$10,831	\$185,686	\$262.64
89400 WAT HPS FLOOD - OVERHEAD	5,792	1,848	10,703,616		\$286.44	\$1,659,060	\$137,331	\$1,796,391	\$310.15
90400 WATT METAL HALIDE FLOOD - OVERHEAD	1,044	1,774	1,852,056		\$286.08	\$298,668	\$23,762	\$322,430	\$308.84
91400 WAT MV FLOOD - SEC. METERED	6	1,880	11,280	Yes	\$139.80	\$839	\$0	\$839	\$139.80
92150 WAT HPS FLOOD - SEC. Metered	1	733	733	Yes	\$170.88	\$171	\$0	\$171	\$170.88
93250 WAT HPS FLOOD - SEC. METERED	6	1,194	7.164	Yes	\$216.00	\$1,296	\$0	\$1,296	\$216.00
94400 WATT HPS FLOOD - SEC. METERED	36	1,848	66,528	Yes	\$238.20	\$8,575	\$0	\$8,575	\$238.20
95400 WATT METAL HALIDE FLOOD-SEC. METERED	2	1,774	3,548	Yes	\$238.20	\$476	\$0	\$476	\$238.20
96 - WOOD POLE WITH OVERHEAD FEED -	7,555	0	0		\$48.60	\$367,173	\$0	\$367,173	\$48.60
97 - WOOD POLE WITH UNDERGROUND FEED -	815	0	0		\$120.12	\$97,898	\$0	\$97,898	\$120.12
1261000 WATT MV - IST FIXTURE	0	4,315	0		\$0.00	\$0	\$0	\$0	\$55.36
127400 WAT MV-IST FIXTURE	13	1,880	24,440		\$277.56	\$3,608	\$314	\$3,922	\$301.68
128175 WAT MV-IST FIXTURE	,	832	2,496		\$224.88	\$675	\$32	\$707	\$235.55
129400 WATT HPS-IST FIXTURE	133	1,848	245,784		\$402.96	\$53,594	\$3,153	\$56,747	\$426.67
130250 WATT HPS-IST FIXTURE	202	1,194	241,188		\$271.20	\$54,782	\$3,095	\$57,877	\$286.52
131150 WATT HPS-IST FIXTURE	182	733	133,406		\$233.52	\$42,501	\$1,712	\$44,212	\$242.92
132100 WATT HPS- IST FIXTURE	32	485	15,520		\$214.56	\$6,866	\$199	\$7,065	\$220.78
135400 WATT HPS-I ST FIXTURE-SHOEBOX	91	1,848	168,168		\$334.92	\$30,478	\$2,158	\$32,635	\$358.63
136250 WAT HPS-1ST FIXTURE-SHOEBOX	103	1,194	122,982		\$273.00	\$28,119	\$1,578	\$29,697	\$288.32

AES Indiana
Lighting Revenue Proof

Code Description	Inventory (Light Count)	kWh per Light	Total kWh	Separately Metered	Current Annual Base Rate Base Rate	Current Base Revenue	ProForma Adjustments	Current Revenue Proforma @ Present Rates	Current Rate with ECCR, RTO, DSM, CAP, TDSIC, and Fuel (Base Fuel and FCA)
137400 WATT METAL HALIDE-1ST FIX-SHOEBOX	370	1,774	656,380		\$334.56	\$123,787	\$8,422	\$132,209	\$357.32
138400 WATT MV-1ST FIXTURE-FLOOD	3	1,880	5,640		\$277.56	\$833	\$72	\$905	\$301.68
139150 WATT HPS-IST FIXTURE-FLOOD	12	733	8.796		\$233.52	\$2,802	\$113	\$2,915	\$242.92
140250 WATT HPS-1ST FIXTURE-FLOOD	63	1,194	75,222		\$271.20	\$17,086	\$965	\$18,051	\$286.52
141400 WATT HPS-1ST FIXTURE-FLOOD	237	1,848	437,976		\$402.96	\$95,502	\$5,619	\$101,121	\$426.67
142400 WAT METAL HALIDE-IST FII-FLOOD	89	1,774	157,886		\$334.56	\$29,776	\$2,026	\$31,802	\$357.32
1431000 WATT MV - ADDITIONAL FIXTURE	0	4,315	0		\$0.00	\$0	\$0	\$0	\$55.36
144400 WATT MV-ADDIT'L FIXTURE	1	1,880	1,880		\$187.92	\$188	\$24	\$212	\$212.04
145175 WATT MV-ADDIT'L FIXTURE	2	832	1,664		\$99.60	\$199	\$21	\$221	\$110.27
146400 WATT HPS-ADDIT'L FIXTURE	49	1,848	90,552		\$286.32	\$14,030	\$1,162	\$15,191	\$310.03
147250 WATT HPS-ADDIT'L FIXTURE	16	1,194	19,104		\$247.20	\$3,955	\$245	\$4,200	\$262.52
148150 WATT HPS-ADDIT'L FIXTURE	14	733	10,262		\$186.24	\$2,607	\$132	\$2,739	\$195.64
149100 WATT HPS-ADDIT'L FIXTURE	3	485	1,455		\$88.08	\$264	\$19	\$283	\$94.30
152400 WATT HPS-ADDIT'L FIXTURE-SHOEBOX	16	1,848	29,568		\$121.32	\$1,941	\$379	\$2,320	\$145.03
153250 WATT HPS-ADDIT'L FIXTURE-SHOEBOX	9	1,194	10,746		\$94.44	\$850	\$138	\$988	\$109.76
154400 WATT METAL HALIDE-ADDT' FIX-SHOEBOX	110	1,774	195,140		\$120.84	\$13,292	\$2,504	\$15,796	\$143.60
155400 WATM MV-ADDIT'L FIXTURE-FLOOD	2	1,880	3.760		\$187.92	\$376	\$48	\$424	\$212.04
156150 WATT HPS-ADDIT'L FIXTURE-FLOOD	9	733	6.597		\$186.24	\$1,676	\$85	\$1,761	\$195.64
157250 WATT HPS-ADDIT'L FIXTURE-FLOOD	55	1,194	65,670		\$247.20	\$13,596	\$843	\$14,439	\$262.52
158400 WATT HPS-ADDIT'L FIXTURE-FLOOD	259	1,848	478,632		\$286.32	\$74,157	\$6,141	\$80,298	\$310.03
159400 WATT M ETAL HALIDE-ADDT'L FIX-FLOOD	185	1,774	328,190		\$120.84	\$22,355	\$4,211	\$26,566	\$143.60
160175 W MV POST TOP WASH	40	832	33,280		\$340.68	\$13,627	\$427	\$14,054	\$351.35
161175 W MV POST TOP	29	832	24,128		\$218.88	\$6,348	\$310	\$6,657	\$229.55
162100 W HPS POST TOP WASH	57	485	27,645		\$332.28	\$18,940	\$355	\$19,295	\$338.50
163100 W HPS POST TOP	407	485	197,395		\$213.60	\$86,935	\$2,533	\$89,468	\$219.82
164150 W HPS POST TOP WASH	114	733	83,562		\$381.60	\$43,502	\$1,072	\$44,575	\$391.00
165150 W HPS POST TOP BALL	60	733	43,980		\$262.92	\$15,775	\$564	\$16,339	\$272.32
180250 WATT MET HAL 18 Ft DIR EMBEDDED	3	1,159	3,477		\$626.28	\$1,879	\$45	\$1,923	\$641.15
181250 WAT MET HAL 12 FT ANCHOR BASED	11	1,159	12,749		\$687.00	\$7,557	\$164	\$7,721	\$701.87
182 2-250 WATT MET HAL 18 FT DIR EMBEDDED	7	2,317	16,219		\$866.04	\$6,062	\$208	\$6,270	\$895.77
183 2-250 WATT MET HAL 12 FT ANCHOR BASED	0	2,317	0		\$926.52	\$0	\$0	\$0	\$956.25
188250 WAT MET HAL 18 FT DIR EMBED PRI METER	0	1,159	0		\$569.28	\$0	\$0	\$0	\$584.15
189250 WATT MET HAL 12 FT ANCHOR BASE PRI METER	0	1,159	0		\$629.88	\$0	\$0	\$0	\$644.75
190 2-250 WATT MET HAL 18 FT DIR EMBED PRI METER	0	2,317	0		\$758.88	\$0	\$0	\$0	\$788.61
191 2-250 WATT MET HAL 12 FT ANCHOR BASE PRI METER	0	2,317	0		\$819.72	\$0	\$0	\$0	\$849.45
271100 WATt LIGHT	2,028	485	983,580		\$180.00	\$365,040	\$12,620	\$377,660	\$186.22
272150 WATT HPS REDDY SENT.	162	733	118,746		\$204.12	\$33,067	\$1,524	\$34,591	\$213.52
273250 WAT HPS REDDY SENT.	327	1,194	390,438		\$243.48	\$79,618	\$5,009	\$84,627	\$258.80
274400 WAT HPS REDDY SENT.	221	1,848	408,408		\$294.48	\$65,080	\$5,240	\$70,320	\$318.19
287150 WATT HPS FLOOD - OVERHEAD	71	733	52,043		\$210.12	\$14,919	\$668	\$15,586	\$219.52
288250 WATt HPS FLOOD - OVERHEAD	123	1,194	146,862		\$248.28	\$30,538	\$1,884	\$32,423	\$263.60
289400 WAT HPS FLOOD - OVERHEAD	1,625	1,848	3,003,000		\$298.20	\$484,575	\$38,529	\$523,104	\$321.91
296 - WOOD POLE WITH OVERHEAD FEED -	1,449	0	0		\$83.16	\$120,499	\$0	\$120,499	\$83.16
297 - WOOD POLE WITH UNDERGROUND FEED -	92	0	0		\$105.24	\$9,682	\$0	\$9,682	\$105.24
300 LED COBRA HEAD 5000-6000 LUMENS	745	185	137,825		\$198.24	\$147,689	\$1,768	\$149,457	\$200.61
301 LED COBRA HEAD 6500-7500 LUMENS	85	229	19,465		\$203.40	\$17,289	\$250	\$17,539	\$206.34
302 LED COBRA HEAD 12500-13500 LUMENS	81	437	35,397		\$248.88	\$20,159	\$454	\$20,613	\$254.49
303 LED COBRA HEAD 20000-21500 LUMENS	208	686	142,688		\$288.48	\$60,004	\$1,831	\$61,835	\$297.28

