
FILED July 30, 2021 INDIANA UTILITY REGULATORY COMMISSION

# STATE OF INDIANA

# INDIANA UTILITY REGULATORY COMMISSION

VERIFIED PETITION OF **INDIANAPOLIS** ) POWER & LIGHT COMPANY D/B/A AES ) INDIANA ("AES INDIANA") FOR (1) ISSUANCE ) TO AES INDIANA OF A CERTIFICATE OF ) PUBLIC CONVENIENCE AND NECESSITY FOR ) THE ACQUISITION AND DEVELOPMENT BY A WHOLLY OWNED AES INDIANA SUBSIDIARY OF A SOLAR POWER GENERATING FACILITY AND BATTERY ENERGY STORAGE SYSTEM PROJECT TO BE KNOWN AS THE PETERSBURG ENERGY CENTER ("THE PETERSBURG ) **PROJECT**"); (2)APPROVAL OF THE PETERSBURG PROJECT, INCLUDING A JOINT VENTURE STRUCTURE BETWEEN AN AES INDIANA SUBSIDIARY AND ONE OR MORE TAX EQUITY PARTNERS AND Α CAPACITY CONTRACT AGREEMENT AND FOR ) DIFFERENCES BETWEEN AES INDIANA AND ) THE PROJECT COMPANY THAT HOLDS AND OPERATES THE SOLAR GENERATION AND STORAGE ASSETS, AS A CLEAN ENERGY PROJECT AND ASSOCIATED TIMELY COST ) RECOVERY UNDER IND. CODE § 8-1-8.8-11; (3) APPROVAL OF ACCOUNTING AND ) RATEMAKING FOR THE PETERSBURG PROJECT, INCLUDING AN ALTERNATIVE ) **REGULATORY PLAN UNDER IND. CODE § 8-1-**) AES 2.5-6 TO FACILITATE INDIANA'S ) INVESTMENT IN THE PETERSBURG PROJECT THROUGH A JOINT VENTURE; AND (4) TO THE EXTENT NECESSARY, ISSUANCE OF AN ) ORDER PURSUANT TO IND. CODE § 8-1-2.5-5 DECLINING TO EXERCISE JURISDICTION ) OVER THE JOINT VENTURE, INCLUDING THE ) PROJECT COMPANY, AS A PUBLIC UTILITY. )



# PETITIONER'S SUBMISSION OF DIRECT TESTIMONY OF MATTHEW E. LIND

Indianapolis Power & Light Company d/b/a AES Indiana ("AES Indiana" or "Petitioner"),

by counsel, hereby submits the direct testimony and attachments of Matthew E. Lind.

Respectfully submitted,

Jell->

Teresa Morton Nyhart (No. 14044-49) Jeffrey M. Peabody (No. 28000-53) Barnes & Thornburg LLP 11 South Meridian Street Indianapolis, Indiana 46204 Nyhart Phone: (317) 231-7716 Peabody Phone: (317) 231-6465 Nyhart Email: tnyhart@btlaw.com Peabody Email: jpeabody@btlaw.com

Attorneys for Petitioner Indianapolis Power & Light Company d/b/a AES Indiana

# **CERTIFICATE OF SERVICE**

The undersigned certifies that a copy of the foregoing was served this 30th day of July,

2021, by electronic transmission or United States Mail, first class, postage prepaid on:

Jeffrey M. Reed Office of Utility Consumer Counselor 115 W. Washington Street, Suite 1500 South Indianapolis, Indiana 46204 jreed@oucc.in.gov infomgt@oucc.in.gov

Jelles

Jeffrey M. Peabody

Teresa Morton Nyhart (No. 14044-49) Jeffrey M. Peabody (No. 28000-53) Barnes & Thornburg LLP 11 South Meridian Street Indianapolis, Indiana 46204 Nyhart Phone: (317) 231-7716 Peabody Phone: (317) 231-6465 Nyhart Email: tnyhart@btlaw.com Peabody Email: jpeabody@btlaw.com

ATTORNEYS FOR PETITIONER INDIANAPOLIS POWER & LIGHT COMPANY D/B/A AES INDIANA

# VERIFIED DIRECT TESTIMONY

# OF

# MATTHEW E. LIND

# ON BEHALF OF

# INDIANAPOLIS POWER & LIGHT COMPANY

# D/B/A AES INDIANA

# SPONSORING AES INDIANA ATTACHMENTS MEL-1 AND MEL-1(C)

# VERIFIED DIRECT TESTIMONY OF MATTHEW E. LIND ON BEHALF OFAES INDIANA

- 1 Q1. Please state your name and business address.
- A1. My name is Matthew Lind. My business address is 9400 Ward Parkway, Kansas City,
   Missouri 64114.

# 4 Q2. By whom are you employed and in what capacity?

- A2. I am employed by 1898 & Co. as a Director, leading the Resource Planning & Market
  Assessments Business. 1898 & Co. was established as the consulting and technology
  division of Burns & McDonnell Engineering Company, Inc. ("Burns & McDonnell") in
  2019. 1898 & Co. is a nationwide network of over 200 consulting professionals serving
  the Manufacturing & Industrial, Oil & Gas, Power Generation, Transmission &
  Distribution, Transportation, and Water industries.
- Burns & McDonnell has been in business since 1898, serving multiple industries, including the electric power industry. Burns & McDonnell is a family of companies made up of more than 7,000 engineers, architects, construction professionals, scientists, consultants and entrepreneurs with more than 40 offices across the country and throughout the world.

# Q3. Please describe your duties as Director, Resource Planning & Market Assessments Business at 1898 & Co.

A3. As Director of the Resource Planning & Market Assessments Business, I oversee the
 related business development, marketing, staff training and project execution for the
 Business Unit. This Business Unit specializes in development of economic models and
 analyses associated with generation and transmission planning serving municipal,

1 cooperative, investor-owned utilities, independent generation and transmission 2 developers and regional transmission organizations clients. Projects range from integrated resource planning, new resource procurement evaluation, economic transmission 3 planning, demand-side management, asset retirement, transmission congestion impacts, 4 5 and other economic planning decisions. The Resource Planning & Market Assessments Business supports clients in markets across the United States and some international 6 7 markets.

8

### Please summarize your education background and certifications. Q4.

9 A4. I have received a Bachelor of Science degree in Industrial Engineering from Iowa State University. I have also received a Master of Business Administration degree in Finance 10 11 from the University of Missouri-Kansas City.

12 I am a registered Professional Engineer in the state of Kansas. I am a member of RMEL 13 and the Edison Electric Institute ("EEI") and serve on the Transmission Executive 14 Committee supporting the System Planning and Operations subcommittee. I was also 15 recognized as a *Public Utilities Fortnightly* Under 40 in 2020.

### 16 Q5. Have you testified previously before the Indiana Utility Regulatory Commission 17 ("Commission")?

18 A5. Yes. I have previously provided testimony on behalf of Southern Indiana Gas and Electric 19 Company d/b/a Vectren Energy Delivery of Indiana, Inc.'s ("Vectren South") in Cause Nos. 20 44446, 44927 and 45052. I have also previously provided testimony on behalf of Indianapolis 21 Power & Light Company d/b/a AES Indiana ("AES Indiana", "IPL" or "Company") in Cause No. 22 45493.

1

# Q6. What is the purpose of your testimony in this proceeding?

A6. The purpose of my testimony is to describe 1898 & Co.'s role in supporting AES Indiana in its evaluation of power supply proposals received through an all-source request for proposal ("RFP") solicitation process, relevant experience and present the results and methodology used to evaluate the system impacts and congestion associated with select proposals.

# 7 Q7. Are you sponsoring any attachments?

8 A7. Yes. I am sponsoring the following attachments:

| Attachment                   | Description                     |  |  |
|------------------------------|---------------------------------|--|--|
| AES Indiana Attachment MEL-1 | Interconnection Reliability and |  |  |
| and MEL-1(C) <sup>1</sup>    | Congestion Evaluation Summary   |  |  |

9

# Q8. Were these attachments prepared or assembled by you or under your direction and supervision?

- A8. Yes. Other 1898 & Co. and AES Indiana personnel with specific areas of expertise were
  involved in the process of providing inputs or creating the work product, and I served the
  role of overseeing the project planning process, including coordinating, validating and
  documenting the modeling efforts.
- 16 **Q9.** Did you submit any workpapers?
- 17 A9. Yes. I am submitting workpapers associated with the above referenced report.

<sup>&</sup>lt;sup>1</sup> <u>AES Indiana Attachment MEL-1(C)</u> is the confidential version.

1

# Q10. How did 1898 & Co. assist AES Indiana in its All Source RFP?

2 A10. 1898 & Co. supported the evaluation of select proposals received and short listed by AES 3 Indiana and its All Source RFP consultant Sargent & Lundy. 1898 & Co. did not receive nor evaluate all proposals received through the RFP process. For those proposals 4 5 identified by AES Indiana for further evaluation, 1898 & Co. performed a reliability 6 analysis to estimate potential costs associated with network upgrades needed to maintain 7 system reliability. Subsequent to the identification of network upgrades, 1898 & Co. 8 performed security constrained unit commitment and economic dispatch ("SCED") to 9 determine potential congestion impacts based on the location of each evaluated resource.

# Q11. Please summarize the RFP proposals identified by AES Indiana for the generator interconnection reliability analysis and congestion evaluation 1898 & Co. performed.

A11. Eight (8) different proposals were evaluated in <u>AES Indiana Attachment MEL-1 and</u>
 <u>MEL-1(C)</u>. The installed capacity ("ICAP") of proposals ranged from 100 megawatts
 ("MW") up to 250 MW and included solar and solar co-located with energy storage. The
 proposals and basic identifying characteristics are shown in the following table (Table 1):

17

| Proposal | Size<br>(ICAP MW) | Fuel | MISO<br>Request ID | Point of<br>Interconnection |
|----------|-------------------|------|--------------------|-----------------------------|
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |
|          |                   |      |                    |                             |

 Table 1: Proposal Characteristics Summary

2

1

# 3 Q12. What experience does 1898 & Co. have in assisting with utility RFPs?

4 A12. Across multiple decades, 1898 & Co. has provided consulting services to various utilities, 5 developers, and other organizations involving power supply proposal requests, 1898 & 6 Co.'s power supply RFP consulting experience includes independent management of the 7 entire process from request development to proposal evaluation, proposal evaluation 8 only, and assistance preparing RFP participant proposals. 1898 & Co. has supported 9 multiple utility clients within the MISO market including the state of Indiana. 1898 & Co. 10 recently supported Vectren's All Source RFP process and evaluation as part of its 2020 11 integrated resource plan.