Code Description	Inventory (Light Count)	kWh per Light	Total kWh	Separately Metered	Current Annual Base Rate	Current Base Revenue	ProForma Adjustments	Current Revenue Proforma @ Present Rates	Current Rate with ECCR, RTO, DSM CAP, TDSIC, and Fuel (Base Fuel and FCA)
304 LED AREA LIGHT 11500-16500 LUMENS	0	536	0		\$271.92	\$0	\$0	\$0	\$278.80
305 LED AREA LIGHT 21000-26000 LUMENS	55	867	47,685		\$302.04	\$16,612	\$612	\$17,224	\$313.16
306 LED TRAD. POST TOP 6000-7500 LUMENS	5	260	1,300		\$249.00	\$1,245	\$17	\$1,262	\$252.34
307 LED TWIN WASH POST TOP 2 @ 6000-7500-LT	0	552			\$616.92	\$0	\$0	\$0	\$624.00
308 LED WASH POST TOP 6000-7500 LUMENS	0	276	0		\$336.84	\$0	\$0	\$0	\$340.38
313 LED FLOOD 11,500-16,500 LUMENS	48	378	18,144		\$267.24	\$12,828	\$233	\$13,060	\$272.09
314 LED FLOOD 21,000-26,000 LUMENS	1,216	690	839,040		\$295.08	\$358,817	\$10,765	\$369,582	\$303.93
328 12' FG TRAD COL PAIRED W/LT	2	0	0		\$77.04	\$154	\$0	\$154	\$77.04
329400 WAT HPS-IST FIXTURE	17	1,848	31,416		\$417.12	\$7,091	\$403	\$7,494	\$440.83
330250 WATT HPS-IST FIXTURE	25	1,194	29,850		\$366.24	\$9,156	\$383	\$9,539	\$381.56
331150 WATT HPS-IST FIXTURE	15	733	10,995		\$332.04	\$4,981	\$141	\$5,122	\$341.44
332100 WATT HPS-IST FIXTURE	0	485	0		\$304.20	\$0	\$0	\$0	\$310.42
333400 WAT HPS - IST FIXTURE PAINTED BRONZ	0	1,848	0		\$510.24	\$0	\$0	\$0	\$533.95
334250 WATT HPS - IST FIXTURE PAINTED BRONZ	,	1,194	0		\$467.88	\$0	\$0	\$0	\$483.20
335400 WATT HPS-1 IT FIXTURE-SHOEBOX	13	1,848	24,024		\$414.24	\$5,385	\$308	\$5,693	\$437.95
336250 WAT HPS-1 IT FIXTURE-SHOEBOX	10	1,194	11,940		\$362.52	\$3,625	\$153	\$3,778	\$377.84
$33712{ }^{\prime}$ FG FLUTED COL CUST BASE PAIRED W/LT	0	0	0		\$156.12	\$0	\$0	\$0	\$156.12
339150 WAT HPS-IST FIXTURE-FLOOD	4	733	2,932		\$431.04	\$1.724	\$38	\$1,762	\$440.44
340250 WATT HPS-1ST FIXTURE-FLOOD	2	1,194	2,388		\$458.04	\$916	\$31	\$947	\$473.36
341400 WATT HPS-1ST FIXTURE-FLOOD	79	1,848	145,992		\$491.28	\$38,811	\$1,873	\$40,684	\$514.99
342 14' AL FLUTED COL CUST BASE PAIRED W/LT	0	0	0		\$15.04	\$0	\$0	\$0	\$15.04
34314 FG FLUTED COL DIRECT BURY PAIRED W/LT	0	0	0		\$158.52	\$0	\$0	\$0	\$158.52
34414 FG SMOOTH COL DIRECT BURY PAIRED W/LT	0	0	0		\$136.44	\$0	\$0	\$0	\$136.44
346400 WATT HPS-ADDITL FIXTURE	35	1.848	64,680		\$302.76	\$10,597	\$830	\$11,426	\$326.47
347250 WATT HPS-ADDIT'L FIXTURE	9	1,194	10,746		\$251.76	\$2,266	\$138	\$2,404	\$267.08
348150 WATT HPS-ADDIT'L FIXTURE	1	733	733		\$217.68	\$218	\$9	\$227	\$227.08
349100 WATT HPS-ADDIT'L FIXTURE	0	485	0		\$193.44	\$0	\$0	\$0	\$199.66
350400 WATT HPS -ADDITIONAL FIXTURE-PAINTED	0	1,848	0		\$294.12	\$0	\$0	\$0	\$317.83
351250 WATT HPS -ADDITIONAL FIXTURE-PAINTED	0	1,194	0		\$251.76	\$0	\$0	\$0	\$267.08
352400 WATT HPS-ADDIT'L FIXTURE-SHOEBOX	0	1,848	0		\$296.76	\$0	\$0	\$0	\$320.47
353250 WAT HPS-ADDIT'L FIXTURE-SHOEBOX	-	1,194	0		\$245.04	\$0	\$0	\$0	\$260.36
354 AL COL W/BASE PAIRED W/LT	40	0	0		\$192.96	\$7,718	\$0	\$7,718	\$192.96
355 AL COL ON CUST OWNED BASE PAIRED W/LT	8	0	0		\$107.52	\$860	\$0	\$860	\$107.52
356150 WATT HPS-ADDIT'L FIXTURE-FLOOD	0	733	0		\$224.16	\$0	\$0	\$0	\$233.56
357250 WATT HPS-ADDIT'L FIXTURE-FLOOD	2	1,194	2,388		\$262.32	\$525	\$31	\$555	\$277.64
358400 WATT HPS-ADDIT'L FIXTURE-FLOOD	140	1,848	258,720		\$312.36	\$43,730	\$3,319	\$47,050	\$336.07
362100 W HPS POST TOP WASH	20	485	9.700		\$344.52	\$6,890	\$124	\$7,015	\$350.74
363100 W HPS POST TOP	5	485	2,425		\$256.08	\$1,280	\$31	\$1,312	\$262.30
364150 W HPS POST TOP WASH	28	733	20,524		\$363.00	\$10,164	\$263	\$10,427	\$372.40
365150 W HPS POST TOP BALL		733	0		\$324.60	\$0	\$0	\$0	\$334.00
369 AL COL BZ W/BASE PAIRED W/LT	0	0	0		\$210.48	\$0	\$0	\$0	\$210.48
370 AL COL BZ ON CUST BASE PAIRED W/LT	29	0	0		\$125.04	\$3,626	\$0	\$3,626	\$125.04
378 FG COL DIRECT BURY PAIRED W/LT	74	0	0		\$115.32	\$8,534	\$0	\$8,534	\$115.32
380250 WATT MET HAL 18 FT DIR EMBEDDED	88	1,159	101,992		\$430.44	\$37,879	\$1,309	\$39,187	\$445.31
381250 WATT MET HAL 12 FT ANCHOR BASED	140	1,159	162,260		\$427.92	\$59,909	\$2,082	\$61,991	\$442.79
382 2-250 WATT MET HAL 18 FT DIR EMBEDDED	80	2.317	185,360		\$628.32	\$50,266	\$2,378	\$52,644	\$658.05
383 2-250 WATT MET HAL 12 FT ANCHOR BASED	13	2.317	30,121		\$625.80	\$8,135	\$386	\$8,522	\$655.53
388250 WATT MH 18 FT DIR EMBED PRI METER	32	1,159	37,088		\$342.12	\$10,948	\$476	\$11,424	\$356.99
389250 WATT MH 12 FT ANCHOR BASE PRI METER	16	1,159	18,544		\$339.60	\$5,434	\$238	\$5,672	\$354.47
390 2-250 WATT MH 18 FT DIR EMBED PRI METER	17	2,317	39,389		\$451.68	\$7,679	\$505	\$8,184	\$481.41
391 2-250 WATT MH 12 FT ANCHOR BASE PRI MTR	,	2,317	20,853		\$449.16	\$4,042	\$268	\$4,310	\$478.89
Total APL	49,558		43,666,570			$\underline{\$ 8,327,913}$	\$560,256	\$8,888,169	

Code Description	Inventory (Light Count)	kWh per Light	Total kWh	Separately Metered	Current Annual Base Rate	Current Base Revenue	ProForma Adjustments	Current Revenue Proforma @ Present Rates	Current Rate with ECCR, RTO, DSM, CAP, TDSIC, and Fuel (Base Fuel and FCA)
MU Company Installed, Owned, and Maintained (MU-1)									
11000 WAT MV - OVERHEAD	1	4,315	4,315		\$292.68	\$293	\$55.36	\$348	\$348.04
21000 WATT MV - TRAFFIC COLUMN	0	4,315	0		\$258.48	\$0	\$0.00	\$0	\$313.84
31000 WATT MV - METAL COLUMN	3	4,315	12,945		\$426.38	\$1,279	\$166.09	\$1,445	\$481.74
4400 WAT MV - OVERHEAD	16	1,880	30,080		\$159.82	\$2,557	\$385.94	\$2,943	\$183.94
5400 WATM MV - TRAFFIC COLUMN	0	1,880	0		\$143.64	\$0	\$0.00	\$0	\$167.76
6400 WATT MV - METAL COLUMN	144	1,880	270,720		\$222.35	\$32,018	\$3,473.43	\$35,492	\$246.47
7175 WAT MV - OVERHEAD	446	832	371,072		\$110.88	\$49,452	\$4,760.98	\$54,213	\$121.55
8175 WATM MV - TRAFFIC COLUMN	0	832	0		\$102.12	\$0	\$0.00	\$0	\$112.79
9175 WATT MV - METAL COLUMN	670	832	557,440		\$179.44	\$120,225	\$7,152.14	\$127,377	\$190.11
10175 W MV - POST TOP	476	832	396,032		\$174.71	\$83,162	\$5,081.22	\$88,243	\$185.38
11175 W MV - POST TOP WASH	189	832	157,248		\$271.52	\$51,317	\$2,017.54	\$53,335	\$282.19
12400 WAT HPS - OVERHEAD	240	1,848	443,520		\$188.19	\$45,166	\$5,690.51	\$50,856	\$211.90
13400 WATHPS - TRAFFIC COLUMN	65	1,848	120,120		\$188.19	\$12,232	\$1.541.18	\$13,774	\$211.90
14400 WATT HPS - Metal Column	552	1,848	1,020,096		\$321.88	\$177,678	\$13,088.17	\$190,766	\$345.59
15250 WAT HPS - OVERHEAD	505	1,194	602,970		\$152.84	\$77,184	\$7,736.30	\$84,921	\$168.16
16250 WAT HPS - TRAFFIC COLUMN	36	1,194	42,984		\$152.84	\$5,502	\$551.50	\$6,054	\$168.16
17250 WAT HPS - METAL COLUMN	619	1,194	739,086		\$216.56	\$134,051	\$9,482.72	\$143,533	\$231.88
18150 WATT HPS - OVERHEAD	491	733	359,903		\$120.34	\$59,087	\$4,617.67	\$63,705	\$129.74
19150 WATt HPS - TRAFFIC COLUMN	7	733	5,131		\$120.34	\$842	\$65.83	\$908	\$129.74
20150 WAT HPS - METAL COLUMN	472	733	345,976		\$186.18	\$87,877	\$4,438.99	\$92,316	\$195.58
21100 WAT HPS - OVERHEAD	796	485	386,060		\$102.37	\$81,487	\$4,953.28	\$86,440	\$108.59
22100 WATt HPS - TRAFFIC COLUMN	1	485	485		\$102.37	\$102	\$6.22	\$109	\$108.59
23100 WATt hPS - metal Column	517	485	250,745		\$170.93	\$88,371	\$3,217.14	\$91,588	\$177.15
24100 W HPS - POST TOP	5.857	485	2,840,645		\$170.10	\$996,276	\$36,446.41	\$1,032,722	\$176.32
25100 W HPS - POST TOP WASH	1,703	485	825,955		\$264.20	\$449,933	\$10,597.27	\$460,530	\$270.42
26150 W HPS- POST TOP BALL	21	733	15,393		\$205.56	\$4,317	\$197.50	\$4,514	\$214.96
27150 W HPS - POST TOP WASH	3,037	733	2,226,121		\$303.68	\$922,276	\$28,561.87	\$950,838	\$313.08
283 -150 WATT HPS-1 COLUMN CLUSTER W/BALAST	0	0	0		\$514.56	\$0	\$0.00	\$0	\$514.56
29 3-150 WATT HPS-2 COLUMN CLUSTER N/BALAST	0	0	0		\$514.56	\$0	\$0.00	\$0	\$514.56
303 -150 WATT HPS-2 COLUMN CLUSTER W/BALAST	0	0	0		\$514.56	\$0	\$0.00	\$0	\$514.56
$321-150$ \& 4-100 WATT HPS - CLUSTER	1	2.672	2,672		\$687.38	\$687	\$34.28	\$722	\$721.66
33400 WATT HPS-METAL COLUMN-PAINTED BRONZE	74	1,848	136,752		\$350.49	\$25,936	\$1,754.57	\$27.691	\$374.20
34400 WATt HPS-TRAFFIC COLUMN-PAINT BRONZE	8	1,848	14,784		\$192.92	\$1,543	\$189.68	\$1,733	\$216.63
35250 WATT HPS-METAL COLUMN-PAINTED BRONZE	1	1,194	1,194		\$245.16	\$245	\$15.32	\$260	\$260.48
37175 WATT MV - FIBERGLASS COLUMN	6	832	4,992		\$170.93	\$1,026	\$64.05	\$1,090	\$181.60
38100 WAT HPS - FIBERGLASS COLUMN	103	485	49,955		\$162.42	\$16,729	\$640.94	\$17,370	\$168.64
39150 WAT HPS - FIBERGLASS COLUMN	155	733	113,615		\$177.55	\$27.520	\$1,457.72	\$28,978	\$186.95
40250 WAT HPS - FIBERGLASS COLUMN	124	1,194	148,056		\$208.05	\$25,798	\$1,899.61	\$27,698	\$223.37
41400 WAT HPS - FIBERGLASS COLUMN	159	1,848	293,832		\$299.19	\$47,571	\$3,769.96	\$51,341	\$322.90
42400 WAT MH SHOEBOX - FIEERGLASS COLUMN	103	1,774	182,722		\$273.77	\$28,198	\$2,344.38	\$30,543	\$296.53
43 2-400 WAT MH SHOEBOX-FIBERGLASS COLUMN	48	3,547	170,256		\$377.56	\$18,123	\$2,184.44	\$20,307	\$423.07
44175 WATT MV UPASS $4100 H R S$ - WALL MOUNTED	0	0	0		\$143.64	\$0	\$0.00	\$0	\$143.64
45150 WATt HPS UPASS $4100 H R S$-WALL MOUNTED	192	733	140,736		\$157.45	\$30,230	\$1,805.69	\$32,036	\$166.85
46250 W HPS - SHOEBOX	10	1,194	11,940		\$217.98	\$2,180	\$153.19	\$2,333	\$233.30
48 2-250 W HPS-SHOEBOX	0	2,388	0		\$270.12	\$0	\$0.00	\$0	\$300.76
50400 WATT HPS UPASS 8760HRS WALL MOUNTED	85	4,108	349,180		\$341.74	\$29,048	\$4,480.09	\$33,528	\$394.45
51150 WAT HPS UPASS 8760HRS WALL MOUNTED	101	1,629	164,529		\$204.38	\$20,642	\$2,110.96	\$22,753	\$225.28
65400 W HPS - SHOEBOX	43	1,848	79,464		\$267.86	\$11,518	\$1,019.55	\$12,538	\$291.57
66 2-400 W HPS-SHOEBOX	15	3,697	55,455		\$366.09	\$5,491	\$711.51	\$6,203	\$413.52
101400 WATT METAL HALIDE - METAL COLUMN	0	1,774	0		\$321.53	\$0	\$0.00	\$0	\$344.29
184 EXCESS MATERIAL FOR CIRCLE CENTRE MALL	1	1,774	1,774		\$5,750.49	\$5,750	\$22.76	\$5,773	\$5,773.25
185 PEDESTRIAN LIGHT FOR CIRCLE CENTRE MALL	47	1,880	88,360		\$722.61	\$33,963	\$1,133.69	\$35,096	\$746.73
187 TWIN 80W LED POST TOP	53	640	33,920		\$718.71	\$38,092	\$435.20	\$38,527	\$726.92
200 LED COBRA HEAD 5000-6000 LUMENS	30	185	5,550		\$211.59	\$6,348	\$71.21	\$6,419	\$213.96
201 LED COBRA HEAD 6500-7500 LUMENS	84	229	19,236		\$216.79	\$18,210	\$246.80	\$18,457	\$219.73
202 LED COBRA HEAD 12500-13500 LUMENS	136	437	59,432		\$261.83	\$35,609	\$762.53	\$36,371	\$267.44
203 LED COBRA HEAD 20000-21500 LUMENS	44	686	30,184		\$301.08	\$13,248	\$387.27	\$13,635	\$309.88

Code Description	Inventory (Light Count)	kWh per Light	Total kWh	Separately Metered	Current Annual Base Rate	Current Base Revenue	ProForma Adjustments	Current Revenue Proforma@ Present Rates	Current Rate with ECCR, RTO, DSM, CAP, TDSIC, and Fuel (Base Fuel and FCA)
204 LED AREA LIGHT 11500-16500 LUMENS	0	536	0		\$281.81	\$0	\$0.00	\$0	\$288.69
205 LED AREA LIGHT 21000-26000 LUMENS	31	867	26,877		\$311.48	\$9,656	\$344.84	\$10,001	\$322.60
206 LED TRAD. POST TOP 6000-7500 LUMENS	336	260	87,360		\$259.23	\$87,101	\$1,120.86	\$88,222	\$262.57
207 LED TWIN WASH POST TOP 2 @ 6000-7500-LT	35	552	19,320		\$626.86	\$21,940	\$247.88	\$22,188	\$633.94
208 LED WASH POST TOP 6000-7500 LUMENS	128	276	35,328		\$347.06	\$44,424	\$453.27	\$44,877	\$350.60
212400 WAT HPS - OVERHEAD	4	1,848	7,392		\$393.04	\$1,572	\$94.84	\$1,667	\$416.75
213400 WATT HPS - TRAFFIC COLUMN	0	1,848	0		\$355.10	\$0	\$0.00	\$0	\$378.81
214400 WATT HPS - METAL COLUMN	32	1,848	59,136		\$509.72	\$16,311	\$758.73	\$17,070	\$533.43
215250 WAT HPS - OVERHEAD	25	1,194	29,850		\$342.92	\$8,573	\$382.99	\$8,956	\$358.24
216250 WAT HPS - TRAFFIC COLUMN	0	1,194	0		\$304.86	\$0	\$0.00	\$0	\$320.18
217250 WATT HPS - METAL COLUMN	42	1,194	50,148		\$459.59	\$19,303	\$643.42	\$19,946	\$474.91
218150 WATT HPS - OVERHEAD	12	733	8.796		\$309.35	\$3,712	\$112.86	\$3,825	\$318.75
219150 WATt HPS - TRAFFIC COLUMN	0	733	,		\$271.41	\$0	\$0.00	\$0	\$280.81
220150 WAT HPS - METAL COLUMN	1	733	733		\$426.02	\$426	\$9.40	\$435	\$435.42
221100 WAT HPS - OVERHEAD	27	485	13,095		\$285.36	\$7,705	\$168.01	\$7,873	\$291.58
222100 WAT HPS - TRAFFIC COLUMN	0	485	0		\$247.29	\$0	\$0.00	\$0	\$253.51
223100 WATT HPS - METAL COLUMN	31	485	15,035		\$401.91	\$12,459	\$192.90	\$12,652	\$408.13
224100 W HPS - POST TOP	211	485	102,335		\$273.65	\$57,740	\$1,312.99	\$59,053	\$279.87
225100 W HPS - POST TOP WASH	117	485	56,745		\$366.45	\$42,875	\$728.06	\$43,603	\$372.67
226150 W HPS- POST TOP BALL	0	733	0		\$344.34	\$0	\$0.00	\$0	\$353.74
227150 W HPS - POST TOP WASH	247	733	181,051		\$384.53	\$94,979	\$2,322.94	\$77,302	\$393.93
228 12' FG TRAD COL PAIRED W/LT	336	0	0		\$80.74	\$27.129	\$0.00	\$27,129	\$80.74
232 1-150 \& 4-100 WATT HPS - CLUSTER	0	2,672	0		\$851.22	\$0	\$0.00	\$0	\$885.50
233400 WATT HPS-METAL COLUMN-PAINTED BRONZE	0	1,848	0		\$533.24	\$0	\$0.00	\$0	\$556.95
234400 WATT HPS-TRAFFIC COLUMN-PAINT BRONZE	0	1,848	0		\$298.00	\$0	\$0.00	\$0	\$321.71
235250 WATT HPS-METAL COLUMN-PAINTED BRONZE	0	1,194	0		\$492.10	\$0	\$0.00	\$0	\$507.42
236250 WATT HPS-TRAFFIC COLUMN-PAINT BRONZE	0	1,194	0		\$247.77	\$0	\$0.00	\$0	\$263.09
$23712{ }^{\prime}$ FG FLUTED COL CUST BASE PAIRED W/LT	0	0	0		\$163.60	\$0	\$0.00	\$0	\$163.60
238100 WATT HPS - FIBERGLASS COLUMN	2	485	970		\$324.01	\$648	\$12.45	\$660	\$330.23
239150 WAT HPS - FIBERGLASS COLUMN	13	733	9,529		\$352.02	\$4,576	\$122.26	\$4,699	\$361.42
240250 WATT HPS - FIBERGLASS COLUMN	0	1,194	0		\$385.60	\$0	\$0.00	\$0	\$400.92
241400 WATT HPS - FIBERGLASS COLUMN	1	1,848	1,848		\$435.72	\$436	\$23.71	\$459	\$459.43
242 14' AL FLUTED COL CUST BASE PAIRED W/LT	52	0	0		\$189.25	\$9,841	\$0.00	\$9,841	\$189.25
24314 FG FLUTED COL DIRECT BURY PAIRED W/LT	14	0	0		\$166.20	\$2,327	\$0.00	\$2,327	\$166.20
24414 FG SMOOTH COL DIRECT BURY PAIRED W/LT	88	0	0		\$142.91	\$12,576	\$0.00	\$12,576	\$142.91
245150 WAT HPS UPASS 4100HRS -WALL MOUNTED	0	733	0		\$253.32	\$0	\$0.00	\$0	\$262.72
246250 W HPS - SHOEBOX	0	1,194	0		\$381.81	\$0	\$0.00	\$0	\$397.13
248 2-250 W HPS-SHOEBOX	0	2,388	0		\$426.02	\$0	\$0.00	\$0	\$456.66
250400 WATT HPS UPASS 8760HRS WALL MOUNTED	0	4,108	0		\$448.84	\$0	\$0.00	\$0	\$501.55
251150 WATT HPS UPASS 8760HRS WALL MOUNTED	0	1,629	0		\$284.88	\$0	\$0.00	\$0	\$305.78
254 AL COL W/BASE PAIRED W/LT	122	0	0		\$202.25	\$24,675	\$0.00	\$24,675	\$202.25
255 AL COL ON CUST OWNED BASE PAIRED W/LT	1	0	0		\$112.65	\$113	\$0.00	\$113	\$112.65
265400 W HPS - SHOEBOX	,	1,848	1,848		\$432.64	\$433	\$23.71	\$456	\$456.35
266 2-400 W HPS-SHOEBOX	0	3,697			\$609.96	\$0	\$0.00	\$0	\$657.39
269 AL COL BZ W/BASE PAIRED W/LT	0	0	0		\$220.58	\$0	\$0.00	\$0	\$220.58
270 AL COL BZ ON CUST BASE PAIRED W/LT	0	0	0		\$131.09	\$0	\$0.00	\$0	\$131.09
278 FG COL DIRECT BURY PAIRED W/LT	104	0	0		\$120.93	\$12,577	\$0.00	\$12,577	\$120.93
385 PEDESTRIAN LIGHT FOR CIRCLE CENTRE MALL	0	1,880	-		\$401.79	\$0	\$0.00	\$0	\$425.91
38680 W LED POST TOP	0	320	0		\$622.44	\$0	\$0.00	\$0	\$626.55
396 WD POLE W/OH FEED-W/OR W/O LT	923	0	0		\$87.00	\$80,301	\$0.00	\$80,301	\$87.00
397 WD POLE W/UG FEED-PAIRED W/LT	109	0	0		\$110.17	\$12,009	\$0.00	\$12,009	\$110.17

Lighting Revenue Proof

Code Description	Inventory (Light Count)	kWh per Light	Total kWh	Separately Metered	Current Annual Base Rate	Current Base Revenue	ProForma Adjustments	Current Revenue Proforma @ Present Rates	Current Rate with ECCR, RTO, DSM, CAP, TDSIC, and Fuel (Base Fuel and FCA)
Customer Installed, Owned, and Maintained (MU-1)									
531000 WATT MV - CUSTOMER OWNED	0	4,315	0		\$202.68	\$0	\$0.00	\$0	\$258.04
54400 WATT MV - CUSTOMER OWNED	0	1,880	0		\$108.84	\$0	\$0.00	\$0	\$132.96
55250 WATT MV - CUSTOMER OWNED	2	1,210	2,420		\$139.60	\$279	\$31.05	\$310	\$155.12
56175 WATT MV - CUSTOMER OWNED	26	832	21,632		\$87.71	\$2,280	\$277.55	\$2,558	\$98.38
59400 WATT HPS - CUSTOMER OWNED	477	1,848	881,496		\$133.93	\$63.885	\$11,309.88	\$75,194	\$157.64
60250 WATT HPS - CUSTOMER OWNED	270	1,194	322,380		\$106.74	\$28,820	\$4,136.24	\$32,956	\$122.06
61150 WATT HPS - CUSTOMER OWNED	253	733	185,449		\$81.45	\$20,607	\$2,379.37	\$22,986	\$90.85
631000 WATT HPS - CUSTOMER OWNED	276	4,355	1,201,980		\$276.84	\$76,408	\$15,421.80	\$91,830	\$332.72
64175 WATT MV ORNIMENTAL - CUSTOMER OWNED	2	832	1,664		\$134.76	\$270	\$21.35	\$291	\$145.43
109400 WAT HPS-CUSTOMER OWNED WO/MAINT	56	1,848	103,488		\$115.14	\$6,448	\$1,327.79	\$7,776	\$138.85
111150 WAT HPS - CUSTOMER OWNED WO/MAINT	0	733	0		\$62.77	\$0	\$0.00	\$0	\$72.17
1121000 WATT HPS - CUSTOMER OWNED WO/MAINT	0	4,355	0		\$225.12	\$0	\$0.00	\$0	\$281.00
Customer Installed, Owned, but Company Maintained (MU -1)									
120400 WATT HPS - CUSTOMER OWNED W/MAINT	13	1,848	24,024		\$133.93	\$1,741	\$308.24	\$2,049	\$157.64
Total MU-1	52,994		27,246,921			\$7,868,260	\$349,587	\$8,217,847	
Customer Installed, Owned, and Maintained (MU-4)									
Total MU-4	1,312		$\underline{6,788,610}$			\$478,739	\$87,100	\$565,840	\$431.28
Grand Total Lighting (APL and MU)	103,864		77,702,101			\$16,674,912	\$996,944	\$17,671,856	
						Balanc	g Adjustment	1.000	
				Total Lighting Revenue (APL and MU) @ Pro Forma Current Rates				$\underline{\$ 17,671,479}$	

[1] Streetlighting with CIAC - City of Indianapolis
[2] Streetlighting with CIAC - All Other

AES Indiana
Lighting Rate Design

Code Description	Inventory (Light Count)	Proposed Annual Rate	Proposed Revenue
(A) (B)	(C)	(F)	(G)
APL			
Company Installed, Owned, and Maintained (APL)			
68175 WATT LIGHT	9,251	\$125.04	\$1,156,745
69400 WATT MV REDDY SENT.	1,245	\$240.48	\$299,398
701000 WATT MV REDDY SENT.	75	\$438.96	\$32,922
71100 WATT LIGHT	6,316	\$106.92	\$675,307
72150 WATT HPS REDDY SENT.	975	\$221.88	\$216,333
73250 WATT HPS REDDY SENT.	1,027	\$297.72	\$305,758
74400 WATT HPS REDDY SENT.	1,115	\$351.48	\$391,900
78175 WATT MV - SEC. METERED - OVERHEAD	68	\$81.72	\$5,557
79400 WATT MV - SEC. METERED OVERHEAD	16	\$158.52	\$2,536
801000 WATT MV - SEC. METERED - OVERHEAD	1	\$245.76	\$246
81100 WATT HPS - SEC. METERED - OVERHEAD	19	\$84.72	\$1,610
82150 WATT HPS - SEC. METERED - OVERHEAD	1	\$193.80	\$194
83250 WATT HPS - SEC. METERED - OVERHEAD	2	\$244.92	\$490
84400 WATT HPS - SEC. METERED - OVERHEAD	12	\$270.12	\$3,241
85 ENERGY AND CONTROL ONLY	1	\$47.88	\$48
86400 WATT MV FLOOD - OVERHEAD	495	\$240.72	\$119,156
87150 WATT HPS FLOOD - OVERHEAD	490	\$222.36	\$108,956
88250 WATT HPS FLOOD - OVERHEAD	707	\$297.84	\$210,573
89400 WATT HPS FLOOD - OVERHEAD	5,792	\$351.54	\$2,036,120
90400 WATT METAL HALIDE FLOOD - OVERHEAD	1,044	\$350.16	\$365,567
91400 WATT MV FLOOD - SEC. METERED	6	\$158.52	\$951
92150 WATT HPS FLOOD - SEC. METERED	1	\$193.80	\$194
93250 WATT HPS FLOOD - SEC. METERED	6	\$244.92	\$1,470
94400 WATT HPS FLOOD - SEC. METERED	36	\$270.12	\$9,724
95400 WATT METAL HALIDE FLOOD-SEC. METERED	2	\$270.12	\$540
96 - WOOD POLE WITH OVERHEAD FEED -	7,555	\$55.08	\$416,129
97 - WOOD POLE WITH UNDERGROUND FEED -	815	\$136.20	\$111,003
1261000 WATT MV - 1ST FIXTURE	0	\$62.76	\$0
127400 WATT MV-1ST FIXTURE	13	\$342.12	\$4,448
128175 WATT MV-1ST FIXTURE	3	\$267.12	\$801
129400 WATT HPS-IST FIXTURE	133	\$483.84	\$64,351
130250 WATT HPS-1ST FIXTURE	202	\$324.84	\$65,618
131150 WATT HPS-1ST FIXTURE	182	\$275.40	\$50,123
132100 WATT HPS-1ST FIXTURE	32	\$250.32	\$8,010
135400 WATT HPS-1ST FIXTURE-SHOEBOX	91	\$406.68	\$37,008
136250 WATT HPS-1ST FIXTURE-SHOEBOX	103	\$326.88	\$33,669
137400 WATT METAL HALIDE-1ST FIX-SHOEBOX	370	\$405.12	\$149,894
138400 WATT MV-IST FIXTURE-FLOOD	3	\$342.12	\$1,026
139150 WATT HPS-1ST FIXTURE-FLOOD	12	\$275.40	\$3,305
140250 WATT HPS-1ST FIXTURE-FLOOD	63	\$324.84	\$20,465
141400 WATT HPS-1ST FIXTURE-FLOOD	237	\$483.84	\$114,670
142400 WATT METAL HALIDE-1ST FIX-FLOOD	89	\$405.12	\$36,056
1431000 WATT MV - ADDITIONAL FIXTURE	0	\$62.76	\$0
144400 WATT MV-ADDIT'L FIXTURE	1	\$240.48	\$240