# Q13. Why is it important to perform a generator interconnection reliability analysis when evaluating different RFP proposals?

A13. Before a new generating facility can be connected to the grid, the reliability impacts associated with this interconnection must be studied, and, to the extent issues are found, mitigated through electric transmission network upgrades ("NU"). The addition of NUs to address system reliability have the potential to increase the costs associated with a new generating facility project. The regional market that AES Indiana participates in, the Midcontinent Independent System Operator ("MISO"), is responsible for officially studying, identifying, and assigning direct connection and NU costs to the responsible interconnecting generating facilities to maintain system reliability. This study process is referred to as the Definitive Planning Phase ("DPP") of MISO's generator interconnection process.

AES Indiana received proposals through their RFP process that were in varying stages of MISO's DPP process. For those proposals that had not completed a MISO DPP study, the NU costs are unknown. By performing a generator interconnection reliability analysis, the reliability impacts of interconnecting the new generating facility can be determined and NU costs estimated. These costs can be included in the overall cost evaluation for those proposals without a MISO DPP study estimate and compared against proposals with a completed MISO DPP study.

# 14 Q14. What was 1898 & Co.'s approach to independently perform a generator 15 interconnection reliability analysis?

16 A14. For those proposals with a completed MISO DPP study, 1898 & Co. independently 17 reviewed the interconnection request study report, verifying the costs provided. For those 18 proposals without a completed MISO DPP study report, 1898 & Co. independently 19 performed reliability analysis that simulates MISO's DPP study process. The goal of the 20 reliability analysis was to identify the direct connection and NU costs for each proposal 21 identified for this evaluation.

# 22 Q15. What are direct connection costs composed of?

AES Indiana Witness Lind - 6

| 1  | A15. | Direct connection costs are composed of the scope and equipment necessary to             |
|----|------|------------------------------------------------------------------------------------------|
| 2  |      | electrically interconnect the new generating facility to the transmission system.        |
| 3  | Q16. | What are NU costs composed of?                                                           |
| 4  | A16. | NU costs are derived from network resource interconnection service ("NRIS") impacts,     |
| 5  |      | energy resource interconnection service ("ERIS") impacts and any affected system         |
| 6  |      | ("AFS") impacts to transmission systems outside of MISO.                                 |
| 7  | Q17. | Were there any proposals that already had a completed MISO DPP study and                 |
| 8  |      | report?                                                                                  |
| 9  | A17. | Yes. Proposal                                                                            |
| 10 |      | , Proposal                                                                               |
| 11 |      | , Proposal , and Proposal , and Proposal                                                 |
| 12 |      | had already completed MISO DPP study                                                     |
| 13 |      | reports that included direct connection and NU costs determined by MISO. These costs,    |
| 14 |      | as reported and determined by MISO, were used as the basis for the direct connection and |
| 15 |      | network upgrade costs for those proposals.                                               |
| 16 | Q18. | For those proposals without an available MISO DPP Study report, please describe          |
| 17 |      | the models and data sources used by 1898 & Co. to determine potential NRIS, ERIS,        |
| 18 |      | and AFS generator interconnection costs.                                                 |
| 19 | A18. | The NRIS analysis was conducted using the Summer Peak NRIS case from the                 |
| 20 |      | appropriate MISO DPP Study Cycle. The ERIS analysis was conducted using the              |
| 21 |      | Summer Peak and Shoulder ERIS cases from the appropriate MISO DPP Study Cycle.           |

potential for up to \$ in costs associated with interconnection. A summary of each proposal interconnection option and their direct and NU cost are shown in the following

table (Table 2): 16

| Proposal | Direct<br>Connection<br>Costs (\$) | Network<br>Upgrade Costs<br>(\$) | Total Network<br>Upgrade Costs (\$) |
|----------|------------------------------------|----------------------------------|-------------------------------------|
|          |                                    |                                  |                                     |
|          |                                    |                                  |                                     |
|          |                                    |                                  |                                     |
|          |                                    |                                  |                                     |
|          |                                    |                                  |                                     |
|          |                                    |                                  |                                     |
|          |                                    |                                  |                                     |
|          |                                    |                                  |                                     |

Table 2. Interconnection Cost Summary

# 8 impact analysis.

6 all active MISO Classic queue projects through the DPP 2019 Cycle 1 study class. 7 Q19. Please summarize the results of 1898 & Co.'s generator interconnection system

1 Both the NRIS and ERIS models were developed and provided by MISO representing the 2 same baseline model starting point as used by MISO in their DPP Study.

The AFS analysis was conducted for the neighboring PJM system starting with the PJM

2023 Summer Peak case from the AF2 feasibility study. This PJM model was further

modified to include all active PJM queue projects through the AF2 study class as well as

Each proposal received by 1898 & Co. was evaluated for network upgrade and direct

connection transmission facility costs associated with NRIS, ERIS, and AFS transmission

facility impacts as appropriate based on each proposal's capacity, fuel type and planned

point of interconnection ("POI"). The results of this analysis indicated certain proposals

showing minimal costs associated with interconnection while other proposals had the

# PUBLIC VERSION

3

4

5

9

10

11

12

13

14

15

17

A19.

1 The analysis approach and results associated with the generator interconnection reliability 2 analysis are discussed in further detail in Section 2 and Section 3 of <u>AES Indiana</u> 3 <u>Attachment MEL-1</u>.

4 Q20. W

# . Why was a congestion analysis the second step?

5 A20. AES Indiana engaged 1898 & Co. to perform a congestion analysis in order to identify 6 and compare transmission congestion and losses based on the location of the evaluated 7 proposals. To the extent the generation resource is located remotely from AES Indiana's 8 electric service territory, congestion costs pose a long-term risk of increasing the costs to 9 procure electricity to serve customer load to the extent there is significant price 10 separation between the generation commercial price node locational marginal price 11 ("LMP") and AES Indiana's load commercial price node LMP. In order to approximate 12 this potential price separation, any transmission facilities built or upgraded as a result of 13 the generator interconnection system impact analysis should be factored into the SCED 14 simulations.

15 **O21**.

# Please explain transmission congestion.

16 Transmission congestion is a limitation in the transmission facilities within a regional A21. 17 market that inhibits the ability to effectively deliver the most efficient and lowest cost 18 sources of generation to a load. Transmission congestion results in the redispatch of less 19 efficient generation in order to allow transmission facilities to operate within their facility 20 ratings. In a regional market, each commercial pricing node has a LMP which consists of 21 energy, transmission congestion, and losses. To the extent LMPs are different between 22 commercial pricing nodes, transmission congestion is typically the primary factor causing 23 the price difference.

Q22. Please describe the models and data sources used by 1898 & Co. to determine
 potential congestion costs.

A22. Each of the Phase 3 short-list proposals were evaluated using Hitachi ABB's PROMOD ("PROMOD") to simulate security-constrained unit commitment ("SCUC") and SCED across the MISO footprint and neighboring regions. PROMOD simulations calculate the LMP for every bus, including generator and load nodes, within the study region.

The 2020 MISO Transmission Expansion Plan ("MTEP20") PROMOD models and associated constraint files were utilized as the starting point for this analysis. The MTEP20 models were developed by MISO in conjunction with their stakeholders and include five-year-out, ten-year-out, and fifteen-year-out models under varying assumed future conditions. Of the four modeled futures, the Accelerated Fleet Change ("AFC") future was selected as the starting point, using the five (2024) and ten (2029) year out models.

Further modifications were made to these models reflecting announced generator retirements and additions. Commodity and energy demand forecasts were also modified to align with AES Indiana's integrated resource plan ("IRP") assumptions. These modifications are further discussed in Section 4 of <u>AES Indiana Attachment MEL-1</u>.

# 19 Q23. What was 1898 & Co.'s approach to performing a congestion analysis?

A23. 1898 & Co. received the modeling parameters for each of the proposals under
 consideration including the POI and expected hourly production profile. In addition,
 direct connection and NU transmission facilities identified for each proposal as part of

| 1  | the generator interconnection reliability analysis was modeled. Each of the proposals     |
|----|-------------------------------------------------------------------------------------------|
| 2  | were added to the MTEP20 PROMOD models and evaluated concurrently. This was               |
| 3  | done assuming each proposal would be developed, regardless of whether AES Indiana         |
| 4  | entered into a purchase agreement or not. The adjusted production cost ("APC") measure,   |
| 5  | which is a typical metric for comparing the overall system-wide benefit of one generation |
| 6  | project to another, was not used because each proposal was in the model and therefore the |
| 7  | APC for AES Indiana was the same regardless of the proposal. With each proposal           |
| 8  | located at a unique location, the revenue derived from the generation production at its   |
| 9  | generator node LMP was calculated and compared. This information was provided to          |
| 10 | AES Indiana to consider along with the potential interconnection and other costs          |
| 11 | associated with each proposal.                                                            |

# 12 Q24. Please summarize the results of 1898 & Co.'s congestion analysis.

A24. Results from the MTEP20 PROMOD simulations were summarized for both 2024 and
2029. The generation weighted LMP for each of the proposals are shown in the following
table (Table 3):

| Proposal | Solar+Storage<br>Capacity | Gen-weighted LMP |      |  |
|----------|---------------------------|------------------|------|--|
|          | (ICAP MW)                 | 2024             | 2029 |  |
|          |                           |                  |      |  |

16

17

1 The generation weighted LMP is calculated by dividing the project's revenue by its 2 generation. The generation weighted LMP represents the revenue the facility generated 3 per MWh of generation. In this way, each of the RFP proposals, which have different 4 ICAP and capacity factors, can be compared to one another. Because the generation 5 weighted LMP represents the \$/MWh price at which energy is sold into the market, a 6 higher number is better for AES Indiana's customers.

7 In the early year simulation (2024), the highest LMP value represents an approximate 8 8 percent premium above the lowest LMP value; this premium grows to approximately 12 9 percent in the later year simulation (2029). While that spread is potentially meaningful 10 for the revenue generation of the respective proposals, nearly all of the proposals result in 11 generation weighted LMPs that are fairly close together and on the higher end of the 12 generation weighted LMPs derived. Proposal is consistently around the lowest 13 generation weighted LMP in both simulated years while all other proposals have a higher 14 generation weighted LMP. The results are further discussed in Section 5 of AES Indiana 15 Attachment MEL-1.