AES Indiana

Lighting Rate Design

145175 WATT MV-ADDIT'L FIXTURE
146400 WATT HPS-ADDIT'L FIXTURE
147250 WATT HPS-ADDIT'L FIXTURE
48150 WATT HPS-ADDIT'L FIXTURE
49100 WATT HPS-ADDIT'L FIXTURE
152400 WATT HPS-ADDIT'L FIXTURE-SHOEBOX
153250 WATT HPS-ADDIT'L FIXTURE-SHOEBOX
154400 WATT METAL HALIDE-ADDT'L FIX-SHOEBOX
155400 WATT MV-ADDIT'L FIXTURE-FLOOD
156150 WATT HPS-ADDIT'L FIXTURE-FLOOD
157250 WATT HPS-ADDIT'L FIXTURE-FLOOD
158400 WATT HPS-ADDIT'L FIXTURE-FLOOD
159400 WATT METAL HALIDE-ADDT'L FIX-FLOOD
60175 W MV POST TOP WASH
61175 W MV POST TOP
162100 W HPS POST TOP WASH
63100 W HPS POST TOP
164150 W HPS POST TOP WASH
65150 W HPS POST TOP BALL
180250 WATT MET HAL 18 FT DIR EMBEDDED
181250 WATT MET HAL 12 FT ANCHOR BASED
182 2-250 WATT MET HAL 18 FT DIR EMBEDDED 183 2-250 WATT MET HAL 12 FT ANCHOR BASED 188250 WATT MET HAL 18 FT DIR EMBED PRI METER 89250 WATT MET HAL 12 FT ANCHOR BASE PRI METER 190 2-250 WATT MET HAL 18 FT DIR EMBED PRI METER 191 2-250 WATT MET HAL 12 FT ANCHOR BASE PRI METER 271100 WATT LIGHT
272150 WATT HPS REDDY SENT
273250 WATT HPS REDDY SENT.
274400 WATT HPS REDDY SENT
287150 WATT HPS FLOOD - OVERHEAD 288250 WATT HPS FLOOD - OVERHEAD 289400 WATT HPS FLOOD - OVERHEAD 296 - WOOD POLE WITH OVERHEAD FEED 297 - WOOD POLE WITH UNDERGROUND FEED 300 LED COBRA HEAD 5000-6000 LUMENS 301 LED COBRA HEAD 6500-7500 LUMEN 302 LED COBRA HEAD 12500-13500 LUMENS 303 LED COBRA HEAD 20000-21500 LUMENS 304 LED AREA LIGHT $11500-16500$ LUMENS 305 LED AREA LIGHT 21000-26000 LUMENS 306 LED TRAD. POST TOP 6000-7500 LUMENS 307 LED TWIN WASH POST TOP 2 @ $6000-7500$ 308 LED WASH POST TOP 6000-7500 LUMENS 313 LED FLOOD 11,500-16,500 LUMENS 314 LED FLOOD 21,000-26,000 LUMENS 328 12' FG TRAD COL PAIRED W/LT 329400 WATT HPS-1ST FIXTURE 330250 WATT HPS-1ST FIXTURE 331150 WATT HPS-1ST FIXTURE 332100 WATT HPS-1ST FIXTURE 333400 WATT HPS - IST FIXTURE PAINTED BRONZ 334250 WATT HPS - IST FIXTURE PAINTED BRONZ

$\$ 125.04$	$\$ 250$
$\$ 351.48$	$\$ 17,223$
$\$ 297.72$	$\$ 4,764$
$\$ 221.88$	$\$ 3,106$
$\$ 106.92$	$\$ 321$
$\$ 164.40$	$\$ 2,630$
$\$ 124.44$	$\$ 1,120$
$\$ 162.84$	$\$ 17,912$
$\$ 240.48$	$\$ 481$
$\$ 221.88$	$\$ 1,997$
$\$ 297.72$	$\$ 16,375$
$\$ 351.48$	$\$ 91,033$
$\$ 162.84$	$\$ 30,125$
$\$ 398.40$	$\$ 15,936$
$\$ 260.28$	$\$ 7,548$
$\$ 383.76$	$\$ 21,874$
$\$ 249.24$	$\$ 101,441$
$\$ 443.40$	$\$ 50,548$
$\$ 308.76$	$\$ 18,526$
$\$ 726.96$	$\$ 2,181$
$\$ 795.84$	$\$ 8,754$
$\$ 1,015.68$	$\$ 7,110$
$\$ 1,084.20$	$\$ 0$
$\$ 662.40$	$\$ 0$
$\$ 731.04$	$\$ 0$
$\$ 894.12$	$\$ 90$
$\$ 963.12$	$\$ 0$
$\$ 211.20$	$\$ 428,314$
$\$ 242.16$	$\$ 39,230$
$\$ 293.40$	$\$ 95,942$
$\$ 360.84$	$\$ 79,746$
$\$ 248.88$	$\$ 17,670$
$\$ 298.92$	$\$ 36,767$
$\$ 365.04$	$\$ 593,190$
$\$ 94.32$	$\$ 136,670$
$\$ 119.28$	$\$ 10,974$
$\$ 227.52$	$\$ 169,502$
$\$ 234.00$	$\$ 19,890$
$\$ 288.60$	$\$ 23,377$
$\$ 337.08$	$\$ 70,113$
$\$ 316.08$	$\$ 0$
$\$ 355.08$	$\$ 19,529$
$\$ 286.08$	$\$ 1,430$
$\$ 707.52$	$\$ 0$
$\$ 385.92$	$\$ 0$
$\$ 308.52$	$\$ 14,809$
$\$ 344.64$	$\$ 419,082$
$\$ 87.36$	$\$ 175$
$\$ 499.80$	$\$ 897$
$\$ 432.60$	$\$ 10,815$
$\$ 387.12$	$\$ 5,807$
$\$ 351.96$	$\$ 605.40$
$\$ 547.92$	$\$ 0$

AES Indiana

Lighting Rate Design
335400 WATT HPS-1ST FIXTURE-SHOEBOX
336250 WATT HPS-1ST FIXTURE-SHOEBOX
337 12' FG FLUTED COL CUST BASE PAIRED W/LT
339150 WATT HPS-1ST FIXTURE-FLOOD
340250 WATT HPS-IST FIXTURE-FLOOD
341400 WATT HPS-1ST FIXTURE-FLOOD
342 14' AL FLUTED COL CUST BASE PAIRED W/LT
34314 FG FLUTED COL DIRECT BURY PAIRED W/LT 34414 FG SMOOTH COL DIRECT BURY PAIRED W/LT 346400 WATT HPS-ADDIT'L FIXTURE
347250 WATT HPS-ADDIT'L FIXTURE
348150 WATT HPS-ADDIT'L FIXTURE
349100 WATT HPS-ADDIT'L FIXTURE
350400 WATT HPS -ADDITIONAL FIXTURE-PAINTED
351250 WATT HPS -ADDITIONAL FIXTURE-PAINTED
352400 WATT HPS-ADDIT'L FIXTURE-SHOEBOX
353250 WATt HPS-ADDIT'L FIXTURE-SHOEBOX
354 AL COL W/BASE PAIRED W/LT
355 AL COL ON CUST OWNED BASE PAIRED W/LT 356150 WATT HPS-ADDIT'L FIXTURE-FLOOD 357250 WATT HPS-ADDIT'L FIXTURE-FLOOD 358400 WATT HPS-ADDIT'L FIXTURE-FLOOD 362100 W HPS POST TOP WASH 363100 W HPS POST TOP 364150 W HPS POST TOP WASH 365150 W HPS POST TOP BALL 369 AL COL BZ W/BASE PAIRED W/LT 370 AL COL BZ ON CUST BASE PAIRED W/LT 378 FG COL DIRECT BURY PAIRED W/LT 380250 WATT MET HAL 18 FT DIR EMBEDDED 381250 WATT MET HAL 12 FT ANCHOR BASED 382 2-250 WATT MET HAL 18 FT DIR EMBEDDED 383 2-250 WATT MET HAL 12 FT ANCHOR BASED 388250 WATT MH 18 FT DIR EMBED PRI METER 389250 WATT MH 12 FT ANCHOR BASE PRI METER 390 2-250 WATT MH 18 FT DIR EMBED PRI METER 391 2-250 WATT MH 12 FT ANCHOR BASE PRI MTR

13	$\$ 496.56$	$\$ 6,455$
10	$\$ 428.40$	$\$ 4,284$
0	$\$ 177.00$	$\$ 0$
4	$\$ 499.44$	$\$ 1,998$
2	$\$ 536.76$	$\$ 1,074$
79	$\$ 583.92$	$\$ 46,130$
0	$\$ 17.04$	$\$ 0$
0	$\$ 179.76$	$\$ 0$
0	$\$ 154.68$	$\$ 0$
35	$\$ 370.20$	$\$ 12,957$
9	$\$ 302.88$	$\$ 2,726$
1	$\$ 257.52$	$\$ 258$
0	$\$ 226.44$	$\$ 0$
0	$\$ 360.36$	$\$ 0$
0	$\$ 302.88$	$\$ 0$
0	$\$ 363.36$	$\$ 0$
0	$\$ 295.20$	$\$ 0$
40	$\$ 218.76$	$\$ 8,750$
8	$\$ 121.92$	$\$ 975$
0	$\$ 264.84$	$\$ 0$
2	$\$ 314.76$	$\$ 630$
140	$\$ 381.00$	$\$ 53,340$
20	$\$ 397.68$	$\$ 7,954$
5	$\$ 297.36$	$\$ 1,487$
28	$\$ 422.28$	$\$ 11,824$
0	$\$ 378.72$	$\$ 0$
0	$\$ 238.68$	$\$ 0$
29	$\$ 141.72$	$\$ 4,110$
74	$\$ 130.80$	$\$ 9,679$
88	$\$ 504.96$	$\$ 44,436$
140	$\$ 502.08$	$\$ 70,291$
80	$\$ 746.16$	$\$ 59,693$
13	$\$ 743.28$	$\$ 9,663$
32	$\$ 404.76$	$\$ 12,952$
16	$\$ 401.88$	$\$ 6,430$
17	$\$ 545.88$	$\$ 9,280$
9	$\$ 543.00$	$\$ 4,887$

Total APL \qquad

Company Installed, Owned, and Maintained (MU-1)

1000 WATT MV - OVERHEAD
$\$ 370.20 \quad \$ 370$

21000 WATT MV - TRAFFIC COLUMN
\$370
1000 WATI MV - METAL COLUMN
$\$ 33.84$
$\$ 512.52$
$\$ 195.72$
$\begin{array}{ll}\$ 178.44 & \$ 3,132\end{array}$
4400 WATT MV - OVERHEAD
$\$ 178.44$
5400 WATT MV - TRAFFIC COLUMN
$\$ 262.20 \quad \$ 37.757$
6400 WATT MV - METAL COLUMN
$\$ 129.36$
$\$ 120.00 \quad \$ 57,695$
$\$ 202.20 \quad \$ 135,474$
$\$ 197.16 \quad \$ 93,848$
8175 WATT MV - TRAFFIC COLUMN
\$300.24

AES Indiana

Lighting Rate Design

12400 WATT HPS - OVERHEAD
13400 WATT HPS - TRAFFIC COLUMN
14400 WATT HPS - METAL COLUMN
15250 WATT HPS - OVERHEAD
16250 WATT HPS - TRAFFIC COLUMN
17250 WATT HPS - METAL COLUMN
18150 WATT HPS - OVERHEAD
19150 WATT HPS - TRAFFIC COLUMN
20150 WATT HPS - METAL COLUMN
21100 WATT HPS - OVERHEAD
22100 WATT HPS - TRAFFIC COLUMN
23100 WATT HPS - METAL COLUMN
24100 W HPS - POST TOP
25100 W HPS - POST TOP WASH
27150 W HPS - POST TOP WASH
28 3-150 WATT HPS-1 COLUMN CLUSTER W/BALAST
29 3-150 WATT HPS-2 COLUMN CLUSTER N/BALAST
30 3-150 WATT HPS-2 COLUMN CLUSTER W/BALAST
32 1-150 \& 4-100 WATT HPS - CLUSTER
33400 WATT HPS-METAL COLUMN-PAINTED BRONZE
34400 WATT HPS-TRAFFIC COLUMN-PAINT BRONZE
35250 WATT HPS-METAL COLUMN-PAINTED BRONZE
37175 WATT MV - FIBERGLASS COLUMN
38100 WATT HPS - FIBERGLASS COLUMN
39150 WATT HPS - FIBERGLASS COLUMN
40250 WATT HPS - FIBERGLASS COLUMN
41400 WATT HPS - FIBERGLASS COLUMN
42400 WATT MH SHOEBOX - FIBERGLASS COLUMN
43 2-400 WATT MH SHOEBOX-FIBERGLASS COLUMN
44175 WATT MV UPASS 4100 HRS - WALL MOUNTED
45150 WATT HPS UPASS $4100 H R S$-WALL MOUNTED
46250 W HPS - SHOEBOX
48 2-250 W HPS-SHOEBOX
50400 WATT HPS UPASS 8760 HRS WALL MOUNTED
51150 WATT HPS UPASS 8760HRS WALL MOUNTED
65400 W HPS - SHOEBOX
66 2-400 W HPS-SHOEBOX
101400 WATT METAL HALIDE - METAL COLUMN 184 EXCESS MATERIAL FOR CIRCLE CENTRE MALL 185 PEDESTRIAN LIGHT FOR CIRCLE CENTRE MALL 187 TWIN 80W LED POST TOP