16 Q25. Does this evaluation by itself, both the interconnection reliability analysis and 17 congestion evaluation, let AES Indiana make a decision on which proposal(s) to 18 pursue for purchase?

A25. No. The results of these analyses should be considered along with the related purchase
 costs associated with each proposal when determining a preferred proposal. See AES
 Indiana Witness Cooper for proposal selection.

22

- 1 Q26. Does this conclude your prefiled direct testimony?
- 2 A26. Yes.

# VERIFICATION

I, Matthew E. Lind, 1898 & Co., Director, leading the Resource Planning & Market Assessments Business, affirm under penalties for perjury that the foregoing representations are true to the best of my knowledge, information, and belief.

Dated July 30, 2021.

hatch Efil

Matthew E. Lind

Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 1 of 45

PUBLIC VERSION

# Interconnection Reliability and Congestion Evaluation



PART OF BURNS MEDONNELL

**aes** Indiana

**AES Indiana** 

RFP Support Project No. 133122

7/21/2021



# TABLE OF CONTENTS

### Page No.

| 1.0 | EXECUTIVE SUMMARY |                                                       |    |  |  |  |
|-----|-------------------|-------------------------------------------------------|----|--|--|--|
|     | 1.1               | Reliability Analysis                                  | 1  |  |  |  |
|     | 1.2               | Congestion Analysis                                   | 2  |  |  |  |
|     | 1.3               | Summary                                               |    |  |  |  |
|     |                   |                                                       |    |  |  |  |
| 2.0 | RELI              | IABILITY ANALYSIS APPROACH                            | 5  |  |  |  |
|     | 2.1               | ERIS Analysis                                         | 7  |  |  |  |
|     | 2.2               | NRIS Analysis                                         | 7  |  |  |  |
|     | 2.3               | PJM AFS Analysis                                      | 8  |  |  |  |
|     | 2.4               | Network Upgrades                                      | 8  |  |  |  |
|     | 2.5               | Cost Allocation                                       | 9  |  |  |  |
|     |                   |                                                       |    |  |  |  |
| 3.0 |                   | IABILITY ANALYSIS RESULTS                             |    |  |  |  |
|     | 3.1               | Proposal                                              |    |  |  |  |
|     | 3.2               | Proposal                                              |    |  |  |  |
|     | 3.3               | Proposal                                              |    |  |  |  |
|     | 3.4               | Proposal                                              |    |  |  |  |
|     | 3.5               | Proposal                                              |    |  |  |  |
|     | 3.6               | Proposal                                              |    |  |  |  |
|     | 3.7               | Proposal                                              |    |  |  |  |
|     | 3.8               | Proposal                                              | 21 |  |  |  |
| 4.0 | CON               | IGESTION ANALYSIS APPROACH                            | 24 |  |  |  |
| 4.0 | 41                | Model Development                                     |    |  |  |  |
|     | 4.1               | 4.1.1 Base Model                                      |    |  |  |  |
|     |                   | 4.1.2 Additional Generation Retirements and Additions |    |  |  |  |
|     |                   | 4.1.3 Fuel Forecasts                                  |    |  |  |  |
|     |                   | 4.1.4 AES Indiana Load                                |    |  |  |  |
|     |                   | 4.1.5 Transmission Upgrades                           |    |  |  |  |
|     |                   |                                                       |    |  |  |  |
| 5.0 | CON               | IGESTION ANALYSIS RESULTS                             |    |  |  |  |
|     | 5.1               | Sensitivity Results                                   |    |  |  |  |
|     |                   | 5.1.1 Financial Transmission Rights (FTR)             |    |  |  |  |
|     |                   | 5.1.2 Battery Adder Options                           |    |  |  |  |
|     |                   |                                                       |    |  |  |  |

# APPENDIX A RELIABILITY RESULTS DETAILS SUMMARY

# LIST OF TABLES

# <u>Page No.</u>

| Table 1:  | Proposal Shortlist                                     | 1  |
|-----------|--------------------------------------------------------|----|
| Table 2:  | Proposal Shortlist<br>Reliability Costs                | 2  |
| Table 3:  | Congestion Analysis Solar LMP Summary                  |    |
| Table 4:  | Congestion Analysis Battery LMP Summary                | 3  |
| Table 5:  | Proposal Reliability Analysis Setup                    | 6  |
| Table 6:  | Network Upgrade Cost Assumptions                       | 8  |
| Table 7:  | Proposal Reliability Impacts and Network Upgrade Costs | 11 |
| Table 8:  | Proposal Reliability Dispatch Assumptions              | 12 |
| Table 9:  | Proposal Reliability Impacts and Network Upgrade Costs | 12 |
| Table 10: | Proposal Reliability Impacts and Network Upgrade Costs | 13 |
| Table 11: | Proposal Reliability Impacts and Network Upgrade Costs | 14 |
| Table 12: | Proposal Reliability Dispatch Assumptions              | 17 |
| Table 13: | Proposal Reliability Impacts and Network Upgrade Costs | 17 |
| Table 14: | Proposal Reliability Impacts and Network Upgrade Costs | 18 |
| Table 15: | Proposal Reliability Dispatch Assumptions              | 20 |
| Table 16: | Proposal Reliability Impacts and Network Upgrade Costs | 21 |
| Table 17: | Proposal Reliability Impacts and Network Upgrade Costs | 21 |
| Table 18: | MTEP20 Future Assumptions                              | 25 |
| Table 19: | Announced Retirements                                  | 25 |
| Table 20: | Announced Additions                                    |    |
| Table 21: | Generic Units Removed                                  |    |
| Table 22: | Base Congestion Results Summary                        |    |
| Table 23: | Battery Results Summary                                |    |

# LIST OF FIGURES

## Page No.



### DISCLAIMERS

1898 & Co.<sup>SM</sup> is a division of Burns & McDonnell Engineering Company, Inc. which performs or provides business, technology, and consulting services. 1898 & Co. does not provide legal, accounting, or tax advice. The reader is responsible for obtaining independent advice concerning these matters. That advice should be considered by reader, as it may affect the content, opinions, advice, or guidance given by 1898 & Co. Further, 1898 & Co. has no obligation and has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate. These materials serve only as the focus for consideration or discussion; they are incomplete without the accompanying oral commentary or explanation and may not be relied on as a stand-alone document.

The information, analysis, and opinions contained in this material are based on publicly available sources, secondary market research, and financial or operational information, or otherwise information provided by or through 1898 & Co. clients whom have represented to 1898 & Co. they have received appropriate permissions to provide to 1898 & Co., and as directed by such clients, that 1898 & Co. is to rely on such client-provided information as current, accurate, and complete. 1898 & Co. has not conducted complete or exhaustive research, or independently verified any such information utilized herein, and makes no representation or warranty, express or implied, that such information is current, accurate, or complete. Projected data and conclusions contained herein are based (unless sourced otherwise) on the information described above and are the opinions of 1898 & Co. which should not be construed as definitive forecasts and are not guaranteed. Current and future conditions may vary greatly from those utilized or assumed by 1898 & Co.

1898 & Co. has no control over weather; cost and availability of labor, material, and equipment; labor productivity; energy or commodity pricing; demand or usage; population demographics; market conditions; changes in technology, and other economic or political factors affecting such estimates, analyses, and recommendations. To the fullest extent permitted by law, 1898 & Co. shall have no liability whatsoever to any reader or any other third party, and any third party hereby waives and releases any rights and claims it may have at any time against 1898 & Co., Burns & McDonnell Engineering Company, Inc., and any Burns & McDonnell affiliated company, with regard to this material, including but not limited to the accuracy or completeness thereof.

Any entity in possession of, or that reads or otherwise utilizes information herein, is assumed to have executed or otherwise be responsible and obligated to comply with the contents of any Confidentiality Agreement and shall hold and protect its contents, information, forecasts, and opinions contained herein in confidence and not share with others without prior written authorization.

# LO EXECUTIVE SUMMARY

AES Indiana's Preferred Resource Portfolio from the 2019 Integrated Resource Plan (IRP) identified a need of approximately 200 megawatts (MW) of replacement capacity. AES Indiana issued an all source request for proposal (RFP) to identify and procure replacement capacity to address this need. As part of this process, AES Indiana retained 1898 & Co., a division of Burns & McDonnell Engineering Company, Inc. (1898 & Co.) to perform detailed reliability and congestion evaluations of select resource proposals as identified by AES Indiana and its RFP consultant through the RFP process.

The shortlist of proposals that were included in the evaluation process is provided in Table 1.

| Proposal | Solar<br>Capacity<br>(ICAP MW) | Storage<br>Capacity<br>(ICAP MW) | MISO Request<br>ID | Point of<br>Interconnection |
|----------|--------------------------------|----------------------------------|--------------------|-----------------------------|
|          |                                |                                  |                    |                             |

Table 1: Proposal Shortlist

# 1.1 Reliability Analysis

Before a new generating facility can be connected to the grid, the reliability impacts associated with this interconnection must be studied, and, to the extent issues are found, mitigated through electric transmission network upgrades (NU). The addition of NUs to address system reliability have the potential to increase the costs associated with a new generating facility project.

The regional market that AES Indiana participates in, the Midcontinent Independent System Operator (MISO), is responsible for officially studying, identifying, and assigning NU costs to the responsible interconnecting generating facilities to maintain system reliability. This study process is referred to as the Definitive Planning Phase (DPP) of MISO's generator interconnection process. 1898 & Co. independently reviewed the proposals with interconnection requests that have had MISO DPP reports published and independently

<sup>2</sup> Solar Portion of Proposal **Contract Solar** is Proposal

analyzed the proposals with interconnection requests that have not had MISO DPP reports published. The goal of the reliability analysis is to identify the direct connection, the Network Resource Interconnection Service (NRIS) impacts, the Energy Resource Interconnection Service (ERIS) impacts, and any appropriate Affected System (AFS) network upgrade costs for each of the proposals. The total reliability costs found for each of the proposals through the evaluation process is provided in Table 2.