240	\$225.36	\$54,086
65	\$225.36	\$14,648
552	\$367.68	\$202,959
505	\$178.92	\$90,355
36	\$178.92	\$6,441
619	\$246.72	\$152,720
491	\$138.00	\$67,758
7	\$138.00	\$966
472	\$208.08	\$98,214
796	\$115.56	\$91,986
1	\$115.56	\$116
517	\$188.40	\$97,403
5,857	\$187.30	\$1,097,016
1,703	\$287.64	\$489,851
21	\$228.72	\$4,803
3,037	\$332.75	\$1,010,562
0	\$547.44	\$0
0	\$547.44	\$0
0	\$547.44	\$0
1	\$767.76	\$768
74	\$398.04	\$29,455
8	\$230.40	\$1,843
1	\$277.08	\$277
6	\$193.20	\$1,159
103	\$179.40	\$18,478
155	\$198.84	\$30,820
124	\$237.60	\$29,462
159	\$343.44	\$54,607
103	\$315.48	\$32,494
48	\$450.00	\$21,600
0	\$152.76	\$0
192	\$177.48	\$34,076
10	\$248.16	\$2,482
0	\$319.92	\$0
85	\$419.64	\$35,669
101	\$239.64	\$24,204
43	\$310.20	\$13,339
15	\$439.92	\$6,599
0	\$366.24	\$0
1	\$6,141.60	\$6,142
47	\$794.40	\$37,337
53	\$773.28	\$40,984
1,226	\$227.64	\$279,087
462	\$233.76	\$107,997
460	\$284.52	\$130,879
171	\$329.64	\$56,368
0	\$307.08	\$0
31	\$343.20	\$10,639
336	\$279.36	\$93,865
35	\$674.40	\$23,604
138	\$372.96	\$51,468
4	\$443.28	\$1,773
0	\$402.96	\$0
32	\$567.48	\$18,159

AES Indiana

Lighting Rate Design

215250 WATT HPS - OVERHEAD
216250 WATT HPS - TRAFFIC COLUMN
217250 WATT HPS - METAL COLUMN
218150 WATT HPS - OVERHEAD
219150 WATT HPS - TRAFFIC COLUMN
220150 WATT HPS - METAL COLUMN
221100 WATT HPS - OVERHEAD
222100 WATT HPS - TRAFFIC COLUMN
223100 WATT HPS - METAL COLUMN
224100 W HPS - POST TOP
225100 W HPS - POST TOP WASH
226150 W HPS- POST TOP BALL
227150 W HPS - POST TOP WASH
228 12' FG TRAD COL PAIRED W/LT
232 1-150 \& 4-100 WATT HPS - CLUSTER
233400 WATT HPS-METAL COLUMN-PAINTED BRONZE
234400 WATT HPS-TRAFFIC COLUMN-PAINT BRONZE
235250 WATT HPS-METAL COLUMN-PAINTED BRONZE
236250 WATT HPS-TRAFFIC COLUMN-PAINT BRONZE
237 12' FG FLUTED COL CUST BASE PAIRED W/LT
238100 WATT HPS - FIBERGLASS COLUMN
239150 WATT HPS - FIBERGLASS COLUMN
240250 WATT HPS - FIBERGLASS COLUMN
241400 WATT HPS - FIBERGLASS COLUMN
242 14' AL FLUTED COL CUST BASE PAIRED W/L
24314 FG FLUTED COL DIRECT BURY PAIRED W/LT
24414 FG SMOOTH COL DIRECT BURY PAIRED W/LT
245150 WATT HPS UPASS 4100HRS -WALL MOUNTED
246250 W HPS - SHOEBOX
250400 WATT HPS UPASS 8760HRS WALL MOUNTED
250400 WATT HPS UPASS 8760 HRS WALL MOUNTED 254 AL COL W/BASE PAIRED W/I
255 AL COL ON CUST OWNED BASE PAIRED W/LT 265400 W HPS - SHOEBOX
266 2-400 W HPS-SHOEBOX
269 AL COL BZ W/BASE PAIRED W/LT
270 AL COL BZ ON CUST BASE PAIRED W/LT
278 FG COL DIRECT BURY PAIRED W/LT 385 PEDESTRIAN LIGHT FOR CIRCLE CENTRE MALL 386 80W LED POST TOP

25	$\$ 381.12$	$\$ 9,528$
0	$\$ 340.56$	$\$ 0$
42	$\$ 505.20$	$\$ 21,218$
12	$\$ 339.12$	$\$ 4,069$
0	$\$ 298.68$	$\$ 0$
1	$\$ 463.20$	$\$ 463$
27	$\$ 310.20$	$\$ 8,375$
0	$\$ 269.64$	$\$ 0$
31	$\$ 434.16$	$\$ 13,459$
211	$\$ 297.72$	$\$ 62,819$
117	$\$ 396.48$	$\$ 46,388$
0	$\$ 376.32$	$\$ 0$
247	$\$ 419.04$	$\$ 103,503$
336	$\$ 85.92$	$\$ 28,869$
0	$\$ 942.00$	$\$ 0$
0	$\$ 592.44$	$\$ 0$
0	$\$ 342.24$	$\$ 0$
0	$\$ 539.76$	$\$ 0$
0	$\$ 279.84$	$\$ 0$
0	$\$ 174.00$	$\$ 0$
2	$\$ 351.24$	$\$ 702$
13	$\$ 384.48$	$\$ 4,998$
0	$\$ 426.48$	$\$ 0$
1	$\$ 488.76$	$\$ 489$
52	$\$ 201.36$	$\$ 10,471$
14	$\$ 176.76$	$\$ 2,475$
88	$\$ 152.04$	$\$ 13,380$
0	$\$ 279.48$	$\$ 0$
0	$\$ 422.52$	$\$ 0$
0	$\$ 485.76$	$\$ 0$
0	$\$ 533.52$	$\$ 0$
0	$\$ 325.32$	$\$ 0$
122	$\$ 215.16$	$\$ 26,250$
1	$\$ 119.88$	$\$ 120$
1	$\$ 485.52$	$\$ 486$
0	$\$ 699.36$	$\$ 0$
0	$\$ 234.60$	$\$ 0$
0	$\$ 139.44$	$\$ 0$
104	$\$ 128.64$	$\$ 13,379$
0	$\$ 453.12$	$\$ 0$
0	$\$ 666.48$	$\$ 0$
923	$\$ 92.52$	$\$ 85,396$
109	$\$ 117.24$	$\$ 12,779$
0		
0		

AES Indiana

Lighting Rate Design
Streetlighting with CIAC
400 LED COBRA HEAD 5000-6000 LUMENS $\quad 14,633 \quad \$ 114.72 \quad \$ 1,678,698$ 401 LED COBRA HEAD 6500-7500 LUMENS
402 LED COBRA HEAD 12500-13500 LUMENS
403 LED COBRA HEAD 20000-21500 LUMENS
$\begin{array}{lll}2,120 & \$ 119.16 & \$ 252,619\end{array}$

405 LED AREA LIGHT 21000-26000 LUMENS
$\$ 137.16 \quad \$ 958,063$
$\$ 158.52 \quad \$ 630,117$
$\$ 136.92 \quad \$ 4.518$
$\$ 162.60 \quad \$ 976$
$\$ 123.84 \quad \$ 4,954$
$\begin{array}{lr}\$ 141.72 & \$ 4,95\end{array}$
406 LED TRAD. POST TOP 6000-7500 LUMENS
$\begin{array}{lr}\$ 121.72 & \$ 0 \\ \$ 120.00 & \$ 19,440\end{array}$
$\begin{array}{lr}\$ 120.00 & \$ 19,440 \\ \$ 250.92 & \$ 3011\end{array}$
$\$ 250.92 \quad \$ 3,01$
$\begin{array}{lr}\$ 386.52 & \$ 773 \\ \$ 232.80 & \$ 2,794\end{array}$
$\$ 228.60 \quad \$ 16,459$
411 LED COBRA 6500-7500 L-OH FROM 218
412 LED COBRA 5000-6000 L-OH FROM 221

$\$ 165.00$	$\$ 330$
$\$ 104.64$	$\$ 2.721$

55250 WATT MV - CUSTOMER OWNED
$\$ 104.64 \quad \$ 2,721$

59400 WATT HPS CUSTOMER OWNED
$\$ 167.64 \quad \$ 79.964$
$\begin{array}{ll}\$ 167.64 & \$ 79,964 \\ \$ 129.84\end{array}$
$\begin{array}{ll}\$ 129.84 \\ \$ 96.60 & \$ 35,05 \\ \$ 24.440\end{array}$
$\begin{array}{rr}\$ 96.60 & \$ 24,440 \\ \$ 354.00 & \$ 97,704\end{array}$
$\$ 154.68 \quad \$ 309$
$\$ 147.72 \quad \$ 8,272$
$\$ 76.80$ \$0

61150 WATT HPS - CUSTOMER OWNED
$\$ 298.92$

Code	Description	Inventory	Proposed Price Per Waft	Proposed Revenue

Customer Installed, Owned, and Maintained (MU-4)

Total MU-4	1,312	\$	0.78	\$604,465
MU-4 Watts	774,956			
Total MU	54,306			\$9,959,555
			Target	\$9,959,616
	Over	Un	covery	(\$61)

Grand Total Lighting (APL and MU) 103,864 \qquad
Code Description Minimum Minimum Per

Customer Installed, Owned, and Maintained (MU-4)
\qquad

AES Indiana

Rate Design Summary

AES Indiana
 Rate Design Summary

Test Year Ended December 31, 2022

All kW $\$$
14.59 \$
15.54

2

Customer Charge
All Customers $\$ 492.51 \$$

AES Indiana

Proposed Rates - Residential Bill Impacts - RS Customers
Test year Ending December 31, 2022
Proposed Rates

Energy Charge		Including Fuel		Including Fuel \& DSM		Excluding Fuel		
		Current Rate [1]	Proposed Rate	Current Rate [1]	Proposed Rate		Current Rate	Proposed Rate
First 500 kWh		\$ 0.120706	\$ 0.129954	\$ 0.123440	\$ 0.132688	\$	0.081961	\$ 0.093168
Over 500 kWh	500	\$ 0.105241	\$ 0.114489	\$ 0.107975	\$ 0.117223		0.066496	\$ 0.077703

[1] Includes riders rolled into base rates (TDISC, ECCR, DSM, CAP, RTO and FCA)

Customer Charge									
0 to 325 kWh		\$	12.31	\$	16.50	\$	12.31	\$	16.50
Over 325 kWh	325	\$	16.75	\$	25.00	\$	16.75	\$	25.00

DSM Charge (\$/kWh)	$\$ 0.002734$

Bill Impacts for RS Customers

Line No.	Bill Impacts for RS Customers															
	Monthly kWh	\% of Customers	Including Fuel \& DSM						Excluding Fuel							
			Monthly Margin or Base Rate		Increase / <Decrease>				Monthly Total Bill				Increase / <Decrease>			
			Present Rates	Proposed Rates		Amount	Percent	Proposed $\not \subset / k W h$		Present Rates		Proposed Rates		Amount	Percent	Proposed $\not \subset / k W h$
	(A)	(B)	(C)	(D)		(E)	(F)	(G)		(H)		(I)		(J)	(K)	(L)
1	100	4.63\%	\$ 24.65	\$ 29.77	\$	5.12	20.77\%	0.29770	\$	20.51	\$	25.82	\$	5.31	25.89\%	0.25820
2	200	4.36\%	37.00	43.04		6.04	16.32\%	0.21520		28.70		35.13		6.43	22.40\%	0.17565
3	400	15.29\%	66.13	78.08		11.95	18.07\%	0.19520		49.53		62.27		12.74	25.72\%	0.15568
4	600	20.59\%	89.27	103.06		13.79	15.45\%	0.17177		64.38		79.35		14.97	23.25\%	0.13225
5	800	18.66\%	110.86	126.51		15.65	14.12\%	0.15814		77.68		94.89		17.21	22.15\%	0.11861
6	1,000	13.29\%	132.46	149.95		17.49	13.20\%	0.14995		90.98		110.43		19.45	21.38\%	0.11043
7	1,200	8.69\%	154.05	173.40		19.35	12.56\%	0.14450		104.28		125.97		21.69	20.80\%	0.10498
8	1,500	7.23\%	186.45	208.56		22.11	11.86\%	0.13904		124.23		149.28		25.05	20.16\%	0.09952
9	1,800	3.45\%	218.84	243.73		24.89	11.37\%	0.13541		144.17		172.59		28.42	19.71\%	0.09588
10	2,000	1.30\%	240.43	267.17		26.74	11.12\%	0.13359		157.47		188.13		30.66	19.47\%	0.09407
11	2,400	1.30\%	283.62	314.06		30.44	10.73\%	0.13086		184.07		219.22		35.15	19.10\%	0.09134
12	2,700	0.46\%	316.02	349.23		33.21	10.51\%	0.12934		204.02		242.53		38.51	18.88\%	0.08983
13	3,000	0.28\%	348.41	384.40		35.99	10.33\%	0.12813		223.97		265.84		41.87	18.69\%	0.08861
14	4,000	0.32\%	456.38	501.62		45.24	9.91\%	0.12541		290.47		343.54		53.07	18.27\%	0.08589
15	5,000	0.08\%	564.36	618.84		54.48	9.65\%	0.12377		356.96		421.24		64.28	18.01\%	0.08425
16	7,000	0.05%	780.31	853.29		72.98	9.35\%	0.12190		489.95		576.65		86.70	17.70\%	0.08238
17	>7,000	0.03\%														
Average																
18	748		105.27	120.43		15.16	14.40\%	0.16097		74.23		90.86		16.63	22.40\%	0.12144