PUBLIC VERSION

| Proposal | Direct Connection<br>Costs (\$) | Network Upgrade<br>Costs (\$) | Total Network<br>Upgrade Costs (\$) |  |  |  |
|----------|---------------------------------|-------------------------------|-------------------------------------|--|--|--|
|          |                                 | '                             |                                     |  |  |  |
|          |                                 |                               |                                     |  |  |  |
|          |                                 |                               |                                     |  |  |  |
|          |                                 |                               |                                     |  |  |  |

| Table | 2: | <b>Reliability Costs</b> |  |
|-------|----|--------------------------|--|
|-------|----|--------------------------|--|

The reliability impacts for each of the proposals is provided in full detail in Section 3.0.

# 1.2 Congestion Analysis

The purpose of the Congestion Analysis was to calculate the hourly locational marginal price (LMP) at the shortlisted proposal's interconnection points as well as AES Indiana's load node. This analysis captures potential differences in the congestion and losses components of the LMP between the various RFP proposals. The primary difference can typically be attributed to congestion which results from limitations in the transmission system's ability to cost effectively deliver power. ABB's PROMOD IV was used to simulate security-constrained unit commitment (SCUC) and security-constrained economic dispatch (SCED) across the MISO footprint and neighboring regions for 2024 and 2029. The projected LMPs from these simulations for each of the RFP proposals is summarized below, more details can be found in Section 4.0.

| 3 | Solar | portion | óf         | Proposal | is | Propos | al |
|---|-------|---------|------------|----------|----|--------|----|
|   | Jonan | portion | <b>U</b> 1 | 1.000000 | 1  | 110000 |    |

<sup>4</sup> Solar portion of Proposal **Contract Solar** is Proposal

| Proposal | Solar<br>Capacity<br>(ICAP | Storage<br>Capacity<br>(ICAP | Storage<br>Duration<br>(Hrs.) | Gen-Weighted LMP <sup>5</sup><br>(\$/MWh) |      |  |  |
|----------|----------------------------|------------------------------|-------------------------------|-------------------------------------------|------|--|--|
|          | MW)                        | MW)                          |                               | 2024                                      | 2029 |  |  |
|          |                            |                              |                               |                                           |      |  |  |
|          |                            |                              |                               |                                           |      |  |  |
|          |                            |                              |                               |                                           |      |  |  |
|          |                            |                              |                               |                                           |      |  |  |
|          |                            |                              |                               |                                           |      |  |  |

Table 3: Congestion Analysis Solar LMP Summary

Table 4: Congestion Analysis Battery LMP Summary

| Year | Item                            | Charge | Discharge | Charge | Charge | Discharge | Charge |
|------|---------------------------------|--------|-----------|--------|--------|-----------|--------|
| 2024 | Gen-Weighted<br>LMP<br>(\$/MWh) |        |           |        |        |           |        |
| 2029 | Gen-Weighted<br>LMP<br>(\$/MWh) |        |           |        |        |           |        |

# 1.3 Summary

1898 & Co.'s reliability and congestion analysis provided both cost and benefit data points for AES Indiana to consider in selecting any proposals for its capacity need as identified in its most recent IRP.

The reliability analysis provided potential costs that would be borne by the respective proposal in order to interconnect to the grid. The proposals had the remaining proposals all had total network upgrade costs (Proposals and total networ

<sup>5</sup> Generation weighted LMPs display the value for the stand-alone solar or only the solar portion of proposals which included storage or optional storage

<sup>6</sup> Solar portion of Proposal **Sec** is Proposal

<sup>7</sup> Solar portion of Proposal **Contract Solar** is Proposal

**AES** Indiana

The congestion analysis provided a relative ranking of proposal projects and their potential revenue-making ability to offset customer load payments within the MISO market. Sensitivity analyses were performed for certain proposals based on project-specific conditions including the addition of a battery storage system and the ability to offset some congestion at a particular location based on the nomination of existing ARRs. Based on the modeled simulations, Proposal (or Proposal Congestion and Considering potential Congestion results. When considering potential Congestion, Proposal Congestion mitigation.

The results of these analyses should be considered along with the related purchase costs associated with each proposal when determining a preferred proposal.

# 2.0 RELIABILITY ANALYSIS APPROACH

The process of evaluating the reliability impacts of each proposal followed the sequence shown in Figure 1.

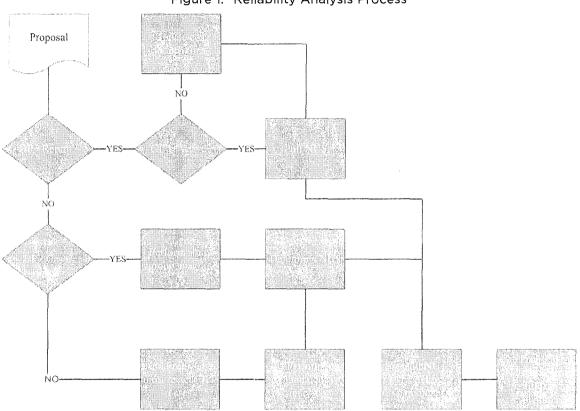



Figure 1: Reliability Analysis Process

The outcome of evaluating the proposals through the sequence defined above resulted in some projects leveraging posted MISO DPP reports and others that required additional analysis for the PJM Affected System Study

| - | - |                                                |
|---|---|------------------------------------------------|
|   |   |                                                |
|   |   |                                                |
|   |   |                                                |
|   |   | The reliability analysis setup for each of the |

proposals is defined in Table 5.

|                                       |                               | Indianapolis Power & Light Company d/b/a AES Indiana |
|---------------------------------------|-------------------------------|------------------------------------------------------|
|                                       |                               | Petersburg Energy Center                             |
|                                       | PUBLIC VERSION                | AES Indiana Attachment MEL-1                         |
| Reliability and Congestion Evaluation | Reliability Analysis Approach | Page 11 of 45                                        |
|                                       |                               |                                                      |

|                             |   | <br>Table 5 | Proposal | Reliability Analys | is Setup | <br> |   |
|-----------------------------|---|-------------|----------|--------------------|----------|------|---|
| Study<br>Assumptions        |   |             |          |                    |          |      |   |
| GI Queue ID                 |   |             |          |                    |          |      |   |
| Point of<br>Interconnection | - |             |          |                    |          |      |   |
| MISO Study<br>Cycle         |   |             |          |                    |          |      |   |
| MISO Study<br>Status        |   |             |          |                    |          |      |   |
| ERIS Analysis               |   |             |          |                    |          |      |   |
| NRIS Analysis               |   |             |          |                    |          |      |   |
| PJM AFS<br>Analysis         |   |             |          |                    |          |      | • |

Each of the proposals that required additional analysis were evaluated using the appropriate study cycle models for MISO. For the PJM AFS analysis, as needed, the AF2 PJM GI study cycle models were used. Further details of the analysis are outlined below.

# 2.1 ERIS Analysis

The Energy Resource Interconnection Service (ERIS) analysis was conducted using the Summer Peak and Shoulder ERIS cases from the appropriate Study Cycle for each proposal under evaluation. Outages simulated included single branch outages, single unit outages, and P1 through P7 planning events for MISO Central areas as provided by MISO in the appropriate Study Cycle study packages. Constraint assessment was performed using MISO's criteria for a network impact or constraint, as defined by the following criteria:

- Constraint I: Generators have greater than a 20% DFAX for P1-P7 events or greater than a 5% DFAX for a PO event.
- Constraint II: The impact is located at the Outlet Facility.
- Constraint III: Generators have greater than a 20% MW Impact based on the applicable facility rating.
- Constraint IV: If none of the DPP study group interconnection requests meet the initial four impact criteria, but the cumulative MW impact of the group of generators is greater than 20% of the rating of the facility, then only those generators whose individual MW impact is greater than 5% of the facility rating and has a DFAX greater than 5% will be responsible for network upgrade.

The impact of the respective proposal was initially evaluated against Constraint criteria I, II and III, as defined above. If the proposal did not meet any one of the top three criteria, then the Constraint criteria IV was evaluated using the impact of the entire respective study group.

# 2.2 NRIS Analysis

The Network Resource Interconnection Service (NRIS) analysis was conducted using the Summer Peak NRIS case from the appropriate Study Cycle for each proposal under evaluation. The sending (MISO\_EX) and receiving (MISO\_IM) subsystems were defined to contain all generators located in the MISO footprint. By including all of MISO as both the source and sink for the system, every generator's deliverability will be studied by TARA Deliverability tool against every other part of the MISO system when identifying study flowgates. Outages simulated included single branch outages, single unit outages, and P1 planning events as provided by MISO in the associated Study Cycle NRIS study package. All transmission facilities under MISO's functional control as well as appropriate external transmission facilities of neighboring entities were monitored.

PowerGEM TARA was used to perform the generator deliverability analysis. Up to 8,000 MW was transferred from MISO\_EX to MISO\_IM while keeping the MISO interchange at the same level. For purposes of the deliverability study, all flowgates were identified for which the individual proposal had a distribution factor (DFAX) greater than or equal to 5%, and the flowgate itself had a DC loading of greater than or equal to 70%.

For each identified flowgate, the top 30 generators contributing to the flowgate (i.e. the generators with the highest DFAX on the flowgate) and any large offline NRIS generators whose DFAX is greater than 5% and whose MW impact (Pmax \* DFAX) is greater than 20% of the line rating had their output increased to their granted NRIS for existing/higher-queued generators or the requested NRIS for study generators. To compensate for the increase in system generation, generators in the rest of MISO\_IM were uniformly scaled down. The

purpose of this dispatch was to create a severe, yet credible, dispatch for each identified flowgate in the deliverability model.

PUBLIC VERSION

If a study generator did not contribute more than 5% of the DFAX on any flowgate with a loading violation, it was considered fully deliverable. If a study generator contributed to a flowgate with a loading violation, it was not considered fully deliverable without a network upgrade. For the purpose of this analysis, all NRIS constraints reported up to the proposal's accredited capacity factor required network upgrades.

# 2,3 PUM AFS Analysis

The PJM Affected System (AFS) analysis was conducted using the PJM 2023 Summer Peak case from the AF2 feasibility study. All active PJM queue projects were modeled through the AF2 study class as well as all active MISO Classic queue projects through the DPP 2019 Cycle study class.