AES Indiana

Proposed Rates - Residential Bill Impacts - RH/RC Customers
Test year Ending December 31, 2022
Proposed Rates

Energy Charge		Including Fuel			Including Fuel \& DSM				Excluding Fuel		
		Current Rate [1]		Proposed Rate		rent Rate [1]		Proposed Rate	Current Rate		Proposed Rate
First 500 kWh		\$ 0.120706	\$	0.129954	\$	0.123440	\$	0.132688	\$ 0.081961	\$	0.093168
Over 500 kWh	500	\$ 0.105241	\$	0.114489	\$	0.107975	\$	0.117223	\$ 0.066496	\$	0.077703
Over 1,000	1000	\$ 0.092827	\$	0.102075	\$	0.095561	\$	0.104809	\$ 0.054082	\$	0.065289

[1] Includes riders rolled into base rates (TDISC, ECCR, DSM, CAP, RTO and FCA)

0 to 325 kWh		\$	12.31	\$	16.50	\$	12.31	\$	16.50
Over 325 kWh	325	\$	16.75	\$	25.00	\$	16.75	\$	25.00

DSM Charge (\$/kWh) \$ 0.002734

Bill Impacts for RH/RC Customer

Class Cost of Service Study
Industrial Low Load Factor Scenario Analysis - Summary of Results

Line No.	Description	System Total		Residential		Secondary Small			Municipal Device		Space Conditioning		Conditioning Schools		Water Heating Controlled	
				RS		ss			MD		SH		SE		CB	
	(A)		${ }^{(B)}$		(C)		(D)					(F)		(G)		H)
Revenue Requirement at Equal Rates of Return at																
32	Required Return		7.22\%		7.22\%		7.22\%			7.22\%		7.22\%		7.22\%		7.22\%
33	Required Operating Income	\$	251,393,643	\$	124,873,061	\$	25,100,048	\$	S	38,906	\$	10,652,404	\$	222,479	\$	12,243
34	Operating Income (Deficiency)/Surplus	\$	(100, 353,024)	s	$(90,271,684)$	\$	7,591,321	\$		115,163	\$	$(4,887,381)$	\$	157,994	s	(28,655)
	Expenses at Equal Rates of Return at Proposed Rates															
35	Operations \& Maintenance Expenses	\$	519,486,335	\$	266,613,537	\$	52,781,421		\$	93,698	\$	19,548,909	\$	406,362	\$	34,791
36	Depreciation Expense		277,353,828		137,194,292		29,270,842			46,611		11,441,084		236,275		15,531
37	Amortization Expense		54,256,114		24,830,200		5,390,179			4,772		2,386,240		50,477		2,007
38	Taxes Other than Income		27,273,590		13,650,991		2,796,645			4,641		1,083,375		22,197		1,718
39	Fuel Expenses		512,591,028		202,543,435		49,177,169			35,374		19,523,247		608,107		15,388
40	Non-FAC Trackable Fuel Expenses		48,077,469		21,100,918		4,685,283			2,451		2,166,668		46,822		1,255
41	Income Taxes		47,332,498		23,511,151		4,725,847			7,325		2,005,639		41,888		2,305
42	Total Expense - Required	s	1,486,370,864	\$	689,444,524	\$	148,827,387	\$		194,872	\$	58,155,162	\$	1,412,129	\$	72,995
	Total Revenue Requirement at Equal Return	\$	1,737,764,507	\$	814,317,585	\$	173,927,435	\$	\$	233,777	\$	68,807,565	\$	1,634,607	\$	85,238
44	Revenue (Deficiency)/Surplus	S	(134,241,770)	\$	(116,092,147)	\$	8,032,870	\$		137,848	\$	(6,436,013)	s	181,730	\$	$(35,451)$
4546	Total Revenues		1,603,522,737		698,225,438		181,960,305			371,626		62,371,552		1,816,337		49,787
	Total Revenues as Proposed	\$	1,737,764,507	\$	814,317,585	\$	173,927,435	\$		233,777	\$	68,807,565	\$	1,634,607	\$	85,238
484849	Less Total Other Revenues	\$	21,391,965	\$	14,502,321	\$	1,549,019	\$		4,491	\$	531,144	\$	11,978	\$	812
	Sales for Resale		28,612,056		12,590,714		2,789,468			1,445		1,294,708		27,705		744
	Total Base Rate Revenues as Proposed	s	1,687,760,486	\$	787,224,550	\$	169,588,948	s		227,841	s	66,981,713	s	1,594,925	\$	83,682
$50 \begin{gathered}\text { Mitigation } \\ \text { Mitigation }\end{gathered}$																
		\$	0	\$	$(28,244,985)$	\$	10,346,358	\$		56,710	\$	493,693	\$	177,271	\$	(29,133)
50 51	$\xlongequal{\text { Proposed Increase Post Mitigation }}$		134,241,770		87,847,162		2,313,488			(81,138)		6,929,705		(4,459)		6,318
Revenue Requirement at Proposed Mitigated Rates																
52	Revenue Defficiency/Surplus	\$	134,241,770	\$	87,847,162	\$	2,313,488			${ }^{(81,138)}$	\$	6,929,705	\$	${ }^{(4,459)}$	\$	6,318
53	Total Revenues		1,603,522,737		698,225,438		181,960,305			371,626		62,371,552		1,816,337		49,787
	Total Revenues as Proposed	\$	1,737,764,507	\$	786,072,600	\$	184,273,793	\$		290,487	s	69,301,258	\$	1,811,878	S	56,105
55	Less Total Other Revenues	\$	21,391,965	\$	14,502,321	\$	1,549,019	\$		4,491	\$	531,144	\$	11,978	\$	812
56	Sales for Resale		28,612,056		12,590,714		2,789,468			1,445		1,294,708		27,705		744
57	Total Base Rate Revenues as Proposed	s	1,687,760,486	\$	758,979,565	\$	179,935,305	\$		284,552	\$	67,475,406	s	1,772,196	S	54,550
58	Total Margin in Base Rates	\$	201,389,622	\$	69,535,041	\$	31,107,918	\$		89,680	\$	9,320,244	\$	360,067	\$	(18,445)
59	Expenses (excl. Income Taxes)	\$	1,439,038,366	\$	665,933,372	\$	144,101,539	\$		187,547	\$	56,149,523	\$	1,370,240	\$	70,689
60	Interest Expense		84,886,000		42,164,848		8,475,325			13,137		3,596,908		75,123		4,134
61	Taxable income	\$	213,840,141	\$	77,974,380	\$	31,696,929		\$	89,804	\$	9,554,827	\$	366,516	\$	$(18,718)$
62	Income Taxes		47,332,498		17,259,258		7,015,964			19,878		2,144,915		81,127		$(4,143)$
	Operating Income as Proposed	\$	251,393,643	\$	102,879,969	\$	33,156,289	\$		83,063	\$	11,036,820	\$	360,512	\$	(10,441)
64	Return at Proposed Rates		7.22\%		5.95\%		9.54\%			15.41\%		7.48\%		11.70\%		-6.16\%
65	$\underline{\text { Index Rate of Return }}$		1.00		0.82		1.32			2.13		1.04		1.62		$\underline{ }$

Industrial Low Load Factor Scenario Analysis - Summary of Results

No. \qquad

Mitigated Revenue Requirement
(Excluding Other Revenue and Sale for
Resale Revenues)
266
Ratio of Unmitigated Revenue to Mitigated Revenue

100.00\%		95.09\%			108.76		129.72\%		101.06\%		118.50\%		56.88\%
			(28,244,985)		10,346,358		56,710		493,693		177,271		(29,133)
\$	956,237,292	\$	405,108,806	\$	99,545,666	\$	60,216	\$	44,920,774	\$	1,119,13		14,887
\$	195,012,169	\$	141,910,799	\$	28,903,408	\$	187,292		2,116,847	\$	16,515	\$	23,543
\$	23,919,997	\$	9,416,524	\$	2,309,062	\$	1,669		914,538		28,438		732
\$	512,591,028	\$	202,543,435	\$	49,177,169	\$	35,374	\$	19,523,247	\$	608,107	\$	15,388
\$	1,687,760,486	\$	758,979,565	\$	179,935,305	\$	284,552	\$	67,475,406	\$	1,772,196		54,550

268
269
270
271
272
273
$\begin{array}{ll} \\ 68 & \text { D } \\ 270 & \text { C } \\ 271 & \text { E } \\ 272 & \text { T } \\ & \end{array}$ Total Re
Demand
Customer
Energy
Fuel
Total
Toter

Billing Determinants
274
275
276
277
Demand
Customer Bills (Count *12
Energy
Fuel
Unit Costs
Demand
$\begin{array}{ll}278 & \text { Demand } \\ 279 & \text { Customer } \\ 280\end{array}$
$\begin{array}{ll}280 & \text { Eustom } \\ 281 & \text { Energy } \\ & \end{array}$
282 Demand Revenue
283 Customer Revenue
284 Energy Revenue
${ }_{286}^{285} \begin{gathered}\text { Fuet Revenue } \\ \text { Total Revenue }\end{gathered}$

Total Revenue Requirement (Excluding Fuel)
288
289
290

Demand Customer

Customer
Energy
Total
$\begin{array}{ll}292 & \text { Potal } \\ 293 & \text { Percent of Total } \\ \text { Zero-Check }\end{array}$
293 Zero-Check

Class Cost of Service Study
Industrial Low Load Factor Scenario Analysis - Summary of |

Industrial Low Load Factor Scenario Analysis - Summary of I

Functional Revenue Requirement

\$	711,021,342	\$	50,912	s	169,866,531	\$	1,156,521	\$	121,910,355	\$	1,233,129	\$	956,105	\$	727,067
\$	101,626,050	\$	7,277	s	24,278,968	\$	165,301	\$	17,424,607	\$	176,251	\$	136,656	\$	103,919
\$	51,731,452	\$	5,422	\$	10,694,844	\$	164,678	\$	7,427,190	\$	147,727	\$	195,556	\$	105,864
\$	104,562,845	\$	10,959	\$	21,617,087	\$	332,858	\$	15,012,300	\$	298,595	\$	395,270	\$	213,980
\$	18,253,723	\$	2,249	\$	4,381,724	\$		\$		\$	61,274	\$	81,112	\$	43,910
\$	-	\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$	
\$		\$	-	\$		\$		\$		s		\$		\$	
\$		\$		\$				\$	-			\$	-	\$	
\$	987,195,412	\$	76,819	\$	230,839,154	\$	1,819,358	\$	161,774,452	\$	1,916,975	\$	1,764,699	\$	1,194,742

Production
$\begin{array}{ll}199 & \begin{array}{l}\text { Procuction } \\ \text { Transmision } \\ \text { Distribution }\end{array}\end{array}$
Distribution
Distribution Primary
Distribution Secondary
Distribution Secondary
Customer
Customer Service
Customer
Customer Service
Fuel
Fustemer Expenses
Total
Total
Zero-Check

	Energy

210 Transmission
212 Distribution
Distribution Secondary
Customer
Customer
Customer Service
Fuel
Customer Service
Fuel Expenses
Total
Total
Zero-Check
$\begin{array}{ll} & \text { Fue } \\ 219 & \text { Fue } \\ 220 & \text { Tot }\end{array}$
Fuel Expenses
Total
Total
Zero-Check
Total
$\begin{array}{lll}\$ & - & \$ \\ \$ & - & \$ \\ \$ & \$ \\ \$ & 66,617,506 & \$ \\ \$ & 22,229,578 \\ \$ \\ \$ & 73,51,894 & \$ \\ \$ & 50,653,735 & \$ \\ \$ & -213, \\ \$ & 213,042,713 & \\end{array}
$\begin{array}{ll}- & \$ \\ - & \$ \\ 9,833 & \$ \\ 3,28 & \$ \\ 14,390 & \$ \\ 12,255 & \$ \\ - & \$ \\ 39,761 & \\end{array}

-	$\$$
-	$\$$
550,713	$\$$
182,451	$\$$
$1,241,833$	
$4,833,147$	
,	$\$$
$6,808,294$	$\$$

$\begin{array}{ll}- & \$ \\ - & \$ \\ -630 & \$ \\ -30 & \$ \\ 6,806 & \$ \\ 5,532 & \$ \\ -12,968 & \\end{array}
$\begin{array}{cc}- & \$ \\ - & \$ \\ 19,162 & \$ \\ 70,231 & \$ \\ 168,167 & \$ \\ -757,560 & \\end{array}
$\begin{array}{llccc}- & \$ & - & \$ & - \\ - & \$ & - & \$ & - \\ - & \$ & - & \$ & 125,960 \\ 2,647 & \$ & - & \$ & 42,088 \\ 8,84 & \$ & \$ & 8,187,239 & \$ \\ 21,44,7,017 \\ 23,234 & \$ & - & \$ & 20,451 \\ - & \$ & -, 040 \\ 34,040 & \$ & 8,187,239 & \$ & 11,635,476\end{array}$

	$24,935,353$	$\$$	2,090	$\$$
$\$$	-	$\$$	-	$\$$
$\$$	-	$\$$	-	$\$$
$\$$	-	$\$$	-	$\$$
$\$$	-	$\$$	-	$\$$
$\$$	-	$\$$	-	$\$$
$\$$	$\$$	$\$$		
$\$$	$24,935,353$	$\$$	2,090	$\$$
$\$$	$\$$	-	$\$$	

 Demand
 Production
Transmission
Production
Transmission
Distribution
$\begin{array}{ll}192 & \begin{array}{l}\text { Distribution } \\ \text { Distribution Primary }\end{array} \\ \end{array}$
193 Distribution Primary
$\begin{array}{ll}194 & \begin{array}{l}\text { Customer } \\ \text { Customer }\end{array} \\ 195\end{array}$
196 Customer Service
Total
Zero-Che
Custar

Industrial Low Load Factor Scenario Analysis - Summary of I
Line
No.