Single contingencies were evaluated for PJM Capacity analysis. Tower outage, bus faults, and breaker faults events were evaluated for PJM Energy analysis. All of the outage files used for the simulations were a part of the AF2 feasibility study package. All PJM facilities 100 kV and above were monitored for impacts. MISO ERIS requests were modeled as PJM Energy only generators and MISO NRIS requests were modeled as PJM Capacity generators. For MISO NRIS solar requests, 100% output was studied for both Capacity and Energy analyses.

PowerGEM's PJM Generator Deliverability module in TARA was used to perform the generator deliverability analysis. The analysis identified overloaded flowgates in which the proposal contributes with a minimum of a five percent (5%) distribution factor consistent with the generator deliverability methodology defined in Attachment C.3 of PJM Manual 14b.

# 2.4 Network Upgrades

Constraints identified within each respective analysis were reviewed to determine if any network upgrades have already been determined by MISO or PJM. If upgrades were already identified, then the rating of the upgrade was crosschecked to determine if it would be adequate for the loading reported within the respective analysis being conducted. If it wasn't adequate or if there wasn't any network upgrade already determined, then a full rebuild of each transmission line or additional transformer was assumed to be the required network upgrade since the limitation of each constraint is not known. Estimated costs for each of these items were primarily based on MISO-published cost factors in the 2020 MTEP Transmission Cost Estimation Guide and coordinated with AES Indiana. The network upgrade cost assumptions applied are provided in Table 6.

| Scope                | kV     | Cost<br>(\$MM) | Unit    |
|----------------------|--------|----------------|---------|
|                      | 69     | 1.3            |         |
|                      | 115    | 1.5            |         |
| Rebuild (All States) | 138    | 1.6            | \$/mile |
| Rebuild (All States) | 161    | 1.6            |         |
|                      | 230    | 1.6            |         |
|                      | 345    | 2.6            |         |
|                      | 138/69 | 5.4            |         |

Reliability and Congestion Evaluation

| Scope                 | k۷      | Cost<br>(\$MM) | Unit    |
|-----------------------|---------|----------------|---------|
|                       | 161/69  | 5.4            |         |
|                       | 161/138 | 5.4            |         |
|                       | 230/138 | 6.6            |         |
| New Transformer (All  | 230/69  | 6.6            | \$/unit |
| States)               | 345/115 | 6.6            | .,      |
|                       | 345/138 | 6.6            |         |
|                       | 345/161 | 6.6            |         |
|                       | 345/230 | 7.6            |         |
|                       | 69      | 1.1            |         |
|                       | 115     | 1.3            |         |
| Additional Line       | 138     | 1.4            | \$/unit |
| Termination           | 161     | 1.6            |         |
|                       | 230     | 1.9            |         |
|                       | 345     | 3.0            |         |
|                       | 69      | 6.3            |         |
|                       | 115     | 7.0            |         |
| Marine Costa da Maria | 138     | 7.7            | \$/unit |
| New Substation        | 161     | 8.3            |         |
|                       | 230     | 9.4            |         |
|                       | 345     | 13.5           |         |

PUBLIC VERSION

# 2.5 Cost Allocation

For each constraint identified for the proposals from each of the different analyses conducted, all other participating generators that are eligible for cost allocation were determined. For each analysis, the largest MW impact from each of the applicable generators from the same Study Cycle was determined from the constrained facilities that met the criteria. The allocated cost of the network upgrade was based on the pro-rata share of the MW contribution on all constraints from each project.

Constraints identified from the PJM AFS could be existing constraints to which the proposal contributes. As such, the triggering generator may not be in same Study Cycle. In order for a generator to be eligible for cost allocation in PJM the following criteria must be met, as defined in PJM Manual 14A:

For network upgrades that cost \$5,000,000 or greater:

- If MW impact is greater than 5 MW AND greater than 1% of the applicable line rating, then:
  - For a transmission facility whose rated voltage level is below 500 kV, a New Service Customer will have some cost allocation if its Distribution Factor (DFAX) on the facility is greater than 5% OR if its MW impact on the facility's rating is greater than 5%.
  - For a transmission facility whose rated voltage level is 500 kV or above, a New Service Customer will have some cost allocation if its DFAX on the facility is greater than 10% OR if its MW impact on the facility's rating is greater than 5%.

For network upgrades that cost less than \$5,000,000:

- If MW impact is greater than 5 MW AND greater than 1% of the applicable line rating, OR (if its Distribution Factor (DFAX) on the facility is greater than 5% AND its MW impact on the facility's rating is greater than 3% then:
  - For a transmission facility whose rated voltage level is below 500 kV, a New Service Customer will have some cost allocation if its Distribution Factor (DFAX) on the facility is greater than 5% OR if its MW impact on the facility's rating is greater than 5%.
  - For a transmission facility whose rated voltage level is 500 kV or above, a New Service Customer will have some cost allocation if its DFAX on the facility is greater than 10% OR if its MW impact on the facility's rating is greater than 5%.

The cost assigned to the generators that meet the eligibility criteria follow the same formula as defined above. The analysis was conducted using PowerGEM TARA software.

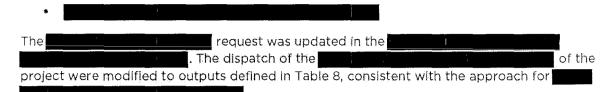
## 3.0 RELIABILITY ANALYSIS RESULTS

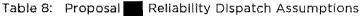
The sections below present the findings for each of the proposals previously defined in Table 1.

3.1 Proposal

The generator analyzed for Proposal represents a

As a result, the reliability impacts, network upgrades, and associated network upgrade costs had been published by MISO. The costs for the generator, as assigned in the study report published are outlined in Table 7.


 Table 7: Proposal
 Reliability Impacts and Network Upgrade Costs


| Analysis Type | Monitored Element | Total NU<br>Cost (\$) |
|---------------|-------------------|-----------------------|
|               |                   |                       |
|               |                   |                       |
|               |                   |                       |
|               |                   |                       |
|               |                   |                       |
|               |                   |                       |

The generator was found to not have contributed to any constraints on the system. As a result no network upgrades were assigned. The direct connection costs for interconnecting at the **second second second** is the only cost currently assigned to the generator. No additional reliability analysis was conducted beyond the results presented in the **second second secon** 

| 3.2 Prop     | 00521                    |                                                                                                                           |
|--------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| The generat  | tor analyzed for Propos  | al <b>represents</b> a modification request to Proposal <b>r</b> as                                                       |
| described a  | bove to include a        |                                                                                                                           |
| provided in  |                          | has not been submitted to MISO. Based on the information net output of the site would not exceed the <b>second second</b> |
|              | . The                    |                                                                                                                           |
|              | requests, analysis is co | onducted to determine if there would be any                                                                               |
|              |                          |                                                                                                                           |
|              |                          | . The analysis for material impact was performed on                                                                       |
| the followin | ig cases from the        | study package below:                                                                                                      |
|              |                          |                                                                                                                           |
|              |                          |                                                                                                                           |
|              |                          |                                                                                                                           |

Reliability and Congestion Evaluation





| Sc |  | Storage | Total<br>Request<br>(MW) | Storage | ERIS SH (MW) |         | ERIS SUM (MW) |         | NRIS SUM (MW) |         |
|----|--|---------|--------------------------|---------|--------------|---------|---------------|---------|---------------|---------|
|    |  | (MW)    |                          |         | Solar        | Storage | Solar         | Storage | Solar         | Storage |
|    |  |         |                          |         |              |         |               | ·       |               |         |
|    |  |         |                          |         |              |         |               |         |               |         |
|    |  |         |                          |         |              |         |               |         |               |         |
|    |  |         |                          |         |              |         |               |         |               |         |

Using the modified cases, ERIS and NRIS analysis was conducted to determine if any new impacts were reported for the generator or any other request in the **second second** as

outlined in Table 9.

Table 9: Proposal Reliability Impacts and Network Upgrade Costs

| Analysis Type                     | Monitored El | ement | Total NU<br>Cost (\$) |
|-----------------------------------|--------------|-------|-----------------------|
| Direct<br>Interconnection<br>Cost |              |       |                       |
| MISO ERIS                         |              |       |                       |
| MISO NRIS                         |              |       |                       |
| PJM AFS                           |              |       | 1                     |

The analysis did not find any change of impacts to other requests in the **Second Second** 3.3 Proposal The generator analyzed for Proposal represents a . The generator is the active request . The generator is the . The generator is the . The generator is the . The point is the  Reliability and Congestion Evaluation



The costs for the generator, as assigned in the **study** study report published **study** and impacts found in the PJM AFS analysis are outlined in Table 10.

| Analysis Type                     | Monitored Element | Rate<br>(MVA) | Criteria Violation Projects | Final<br>AC<br>Loading | Total NU Cost<br>(\$) | Cost<br>Allocation<br>(\$) |
|-----------------------------------|-------------------|---------------|-----------------------------|------------------------|-----------------------|----------------------------|
| Direct<br>Interconnection<br>Cost |                   |               |                             |                        |                       |                            |
| MISO ERIS                         |                   |               |                             |                        |                       |                            |
| MISO ERIS                         |                   |               |                             |                        |                       | . I<br>1 .<br>1            |
| Ameren LPC                        |                   |               |                             |                        |                       |                            |
| Ameren LPC                        |                   |               |                             |                        |                       |                            |
| MIŜO NRIS                         |                   |               |                             |                        |                       |                            |

# Table 10: Proposal Reliability Impacts and Network Upgrade Costs

| Analysis Type | Monitored Element | Rate<br>(MVA) | Criteria Violation Projects | Final<br>AC<br>Loading | Total NU Cost<br>(\$) | Cost<br>Allocation<br>(\$) |
|---------------|-------------------|---------------|-----------------------------|------------------------|-----------------------|----------------------------|
|               |                   |               |                             |                        |                       |                            |
| PJM AFS       |                   |               |                             |                        |                       |                            |
|               |                   |               |                             |                        |                       |                            |

Each analysis found several constraints to which the generator contributes along with other queue requests for MISO constraints and higher-queue requests for PJM constraints. If Interconnection request withdrawals occur in MISO and/or in PJM queues that impact the reported constraints, then the allocated costs to the generator may increase. In the NRIS results within

As a result, the cost allocation of the NRIS network upgrade is a fraction of the overall cost. If interconnection request withdrawals occur in the MISO queue that impact the reported constraints mitigated by the common upgrade, the allocated costs to the generator may increase. Other than PJM AFS, no additional reliability analysis was conducted beyond the results presented in the MISO DPP1 study report.

# 3,4 Proposal

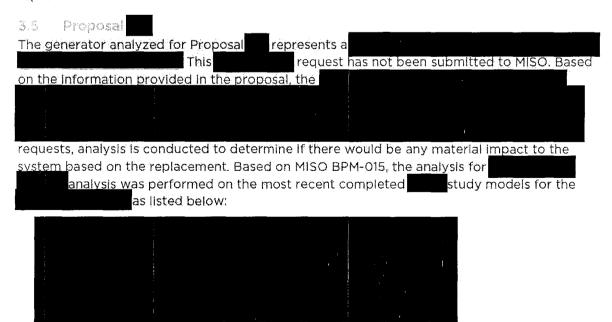
The generator analyzed for Proposal represents a The generator is the active request As a result, the reliability impacts, network upgrades, and associated network upgrade costs had been published by MISO. The PJM AFS was evaluated as outlined in the Reliability Analysis Approach section. The PJM AFS analysis was performed using the study package with specific cases as listed below:

The costs for the generator, as assigned in the second study report published and impacts found in the PJM AFS analysis are outlined in Table 11.

# Table 11: Proposal Reliability Impacts and Network Upgrade Costs

| Analysis Type                     | Monito | ored Element | Rate<br>(MVA) | Criteria Violation F | Projects Final<br>AC<br>Loading | Total NU Cost<br>(\$) | Cost<br>Allocation<br>(\$) |
|-----------------------------------|--------|--------------|---------------|----------------------|---------------------------------|-----------------------|----------------------------|
| Direct<br>Interconnection<br>Cost |        |              |               |                      | · · · ·                         |                       |                            |
| Voltage                           |        |              |               |                      |                                 |                       |                            |

| Analysis Type                | Monitored Elemen | t Rate<br>(MVA) | Criteria Violation Projects                   | Fir<br>A | C I I I I I I I I I I I I I I I I I I I | Cost<br>Allocation<br>(\$)                                                                                                                                                                                                                                                                                                                             |
|------------------------------|------------------|-----------------|-----------------------------------------------|----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · _ · · · <b>_</b> · · · · · |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 | ан<br>1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         | and and a second se<br>Second second s<br>Second second |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               | l        |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO ERIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRÍS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |
| MISO NRIS                    |                  |                 |                                               |          |                                         |                                                                                                                                                                                                                                                                                                                                                        |


| Reliability | and | Congestion | Evaluation |
|-------------|-----|------------|------------|
|             |     |            |            |

| Analysis Type | Monitored Element | Rate<br>(MVA) | Criteria Violation Projects | Final<br>AC<br>Loading | (\$)     |
|---------------|-------------------|---------------|-----------------------------|------------------------|----------|
| MISO NRIS     |                   |               |                             |                        | <u> </u> |
|               |                   |               |                             |                        |          |
| PJM AFS       |                   |               |                             |                        |          |
|               |                   |               |                             |                        |          |
|               |                   |               |                             |                        |          |

\*Cost allocated in ERIS Analysis.

Each analysis found several constraints to which the generator contributes along with other queue requests for MISO constraints and higher-queue requests for PJM constraints. If interconnection request withdrawals occur in MISO and/or in PJM queues that impact the reported constraints, then the allocated costs to the generator may increase. In the NRIS results within the allocated costs to the generator may increase in the NRIS aresult, the cost allocation of the NRIS network upgrade is a fraction of the overall cost. If interconnection request withdrawals occur in the MISO gueue that impact the reported constraints mitigated by the common upgrade.

the allocated costs to the generator may increase. Other than PJM AFS, no additional reliability analysis was conducted beyond the results presented in the study study report.



Reliability and Congestion Evaluation

The Bench Cases were used as the benchmark cases for the impact evaluation. Study cases were also developed that reflected the and the addition of the project as shown in Table 12.

| Table 12: I | Proposal | Reliability | Dispatch | Assumptions |
|-------------|----------|-------------|----------|-------------|
|-------------|----------|-------------|----------|-------------|

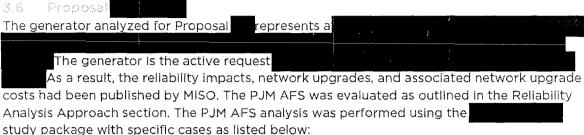
| Generator Capacity<br>(MW) | Total    | Benchmark Case (MW)  |                      |                       |                       | Study Case (MW) |                      |                      |                       |                       |             |
|----------------------------|----------|----------------------|----------------------|-----------------------|-----------------------|-----------------|----------------------|----------------------|-----------------------|-----------------------|-------------|
|                            | Capacity | ERIS SH<br>Discharge | ERIS<br>SH<br>Charge | ERIS SUM<br>Discharge | ERIS<br>SUM<br>Charge | NRIS<br>SUM     | ERIS SH<br>Discharge | ERIS<br>SH<br>Charge | ERIS SUM<br>Discharge | ERIS<br>SUM<br>Charge | NRIS<br>SUM |
|                            |          |                      |                      |                       |                       |                 |                      |                      |                       |                       |             |
|                            |          |                      |                      |                       |                       |                 |                      |                      |                       |                       |             |
|                            |          |                      |                      |                       |                       |                 |                      |                      |                       |                       |             |
|                            |          |                      |                      |                       |                       |                 |                      |                      |                       |                       |             |
|                            |          |                      |                      |                       |                       |                 |                      |                      |                       |                       |             |
|                            |          |                      |                      |                       |                       |                 |                      |                      |                       |                       |             |

The **Study** in the Study Cases as provided by AES Indiana. Using the modified cases, ERIS and NRIS analysis was conducted to determine if any new impacts were reported for the **Study** generator. Both Charging and Discharging scenario results were compared back to the respective Benchmark season to determine adverse impacts.

The costs for the generator, as determined through the second second analysis, are outlined in Table 13.

| Table 13: | Proposal | Reliability Impacts | s and Network Upgrade Co | osts |
|-----------|----------|---------------------|--------------------------|------|
|-----------|----------|---------------------|--------------------------|------|

| Analysis Type   | Monitored Element | Total NU<br>Cost (\$) |
|-----------------|-------------------|-----------------------|
| Direct          |                   |                       |
| Interconnection |                   |                       |
| Cost            |                   |                       |
| MISO ERIS       |                   |                       |
| MÍSO NRÍS       |                   |                       |
| PJM AFS         |                   |                       |


No adverse steady state impacts were observed for the replacement. Direction connection costs were coordinated with AES Indiana to capture the substation work required to facilitate the interconnection of the

AES Indiana

17



**Reliability and Congestion Evaluation** 



PUBLIC VERSION

|          |      |      | : |  |
|----------|------|------|---|--|
|          |      |      |   |  |
|          |      |      |   |  |
| <u>'</u> | <br> | <br> |   |  |

The costs for the generator, as assigned in the study report published and impacts found in the PJM AFS analysis are outlined in Table 14.

| an para se prova por a por |                | Rate      |                |               |
|----------------------------------------------------------------------------------------------------------------|----------------|-----------|----------------|---------------|
| is Type                                                                                                        | Monitored Elem | ent (MVA) | Criteria Viola | ation Project |
| nnection<br>ost                                                                                                |                |           |                | 1             |
| tage                                                                                                           |                |           |                |               |
|                                                                                                                |                |           |                |               |

Table 14: Proposal Reliability Impacts and Network Upgrade Costs

| Analysis Type                     | Monitored Element | Rate<br>(MVA) | Criteria Violation Projects | Final<br>AC<br>Loading | Total NU Cost<br>(\$) | Cost<br>Allocation<br>(\$) |
|-----------------------------------|-------------------|---------------|-----------------------------|------------------------|-----------------------|----------------------------|
| Direct<br>Interconnection<br>Cost |                   |               | ,                           |                        |                       |                            |
| Voltage                           |                   |               |                             |                        |                       |                            |
| Ameren LPC                        |                   |               |                             |                        |                       |                            |
| Ameren LPC                        |                   |               |                             |                        |                       |                            |

Reliability and Congestion Evaluation

| Analysis Type | Monitored Element | Rate<br>(MVA) | Criteria Violation Projects | Final<br>AC<br>Loading | Total NU Cost<br>(\$) Cost<br>Allocation<br>(\$) |
|---------------|-------------------|---------------|-----------------------------|------------------------|--------------------------------------------------|
|               |                   |               |                             |                        |                                                  |
| MISO NRIS     |                   |               |                             |                        |                                                  |
| MISO NRIS     |                   |               |                             |                        |                                                  |
| MISO NRIS     |                   |               |                             |                        |                                                  |
| MISO NRIS     |                   |               |                             |                        |                                                  |
| MISO NRIS     |                   |               |                             |                        |                                                  |
| MISO NRIS     |                   |               |                             |                        |                                                  |
| PJM AFS       |                   |               |                             |                        |                                                  |
| PJM AFS       |                   |               |                             |                        |                                                  |
| PJM AFS       |                   |               |                             | <b>1</b>               |                                                  |
| PJM AFS       |                   |               |                             |                        |                                                  |
|               |                   |               |                             |                        |                                                  |

\*Cost allocated under a different constraint utilizing the new Edwardsport to Hortonville 345 kV upgrade.