232
233
234
235
236
237
238
239
240
241
242
Biling De
Biling De
Customer Bills (Count *12)
Customer Bills (Count *12)
2 Euel
2 Euel
Unit Costs
Unit Costs
Demand
Demand
Customer
Customer
Demand Revenue
Demand Revenue
Cemand Revenue
Cemand Revenue
CN
CN
Total Revenue
Total Revenue
Adjusted Revenue Requirement Excluding Other Revenue and Sale for Resale Revenues)
243
244
245
246
247
248
249
Motal Revenue Requiremen
Motal Revenue Requiremen
Demand
Demand
Energy
Energy
Billing Determinants
Demand
251
Demand
Customer Bills (Count * ${ }^{* 12}$)
Customer
Energy
Fuel
Unit Costs
Demand
Demand
Customer
Energy
Custome
Energy
Fuel
Demand Reverue
Customer Revenue
Energy Revenue
Energy Revenue
Fuel Revenue
Fuel Revenue
Total Revenue
Total Revenue
Zero-Check
Grid Facility
Grid Facility - Revenue Requirement
Grid Facility - Revenue Re
Grid Facility - Unit Costs

$\$$	
$\$$	
$\$$	
$\$$	
$\$$	

$95.92 \% \quad 94.91$
4.91\% $\quad 96.11$
$96.11 \% \quad 96.19$
6.19% 95.96\%
$6.41 \% \quad 98$.

| | |
| ---: | ---: | ---: |
| | |

Grid Faciilty - Unit Costs
$469,365,198$
74.02
$\$$
62,326
66.59
$65,142,139$
$1,242.65$
$650,086 \$$
$10,834.77 \$$
$38,501,178$
$21,108.10$
692,101
$2,746.43$
995,200
996.26

Industrial Low Load Factor Scenario Analysis - Summary of |

266	Mitigated Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)																
	Ratio of Unmitigated Revenue to Mitigated Revenue	100.00\%			90.56\%		106.21\%		163.98\%	104.83\%		103.26\%		84.20\%		67.52\%	
26			0		(10,447)		14,173,757		1,127,768		7,512,265		61,410		(1,551,812)		(4,112,854)
	Total Revenue Requirement																
268	Demand	\$	956,237,292	\$	66,025	\$	235,620,054	\$	2,869,907	\$	162,740,844	\$	1,908,458	\$	1,466,354	\$	796,164
269	Customer	\$	195,012,169	\$	34,175	\$	6,949,301	\$	20,456	\$	259,098	\$	33,888	\$	6,803,084	\$	7,753,761
270	Energy	\$	23,919,997	\$	1,984	\$	6,007,755	\$	33,321	\$	5,010,289	\$	48,260	\$	82,845	\$	64,580
271	Fuel	\$	512,591,028	\$	42,966	\$	128,502,956	\$	712,070	\$	107,330,488	\$	1,029,031	\$	1,725,688	\$	1,345,111
272	Total	\$	1,687,760,486	\$	145,150	\$	377,080,066	\$	3,635,754	\$	275,340,720	\$	3,019,637	\$	10,077,971	\$	9,959,616
273	Zero-Check		-		-		-		-		-		-		-		-
	Billing Determinants																
274	Demand		14,051,478		0		8,673,249		115,900		5,262,329		0		0		0
275	Customer Bills (Count *12)		6,341,275		936		52,422		60		1,824		252		0		11,990
276	Energy		13,039,005,303		1,087,210		3,251,621,209		18,392,546		2,783,973,632		26,038,450		43,666,570		34,036,499
	Fuel		13,039,005,303		1,087,210		3,251,621,209		18,392,546		2,783,973,632		26,038,450		43,666,570		34,036,499
	Unit Costs																
278	Demand			\$	-	\$	27.17	\$	24.76	\$	30.93	\$	-	\$	-	\$	-
279	Customer	.		\$	107.05	\$	132.56	\$	340.93	\$	142.05	\$	7,707.72		\#DIV0!	\$	713.09
280	Energy			\$	0.001825	\$	0.001848	\$	0.001812	\$	0.060349	\$	0.001853	\$	0.001897	\$	0.001897
281	Fuel	.		\$	0.039520	\$	0.039520	\$	0.038715	\$	0.038553	\$	0.039520	\$	0.039520	\$	0.039520
282	Demand Revenue			\$	-	\$	235,620,054	\$	2,869,907	\$	162,740,844	\$		\$	-	\$	-
283	Customer Revenue				100,200		6,949,301		20,456		259,098		1,942,347		\#DIV/0!		8,549,925
284	Energy Revenue				1,984		6,007,755		33,321		168,010,232		48,260		82,845		64,580
285	Fuel Revenue	\$	-		42,966		128,502,956		712,070		107,330,488		1,029,031		1,725,688		1,345,111
286	Total Revenue				145,150		377,080,066		3,635,754		438,340,663		3,019,637		\#DIV0!		9,959,616
28	Zero-Check	.		\$	-	\$	-	\$	-	\$	162,999,943	\$	-		\#DIV0!	\$	-
	Total Revenue Requirement (Excluding Fuel)																
288	Demand	\$	956,237,292	\$	66,025	\$	235,620,054	\$	2,869,907	\$	162,740,844	\$	1,908,458	\$	1,466,354	\$	796,164
289	Customer	\$	195,012,169	\$	34,175	\$	6,949,301	\$	20,456	\$	259,098	\$	33,888	\$	6,803,084	\$	7,753,761
290	Energy	\$	23,919,997	\$	1,984	\$	6,007,755	\$	33,321	\$	5,010,289	\$	48,260	\$	82,845	\$	64,580
291	Total	\$	1,175,169,458	\$	102,184	\$	248,577,110	\$	2,923,684	\$	168,010,232	\$	1,990,607	\$	8,352, 283	\$	8,614,505
292	Percent of Total		100.00\%		0.01\%		21.15\%		0.25\%		14.30\%		0.17\%		0.71\%		0.73\%
293	Zero-Check		-		-		-		-		-		-		-		-

aES INDIANA

Industrial Low Load Factor Scenario Analysis - Mitig														Final Mitigation (same end result as Company's Proposal for other				
A	B	Q		R	s		T	u	v		w		x	Y		z		
		Final Rate Incr.		evised Revenue Requirement		Revised Mitigation	$\begin{gathered} \text { Current } \\ \text { Subsidy } \\ \text { Eliminated (\%) } \end{gathered}$	Revenue to Cost Ratio		Proposed Case Final Rev Req		Difference	\% Difference		Final Revenue Requirement		Total Mitigation	
System Total																		
Residential	RS	13.39\%	\$	758,979,565	\$	$(28,244,985)$	42.57\%	0.96	\$	758,979,565	\$	-	0.00\%	\$	758,979,565	\$	$(28,244,985)$	
Secondary Small [1]	ss	1.38\%	\$	179,983,835	\$	10,167,046	52.87\%	1.06	\$	180,219,857	\$	236,022	0.13\%	\$	180,219,857	\$	10,403,068	
Space Conditioning	SH	11.71\%	\$	67,464,968	\$	483,255	162.95\%	1.01	\$	67,475,406	\$	10,438	0.02\%	\$	67,475,406	\$	493,693	
Space Conditioning - Schools	SE	0.00\%	\$	1,772,196	\$	177,271	40.93\%	1.11	\$	1,772,196	\$	-	0.00\%	s	1,772,196	\$	177,271	
Water Heating-Controlled	CB	13.39\%	\$	54,550	\$	$(29,133)$	-0.83\%	0.65	\$	54,550	\$		0.00\%	\$	54,550	\$	$(29,133)$	
Water Heating - Uncontrolled	UW	13.39\%	\$	145,150	\$	$(10,447)$	29.55\%	0.93	\$	145,150	\$	-	0.00\%	\$	145,150	\$	$(10,447)$	
Secondary Large	SL	5.29\%	\$	376,725,580	\$	13,819,271	40.57\%	1.04	\$	377,080,066		354,486	0.09\%	\$	377,080,066	\$	14,173,757	
Industrial - Low Load Factor	PL-LLF	0.00\%	\$	3,635,754	\$	1,127,768	17.11\%	1.45		278,976,474		(602,472)	-0.22\%	\$	3,635,754	\$	1,127,768	
Primary Large	PL-HL	6.81\%	\$	275,943,192	\$	8,114,737	20.63\%	1.03						\$	275,340,720	\$	7,512,265	
Process Heating	PH	8.86\%	\$	3,018,111	\$	59,884	-7.72\%	1.02	\$	3,019,637	\$	1,527	0.05\%	s	3,019,637	\$	61,410	
Automatic Protective Lighting	APL	13.39\%	\$	10,077,971	\$	$(1,551,812)$	37.18\%	0.87	\$	10,077,971	\$		0.00\%	\$	10,077,971		(1,551,812)	
Municipal Lighting	MU1	13.39\%	\$	9,959,616	\$	$(4,112,854)$	4.29\%	0.71	s	9,959,616	\$	-	0.00\%	s	9,959,616	\$	$(4,112,854)$	
		9.01\%	\$	1,687,760,486	\$	0		1.00	\$	1,687,760,486	\$	0		\$	1,687,760,486	\$	0	
Notes:																		
[1] Includes new rate code MD (Small Metered Device) No rate Reduction																		
		Final Rate		evised Revenue Requirement		Revised Mitigation	$\begin{gathered} \text { Current } \\ \text { Subsidy } \\ \text { Eliminated (\%) } \end{gathered}$	Revenue to Cost Ratio		Proposed Case Final Rev Req		Difference	\% Difference		Final Revenue Requirement		Total Mitigation	
System Total																		
Residential		13.39\%	\$	758,979,565	\$	$(28,244,985)$	42.57\%	0.96	\$	758,979,565	\$	-	0.00\%	\$	758,979,565		$(28,244,985)$	
Small C\&1		3.98\%	\$	249,420,698	\$	10,787,992	48.77\%	1.05	\$	249,667,157	\$	246,459	0.10\%	\$	249,667,157	\$	11,034,451	
Large C\&1		5.91\%	\$	659,322,636	\$	23,121,660	33.73\%	1.04	\$	659,076,177	\$	$(246,459)$	-0.04\%	S	659,076,177	\$	22,875,200	
Lighting		13.39\%	\$	20,037,587	\$	$(5,664,666)$	16.29\%	0.78	\$	20,037,587	S	-	0.00\%	S	20,037,587	\$	$(5,664,666)$	
		9.01\%	\$	1,687,760,486	\$	(0)		1.00	\$	1,687,760,486	\$	0		\$	1,687,760,486	\$	0	

AES Indiana

Industrial Low Load Factor Scenario Analysis
Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

			Primary Service (Large)	High Load Factor (Primary Distribution)	High Load Factor (Sub transmission)	High Load Factor (Transmission)
Line No.	Description	Industrial Total	PL	HLI	HL2	HL3
	(A)	(B)	(C)	(D)	(E)	(F)

Functional Revenue Requirement

Allocation of the Revenue Requirement - Demand Component

Production										
Allocated Production Demand Cost	\$	121,910,355	\$	52,240,972	\$	52,047,760	\$	7,936,662	\$	9,684,962
Demand Billing Determinants		5,262,329		2,245,522		2,237,217		350,806		428,784
Loss Factor Adjustment				1.058		1.058		1.029		1.027
Adjusted Demand Billing Determinants		5,543,541		2,375,516		2,366,730		360,898		440,397
Cost Allocation Factors		100.00\%		42.85\%		42.69\%		6.51\%		7.94\%
Production Demand Charge	\$	23.17	\$	23.26	\$	23.26	\$	22.62	\$	22.59
Transmission										
Allocated Transmission Demand Cost		17,424,607	\$	7,466,785	\$	7,439,169	\$	1,134,384	\$	1,384,268
Demand Billing Determinants		5,262,329		2,245,522		2,237,217		350,806		428,784
Loss Factor Adjustment				1.058		1.058		1.029		1.027
Adjusted Demand Billing Determinants		5,543,541		2,375,516		2,366,730		360,898		440,397
Cost Allocation Factors		100.00\%		42.85\%		42.69\%		6.51%		7.94\%
Transmission Demand Charge	\$	3.31	\$	3.33	\$	3.33	\$	3.23	\$	3.23
Total Production and Transmission	\$	139,334,962	\$	59,707,757	\$	59,486,929	\$	9,071,046	\$	11,069,230
Demand Billing Determinants		5,262,329		2,245,522		2,237,217		350,806		428,784
Production and Transmission Demand Charge	\$	26.48	\$	26.59	\$	26.59	\$	25.86	\$	25.82

$\left.\begin{array}{lrrrrrr}\text { Distribution and Distribution Primary } & & & & & & \\ \hline \begin{array}{l}\text { Allocated Station Equipment } \\ \text { Allocated Primary Distribution Demand Cost }\end{array} & \$, 427,190 \\ 15,012,300\end{array}\right)$

Allocation of the Revenue Requirement - Customer Component

Distribution Primary

Allocated Distribution Primary Cost	\$	19,162								
Number of Customers	146									
Distribution Primary Cost Per Customer	\$	131								
Number of Customers by Rate Class	146		120			26		-		-
Total Distribution Primary Cost	\$	19,162	\$	15,749	\$	3,412	\$	-	\$	-

Meter Costs

	$\$$	55,456						
Allocated Meter Costs	$\$$	496,259	$\$$	336,438	$\$$	119,696	$\$$	24,112
Total Meter Embedded Cost		100%		67.79%		16,013		
Cost Allocation Factors	$\$$	55,456	$\$$	37,596	$\$$	13,376	$\$$	4.86%
Meter Costs - Allocated								

AES Indiana

Industrial Low Load Factor Scenario Analysis
Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