Each analysis found several constraints to which the generator contributes along with other queue requests for MISO constraints and higher-queue requests for PJM constraints. If interconnection request withdrawals occur in MISO and/or in PJM queues that impact the reported constraints, then the allocated costs to the generator may increase. In the NRIS results within

PUBLIC VERSION

As a result, the cost allocation of the NRIS network upgrade is a fraction of the overall cost. If interconnection request withdrawals occur in the MISO queue that impact the reported constraints mitigated by the common upgrade, the allocated costs to the generator may increase. Other than PJM AFS, no additional reliability analysis was conducted beyond the results presented in the MISO DPP1 study report.

| 3.7 Propa      |                                                                                |
|----------------|--------------------------------------------------------------------------------|
| The generator  | analyzed for Proposal represents a modification request to                     |
| Proposal       | s described above to include a                                                 |
|                | This request has not been submitted to                                         |
| MISO. Based (  | n the information provided in the proposal, the                                |
|                |                                                                                |
|                | For modification requests, analysis is conducted to determine                  |
| if there would | be any material impact to the constraints identified and assigned to any of th |
|                | n requests in the study group. The analysis for                                |
|                | t was performed on the following cases from the                                |
|                | ckage below:                                                                   |
| study po       | JRAYE DEIOW.                                                                   |
| :<br>:         |                                                                                |
|                |                                                                                |
| 1              |                                                                                |
|                |                                                                                |
|                |                                                                                |
|                |                                                                                |
|                |                                                                                |
|                |                                                                                |
| The            | request was updated in the second to include the                               |
|                | The dispatch of the                                                            |
|                | nodified to outputs defined in Table 15, consistent with the approach for      |

project were modified to outputs defined in Table 15, consistent with the approach for facilities described in MISO BPM-015.

| Table 15: | Proposal | Reliability | Dispatch | Assumptions |  |
|-----------|----------|-------------|----------|-------------|--|
|           |          |             |          |             |  |

|          | Solar | Storage | Total           | Storage | ERIS S | sh (MW) | ERIS SI | JM (MW) | NRIS S | UM (MW) |
|----------|-------|---------|-----------------|---------|--------|---------|---------|---------|--------|---------|
| Scenario | (MW)  | (MW)    | Request<br>(MW) | Mode    | Solar  | Storage | Solar   | Storage | Solar  | Storage |
|          |       |         |                 |         |        |         |         |         |        |         |
|          |       |         |                 |         |        |         |         |         |        |         |
|          |       |         |                 |         | ;      |         |         |         |        |         |

Using the modified cases, ERIS and NRIS analysis was conducted to determine if any new impacts were reported for the generator or any other request in the

study group. The costs for the generator, as determined through the modification analysis are outlined in Table 16.

PUBLIC VERSION

Table 16: Proposal

Reliability Impacts and Network Upgrade Costs

| Analysis Type                     | Monitored Element | Total NU<br>Cost (\$) |
|-----------------------------------|-------------------|-----------------------|
| Direct<br>Interconnection<br>Cost |                   |                       |
| MISO ERIS                         |                   |                       |
| MISO NRIS                         |                   |                       |
| PJM AFS                           |                   |                       |

The analysis did not find any change of impacts to other requests in

study group. It is expected that no additional direct interconnection requests would be incurred for the generator with

| 3,8 Proposal                                                                                                    |                                                  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| The generator analyzed for Proposal repres                                                                      | sents a                                          |
|                                                                                                                 | The generator                                    |
| is the active request                                                                                           | study group. As a result, the                    |
| reliability impacts, network upgrades, and asso                                                                 | clated network upgrade costs had been            |
| published by MISO. The PJM AFS was evaluate                                                                     | d as outlined in the <u>Reliability Analysis</u> |
| Approach section. The PJM AFS analysis was p                                                                    | performed using the study                        |
| package with specific cases as listed below:                                                                    |                                                  |
| i de la companya de l |                                                  |
|                                                                                                                 |                                                  |
| :                                                                                                               |                                                  |
| The costs for the generator, as assigned in the                                                                 | study report published                           |

The costs for the generator, as assigned in the **second feed** study report published **second** and impacts found in the PJM AFS analysis are outlined in Table 17Error! Reference source not found..

| Table 17: Proposal | Reliability Impacts and Network Upgrade Costs |
|--------------------|-----------------------------------------------|
| Table 17. Proposal | Reliability impacts and Network Opgrade Costs |

| Analysis Type   | Monitored Element | Rate<br>(MVA) | Criteria Violation Projects | Final<br>AC<br>Loading | Total NU Cost<br>(\$) | Cost<br>Allocation<br>(\$) |
|-----------------|-------------------|---------------|-----------------------------|------------------------|-----------------------|----------------------------|
| Direct          |                   |               |                             |                        |                       |                            |
| Interconnection |                   |               |                             |                        |                       |                            |
| Cost            |                   |               |                             |                        |                       |                            |
|                 |                   |               |                             |                        |                       |                            |
| Ameren LPC      |                   |               |                             |                        |                       |                            |
|                 |                   |               |                             |                        |                       |                            |

#### Reliability and Congestion Evaluation

| Analysis Type | Monitored Element | Rate<br>(MVA) | Criteria Viola | tion Projects | Final<br>AC<br>Loading | Total NU Cost<br>(\$) | Cost<br>Allocation<br>(\$) |
|---------------|-------------------|---------------|----------------|---------------|------------------------|-----------------------|----------------------------|
|               |                   |               |                |               | i<br>Star<br>I         |                       |                            |
| Ameren LPC    |                   |               |                |               |                        |                       |                            |
| MISO NRIS     |                   |               |                |               |                        |                       |                            |
| MISO NRIS     |                   |               |                |               |                        |                       |                            |
| MISO NRIS     |                   |               |                |               |                        |                       |                            |

There were no constraints cost allocated to the generator in the PJM footprint. Each MISO analysis found several constraints to which the generator contributes along with other queue requests for MISO constraints. If interconnection request withdrawals occur in MISO queue that impact the reported constraints, then the allocated costs to the generator may increase. In the NRIS results within study report, the

As a result, the cost allocation of the NRIS network upgrade is a fraction of the overall cost. If interconnection request withdrawals occur in the MISO queue that impact the reported constraints mitigated by the common upgrade, the allocated costs to the generator may increase. Other than PJM AFS, no

additional reliability analysis was conducted beyond the results presented in the study report.

# 4.0 CONGESTION ANALYSIS APPROACH

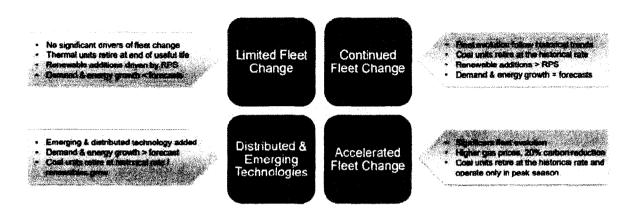
Each of the short-list proposals were evaluated using ABB's PROMOD IV (PROMOD) to simulate security-constrained unit commitment (SCUC) and security-constrained economic dispatch (SCED) across the MISO footprint and neighboring regions. PROMOD simulations calculate the locational marginal price (LMP) for every bus, including generator and load nodes, within the study region. Each LMP represents the marginal price of electricity at a specific location on the grid and varies hourly in PROMOD's day ahead dispatch. One component of the LMP is the congestion component, which is generally caused by a limitation in the transmission system to cost effectively deliver the most efficient and lowest cost sources of generation to load. These limitations in the transmission system can cause congestion costs, impact LMPs and effect generation assets dispatch, curtailment, and associated revenues.

# 4.1 Model Development

#### 4.1.1 Base Model

The 2020 MISO Transmission Expansion Plan (MTEP20) PROMOD models and associated constraint files were utilized as the starting point for this analysis. The MTEP20 models were developed by MISO in conjunction with their stakeholders and include five-year-out, ten-year-out, and fifteen-year-out PROMOD models. The models include the following four distinct futures for those three study years:

- Limited Fleet Change (LFC)
- Continued Fleet Change (CFC)
- Distributed and Emerging Technologies (DET)
- Accelerated Fleet Change (AFC)


These four futures developed by MISO represent a wide variety of future operating conditions that AES Indiana and the proposed resources may face, Table 18 below documents the differences between the MISO futures<sup>8</sup> at a high level.

8

https://cdn.misoenergy.org/20190314%20MTEP20%20Futures%20Workshop%20Item%2002-03-04%20MTEP%20Futures%20Presentation327266.pdf

# Table 18: MTEP20 Future Assumptions

PUBLIC VERSION



After reviewing the MTEP futures with AES Indiana, the AFC future was selected as the starting point for this analysis. The fleet evolution included in this model future aligned most closely to current trends and renewable generation development taking place in MISO local resource zone (LRZ) 6. LRZ 6 is the zone where AES Indiana operates. Model years 2024 and 2029 were utilized for this analysis. The 15-year out model was viewed as more speculative by AES Indiana and therefore Model year 2034 was not evaluated.

# 4.1.2 Additional Generation Retirements and Additions

Future unit retirement and generic resource additions included in the MTEP20 model, specifically in LRZ 6 were reviewed by 1898 & Co. and AES Indiana. Updates to the AFC MTEP model were made to account for recent announcements and utility IRPs which took place since the MTEP20 models were developed. The following updates were made to the base MTEP20 AFC model.

| Announced Retirement | Year | Capacity<br>(MW<br>ICAP) | Area                            |
|----------------------|------|--------------------------|---------------------------------|
| R Gallagher:2        | 2023 | 140                      | Duke Energy Indiana             |
| R Gallagher:4        | 2023 | 140                      | Duke Energy Indiana             |
| Merom:1              | 2023 | 507                      | Hoosier Energy Rural Elec.      |
| Merom:2              | 2023 | 505                      | Hoosier Energy Rural Elec.      |
| AES Petersburg:1     | 2023 | 225                      | Indianapolis Power & Light      |
| AES Petersburg:2     | 2023 | 432                      | Indianapolis Power & Light      |
| Harding Street:GT1   | 2023 | 25                       | Indianapolis Power & Light      |
| Harding Street:GT2   | 2023 | 25                       | Indianapolis Power & Light      |
| F B Culley:2         | 2023 | 90                       | Southern Indiana Gas & Electric |
| Gibson:4             | 2026 | 627                      | Duke Energy Indiana             |
| Cayuga:1             | 2028 | 505                      | Duke Energy Indiana             |

# Table 19: Announced Retirements

| Announced Retirement | Year | Capacity<br>(MW<br>ICAP) | Area                            |
|----------------------|------|--------------------------|---------------------------------|
| Cayuga:2             | 2028 | 500                      | Duke Energy Indiana             |
| Cayuga:4             | 2028 | 120                      | Duke Energy Indiana             |
| Michigan City:12     | 2028 | 469                      | Northern Indiana Public Service |
| Rockport:1           | 2028 | 1,300                    | American Electric Power         |
| Harding Street:5NG   | 2030 | 109                      | Indianapolis Power & Light      |
| Harding Street:6NG   | 2030 | 109                      | Indianapolis Power & Light      |
| Harding Street:7NG   | 2033 | 435                      | Indianapolis Power & Light      |
| Bailly:10            | 2039 | 31                       | Northern Indiana Public Service |