Line No.	Description	Industrial Total	Primary Service (Large) PL	High Load Factor (Primary Distribution) HLI	High Load Factor (Sub transmission) HL2	High Load Factor (Transmission) HL3
	(A)	(B)	(C)	(D)	(E)	(F)
44	Ratio Check					
45	Number of Customers by Rate Class	153	120	26	5	2
46	Per Customer Meter Cost - Actual	3,244	2,804	4,604	4,822	8,007
47	Scaling of Meter Cost - Actual		1.00	1.64	1.72	2.86
48	Per Customer Meter Cost - Allocated	362	313	514	539	895
49	Scaling of Meter Cost - Allocated		1.00	1.64	1.72	2.86
50	Check		TRUE	TRUE	TRUE	TRUE

51 Additional Customer Costs

Allocation of the Revenue Requirement - Energy Component

Total Revenue Requirement - Energy Component
Allocated Energy Costs \$ 5,221,168

Allocation of the Revenue Requirement - Fuel Component

79 Total Functional Revenue Requirement

80	Demand	$\$ 161,774,452$	$\$$	$70,948,288$	$\$$	$70,685,888$	$\$$	$9,071,046$

AES Indiana

Industrial Low Load Factor Scenario Analysis
Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

Line No.	Description	Industrial Total		imary Service (Large) PL		High Load actor (Primary Distribution) HLI		High Load Factor (Sub ransmission) HL2		High Load Factor ransmission) HL3
	(A)	(B)		(C)		(D)		(E)		(F)
86	Adjusted Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)									
87	Other Revenue \& Sales for Resale									
88	Total Base Revenue Excl. Fuel	\$ 160,497,967								
89	Total Revenue Excl. Fuel	167,253,179								
90	Ratio of Base Revenue to Total Revenue	95.96\%								
91	Total Functional Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)									
92	Demand	\$ 155,240,521	\$	68,082,747	\$	67,830,945	\$	8,704,674	\$	10,622,153
93	Customer	247,157		188,880		45,943		8,323		4,012
94	Energy	5,010,289		1,977,114		2,280,132		314,095		438,948
95	Fuel	107,330,488		42,353,767		48,845,014		6,728,550		9,403,158
96	Total Revenue Requirement Excl. Other Revenue	\$ 267,828,455	\$	112,602,508	\$	119,002,034	\$	15,755,642	\$	20,468,271
97	Check	TRUE								
98	Billing Determinants									
99	Demand	5,262,329		2,245,522		2,237,217		350,806		428,784
100	Customer Bills	1,836		1,440		312		60		24
101	Energy	2,717,656,832		1,068,995,321		1,232,832,303		173,222,008		242,607,200
102	Fuel	2,717,656,832		1,068,995,321		1,232,832,303		173,222,008		242,607,200
103	Unit Costs									
104	Demand	\$ 29.50	\$	30.32	\$	30.32	\$	24.81	\$	24.77
105	Customer	\$ 134.62	\$	131.17	\$	147.25	\$	138.71	\$	167.17
106	Energy	\$ 0.001844	\$	0.001850	\$	0.001850	\$	0.001813	\$	0.001809
107	Fuel	\$ 0.039494	\$	0.039620	\$	0.039620	\$	0.038844	\$	0.038759

Mitigated Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)

Mitigation

Mitigated Amount - Demand	$\$$	$7,500,324$						
Cost Allocation Factors		100.00%		43.86%		43.69%	5.61%	
Mitigation Amount Allocated - Demand	$\$$	$7,500,324$	$\$$	$3,289,364$	$\$$	$3,277,199$	$\$$	420,560
Mitigated Amount - Customer	$\$$	11,941						
Cost Allocation Factors		100.00%		76.42%	18.59%		3.37%	
Mitigation Amount Allocated - Customer	$\$$	11,941	$\$$	9,126	$\$$	2,220	$\$$	402

Total Mitigated Functional Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)

118	Demand		162,740,844	\$	71,372,112	\$	71,108,144	\$	9,125,234	\$	11,135,354
119	Customer		259,098		198,005		48,162		8,725		4,206
120	Energy		5,010,289		1,977,114		2,280,132		314,095		438,948
121	Fuel		107,330,488		42,353,767		48,845,014		6,728,550		9,403,158
122	Total Mitigated Revenue Requirement Excl. Other Revenue	\$	275,340,720	\$	115,900,998	\$	122,281,452	\$	16,176,604	\$	20,981,666
123	Check		TRUE								
124	Billing Determinants										
125	Demand		5,262,329		2,245,522		2,237,217		350,806		428,784
126	Customer Bills		1,836		1,440		312		60		24
127	Energy		2,717,656,832		1,068,995,321		1,232,832,303		173,222,008		242,607,200
128	Fuel		2,717,656,832		1,068,995,321		1,232,832,303		173,222,008		242,607,200
129	Unit Costs										
130	Demand	\$	30.93	\$	31.78	\$	31.78	\$	26.01	\$	25.97
131	Customer	\$	141.12	\$	137.50	\$	154.37	\$	145.41	\$	175.24
132	Energy	\$	0.001844	\$	0.001850	\$	0.001850	+	0.001813	\$	0.001809
133	Fuel	\$	0.039494	\$	0.039620	\$	0.039620	\$	0.038844	\$	0.038759

AES Indiana

Industrial Low Load Factor Scenario Analysis
Class Cost of Service - Industrial Rate Classes
Test Year Ended December 31, 2022

			Primary Service (Large)	High Load Factor (Primary Distribution)	High Load Factor (Sub transmission)	High Load Factor (Transmission)
Line No.	Description	Industrial Total	PL	HLI	HL2	HL3
	(A)	(B)	(C)	(D)	(E)	(F)

Comparison of Current and Proposed Pro Forma Revenues

Total Current Revenue	$\$ 258,361,017$						
Large Commercial Sales Revenue	$\$ 258,240,867$	$\$$	$104,751,326$	$\$$	$116,091,486$	$\$$	$16,730,719$
Cost Allocation Factors	100.00%		40.56%	$40,967,336$			
Total Current Revenue Allocated	$\$ 258,361,017$	$\$$	$104,800,063$	$\$$	$116,145,499$	$\$$	$16,738,503$
Unmitigated Proposed Revenue	$\$ 267,828,455$	$\$$	$112,602,508$	$\$$	$119,002,034$	$\$$	$15,755,642$

145	In
146	N
147	M
148	M
149	Fin
150	In

Industrial Rates Additional Mitigation

No Rate Reduction	561,899		-		-		561,899		-
Mitigate Rates with Increase	561,899		251,287		265,121		-		45,491
Mitigation	-		$(251,287)$		$(265,121)$		561,899		$(45,491)$
Final Mitigated Proposed Revenues	\$ 275,340,720	\$	115,649,711	\$	122,016,331	\$	16,738,503	\$	20,936,175
Increase: Mitigated - Current (\%)	6.57\%		10.35\%		5.05\%		0.00\%		1.25\%

Total Mitigated Functional Revenue Requirement (Excluding Other Revenue and Sale for Resale Revenues)

Demand	\$	162,741,199	\$	71,121,520	\$	70,843,203	\$	9,686,597	\$	11,089,881
Customer		258,743		197,310		47,983		9,262		4,189
Energy		5,010,289		1,977,114		2,280,132		314,095		438,948
Fuel		107,330,488		42,353,767		48,845,014		6,728,550		9,403,158
Total Mitigated Revenue Requirement Excl. Other Revenue	\$	275,340,720	\$	115,649,711	\$	122,016,331	\$	16,738,503	\$	20,936,175
Check		TRUE								

Billing Determinants

Demand	5,262,329		2,245,522		2,237,217		350,806		428,784
Customer Bills	1,836		1,440		312		60		24
Energy	2,717,656,832		1,068,995,321		1,232,832,303		173,222,008		2,607,200
Fuel	2,717,656,832		1,068,995,321		1,232,832,303		173,222,008		2,607,200
Unit Costs									
Demand	\$ 30.93	\$	31.67	\$	31.67	\$	27.61	\$	25.86
Customer	\$ 140.93	\$	137.02	\$	153.79	\$	154.36	\$	174.53
Energy	\$ 0.001844	\$	0.001850	\$	0.001850	\$	0.001813	\$	0.001809
Fuel	\$ 0.039494	\$	0.039620	\$	0.039620	\$	0.038844	\$	0.038759

AES Indianc
Industrial Low Load Factor Scenario Analysis - Rate Design Summary rest Year Ended December 31, 2022

AES Indiana
Pro Forma Revenue at Proposed Rates
Test Year Ended December 31, 2022
High Load Factor Service - Sub transmission (HL2)
Industrial Low Load Factor Scenario Analysis

CGS Demand Charge											
BUM	114,726	$\$$	0.7420	$\$$	85,127	$\$$	-	$\$$	-	$\$$	85,127
T\&D	72,000	$\$$	3.29	$\$$	236,764	$\$$	-	$\$$	-	$\$$	236,764

Contract Riders
Allocated CSC Revenues + DSM
No. 3 TDSIC
No. 4 Additional Charges for other facilifies
No. 6 Fuel Cost Adjustment
No. 8 Off Peak Service
No. 9 Net Metering
No. 14 Interruptible Power
No. 15 Load Displacement
No. 17 Curfailment Energy
No. 18 Curtailment Energy I
No. 20 Environmental Compliance Cost Recovery
No. 22 Demand-Side
No. 22 Demand-side Management Adjustment No. 24 Capacity Adjustment No. 26 Regional Transmission Organization Rider

Grand Total
$\$ \quad 16,738,503$ \$
$\$ 16,738,503$

AES Indiana

Revenue Percentages
Test Year Ended December 31, 2022

TDSIC Allocation Factors

(A)	(B)		(C)	(D)		(E)	(F)	(G)		(H)
Rate Class	Rate Code(s)		Total Revenue Requirement	Percent		Class Revenue Allocation Transmission	Percent		ss Revenue Allocation istribution	Percent
Residential	RS, RC, RH	\$	758,979,565	44.97\%	\$	40,653,326	41.22\%	\$	151,452,904	60.69\%
Small C\&I	SS, SH, SE, CB, UW		249,667,157	14.79\%		15,005,914	15.21\%		35,536,590	14.24\%
Large C\&I-Secondary	SL, PH		380,099,703	22.52\%		24,957,566	25.30\%		38,709,036	15.51\%
Large C\&I - Primary	PL, HL		278,976,474	16.53\%		17,843,429	18.09\%		22,957,854	9.20\%
Lighting	APL, MUI	\$	20,037,587	1.19\%	\$	176,773	0.18\%	\$	882,874	0.35\%
TOTAL SYSTEM		\$	1,687,760,486	100.00\%	\$	98,637,007	100.00\%	\$	249,539,258	100.00\%

Rate Code Allocations

(A)	(B)		(C)	(D)		(E)	(F)		(G)	(H)
Rate Class	Rate Code		Total Revenue Requirement	Percent		Class Revenue Allocation Transmission	Percent	Class Revenue Allocation Distribution		Percent
Residential Service (Rate RS) - Codes RS, RC, RH	RS	\$	758,979,565	44.97\%	\$	40,653,326	41.22\%	\$	151,452,904	60.69\%
Secondary Service (Small) (Rate SS)	SS		179,935,305	10.66\%		10,404,132	10.55\%	\$	25,395,357	10.18\%
Municipal Device (Rate MD)	MD		284,552	0.02\%		6,465	0.01\%	\$	121,519	0.05\%
Electric Space Conditioning-Secondary Service (Rate SH)	SH		67,475,406	4.00\%		4,475,491	4.54\%	\$	9,754,204	3.91%
Electric Space Conditioning-Schools (Rate SE)	SE		1,772,196	0.11\%		112,098	0.11\%	\$	227,158	0.09\%
Water Heating-Controlled Service (Rate CB/CW)	CB		54,550	0.00\%		1,471	0.00\%	\$	11,072	0.00\%
Water Heating-Uncontrolled Service (Rate UW)	UW		145,150	0.01\%		6,257	0.01\%	\$	27,280	0.01\%
Secondary Service (Large) - (Rate SL)	SL		377,080,066	22.34\%		24,782,096	25.12\%	\$	38,200,196	15.31\%
Primary Service (Large) - (Rate PL)	PL		119,707,642	7.09\%		7,866,914	7.98\%	\$	11,788,962	4.72\%
Process Heating (Rate PH)	PH		3,019,637	0.18\%		175,469	0.18\%	\$	508,840	0.20\%
High Load Factor (Rate HL-1) (Primary Distribution)	HL1		121,643,680	7.21\%		7,453,134	7.56\%	\$	11,168,892	4.48\%
High Load Factor (Rate HL-2) (Sub transmission)	HL2		16,738,465	0.99\%		1,136,514	1.15\%	\$	-	0.00\%
High Load Factor (Rate HL-3) (Transmission)	HL3		20,886,687	1.24\%		1,386,867	1.41\%	\$	-	0.00\%
Automatic Protective Lighting - APL	APL		10,077,971	0.60\%		107,413	0.11\%	\$	528,136	0.21\%
Municipal Lighting MU-1	MUI	\$	9,959,616	0.59\%	\$	69,360	0.07\%	\$	354,738	0.14\%
TOTAL SYSTEM		\$	1,687,760,486	100.00\%	\$	98,637,007	100.00\%	\$	249,539,258	100.00\%

[^0]: ${ }^{1}$ Cause Nos. 44576 and 45029.

[^1]: ${ }^{2}$ Cause Nos. 44576 and 45029.

[^2]: ${ }^{3}$ Bonbright, James C. (1961). Principles of Public Utility Rates, New York: Columbia University Press.

[^3]: ${ }^{4}$ Rate MD (Small Metered Service) was an exception to the no rate reduction rule since this is a new rate being proposed in this case to accommodate small devices that do not belong in Rate SS.

[^4]: ${ }^{5}$ Indianapolis Power and Light Company, Cause No. 44576 (IURC 3/16/16), page 72.