# Table 20: Announced Additions

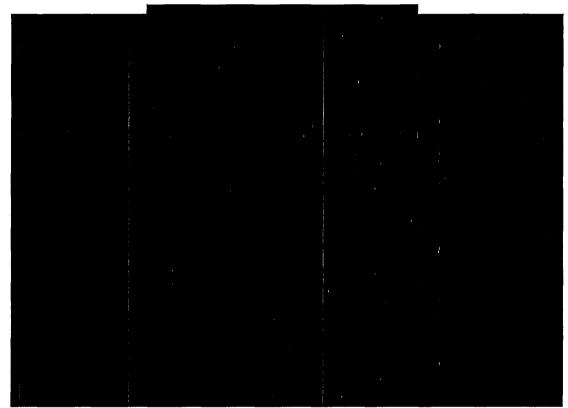
| Announced<br>Additions | Year | Capacity<br>(MW ICAP) | Area                            |
|------------------------|------|-----------------------|---------------------------------|
| Merom CT               | 2022 | 200                   | Hoosier Energy Rural Elec.      |
| SIGE CT 1              | 2022 | 230                   | Southern Indiana Gas & Electric |
| SIGE CT 2              | 2022 | 230                   | Southern Indiana Gas & Electric |
| Rockport CCGT          | 2022 | 770                   | Northern Indiana Public Service |
| Duke CCGT              | 2028 | 1,240                 | Duke Energy Indiana             |

# Table 21: Generic Units Removed

| Generic Units    | Capacity<br>(MW ICAP) | Area                               |
|------------------|-----------------------|------------------------------------|
| RRF MISO CT: 038 | 300                   | Duke Energy Indiana                |
| RRF MISO CC: 009 | 900                   | Southern Indiana Gas &<br>Electric |

# 4.1.3 Fuel Forecasts

In order to align with AES Indiana integrated resource plan (IRP) assumptions, the Henry Hub natural gas and Petersburg fuel price forecasts were updated in the model. In the MTEP PROMOD models the Henry Hub gas forecast is used as the underlying base forecast, and thus impacts the fuel price for all gas resources, additional basis differentials and delivery adders are incrementally added to the Henry Hub forecast to align with site-specific costs. Each of the four MTEP20 futures (AFC, CFC, DET and LFC) and AES Indiana Henry Hub natural gas forecasts are shown in the MTEP20 futures how AES Indiana's Petersburg coal forecast is similar, and the MTEP20 futures forecasts, respectively.


Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 32 of 45

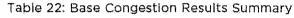
# PUBLIC VERSION

# 4.1.4 AES Indiana Load

Similar to fuel forecasts, AES Indiana provided updated load forecasts which were used as part of the congestion analysis. AES Indiana's forecast had a **measure of the congestion analysis**. AES Indiana's forecast had a **measure of the congestion analysis** and the MTEP20 futures in 2024 and 2029, respectively.

PUBLIC VERSION




4.1.5 Transmission Upgrades

For simulations which the RFP proposals were added into the model, the transmission topology was updated to include the network upgrades identified in the reliability analysis and results documented in Section 3.0.

### 5.0 CONGESTION ANALYSIS RESULTS

Results from the MTEP20 PROMOD simulations were summarized for both the 2024 and 2029 model years. The generation weighted LMP is calculated by dividing the project's revenue from energy sales into MISO by its generation. The generation weighted LMP represents the revenue the facility generated per MWh of generation. In this way, each of the RFP proposals, which have different installed capacities (ICAP) and capacity factors, can be compared to one another. Because the generation weighted LMP represents the \$/MWh price at which energy is sold into the market, a higher number is better for AES Indiana's customers. The RFP proposals are sorted in Table 22 by the average between the 2024 and 2029 generation weighted LMP.

| Proposal | Solar<br>Capacity<br>(ICAP | Storage<br>Capacity<br>(ICAP          | Storage<br>Duration | Gen-Wei<br>(\$/ | ghted LMP <sup>9</sup><br>MWh) |
|----------|----------------------------|---------------------------------------|---------------------|-----------------|--------------------------------|
|          | MW)                        | MW)                                   | (Hrs.)              | 2024            | 2029                           |
|          |                            | · · · · · · · · · · · · · · · · · · · |                     | r               |                                |
|          |                            |                                       |                     |                 |                                |
|          |                            |                                       |                     |                 |                                |
|          |                            |                                       |                     |                 |                                |
|          |                            |                                       |                     |                 |                                |



# 5.1 Sensitivity Results

# 5.1.1 Financial Transmission Rights (FTR)

Due to historical usage on MISO's transmission system, AES Indiana is entitled to Auction Revenue Rights (ARR) which they can convert into Financial Transmission Rights (FTR) from the **automotion** node to their load node. This provides a financial hedge which can manage the risk of price separation, or congestion, on the system between these two points. would be interconnected at **automotion** and therefore AES Indiana would be able to use FTRs

<sup>10</sup> Solar portion of Proposal s Proposal

<sup>11</sup> Solar portion of Proposal is Proposal

<sup>&</sup>lt;sup>9</sup> Generation weighted LMPs display the value for the stand-alone solar or only the solar portion of proposals which included storage or optional storage

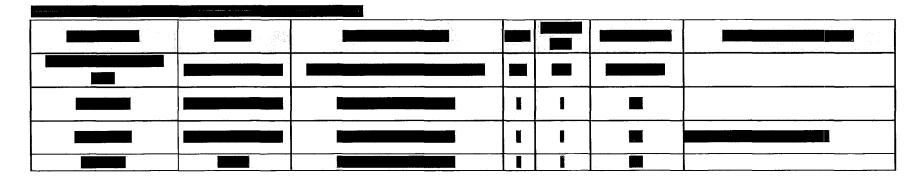
to limit their exposure to potential future congestion on the system. FTRs are split into eight separate segments, peak and off-peak for the four seasons. Historically the congestion component of AES Indiana's load node has been **set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the AES Indiana load node and set of the seasonal delta between the seasonal** 

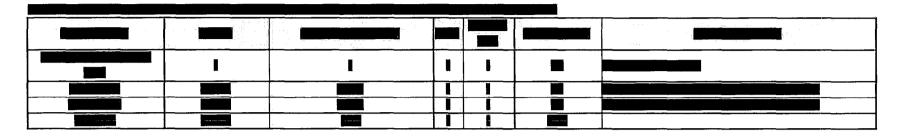
PUBLIC VERSION

1Wh. The highest segment was the peak which had a delta of MWh. Future changes to the transmission system and generation fleet will have an effect on the congestion component delta, however these FTRs provide a hedge to future congestion on the grid between and AES Indiana. This provides a mechanism for minimizing potential congestion risk for project

# 5.1.2 Battery Adder Options

and were provided the option to add storage to the project. Project and battery options included a batterv. included a battery. The storage facility was simulated through PROMOD utilizing a fixed dispatch schedule. The fixed dispatch restricted the battery to charge from the output of the solar resource, which would be required in the near term for the storage to take advantage of the investment tax credit. This fixed charging requirement increases charging costs and results in minimal revenues when only accounting for discharging revenues and charging costs. The annual cycles were limited to the number of days where arbitrage was projected to result in greater discharging revenues than charging costs, with a maximum of. annual cycles. Operations and maintenance as well as other costs were not included in the calculation but would reduce the benefits associated with the delta between battery discharging revenues and charging costs shown in the table below.


|      | 1                                     | a diamana ang kang<br>Manana ang kang |           |     |      | <b>3</b> | 1  |       |   |        |     |
|------|---------------------------------------|---------------------------------------|-----------|-----|------|----------|----|-------|---|--------|-----|
| Year | ltem                                  | Charge                                | Discharge | Cha | arge | Dischar  | ge | Charg | e | Discha | rge |
|      | Revenue/                              |                                       |           |     |      |          | 1  |       |   |        |     |
|      | Expense (\$)<br>Charge/               |                                       |           |     |      |          |    |       |   |        |     |
| 2024 | Discharge                             |                                       |           |     |      |          |    |       |   |        |     |
|      | (MWh)<br>Gen-Weighted<br>LMP (\$/MWh) |                                       |           |     |      |          |    |       |   |        |     |
|      | Cycles                                |                                       |           |     |      |          |    |       |   |        |     |
|      | Revenue/<br>Expense (\$)              |                                       |           |     |      |          |    |       |   |        |     |
|      | Charge/                               |                                       |           |     |      |          |    |       |   |        |     |
| 2029 | Discharge<br>(MWh)                    |                                       |           |     |      |          |    |       |   |        |     |
|      | Gen-Weighted<br>LMP (\$/MWh)          |                                       |           |     |      |          |    |       |   |        |     |
|      | Cycles                                |                                       |           |     |      |          |    |       |   |        |     |


# Table 23: Battery Results Summary

# Appendix A RELIABILITY RESULTS DETAILS SUMMARY

Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 37 of 45

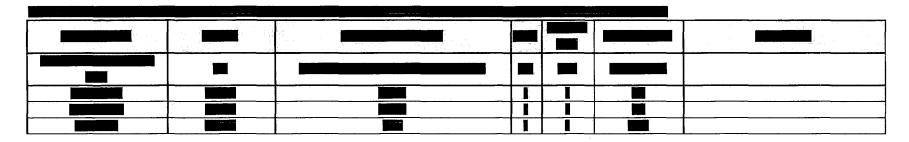
### PUBLIC VERSION





Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 39 of 45

#### PUBLIC VERSION

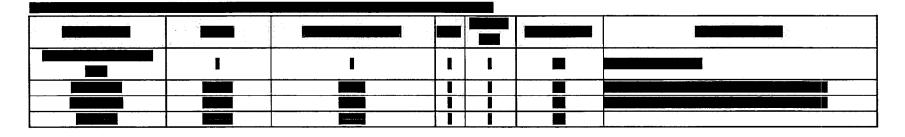

|  |  |              | 1 | Ï  | Į. | I | T |           | I          |  |
|--|--|--------------|---|----|----|---|---|-----------|------------|--|
|  |  |              |   | Į. |    |   |   |           |            |  |
|  |  | 1 <b>—</b> 1 |   | ۱. |    |   |   |           |            |  |
|  |  |              |   | 1  |    |   |   |           | <b>111</b> |  |
|  |  |              |   | l  |    |   |   |           |            |  |
|  |  |              | - | ſ  |    |   |   | - <b></b> |            |  |
|  |  |              |   |    |    |   |   |           |            |  |



Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 40 of 45

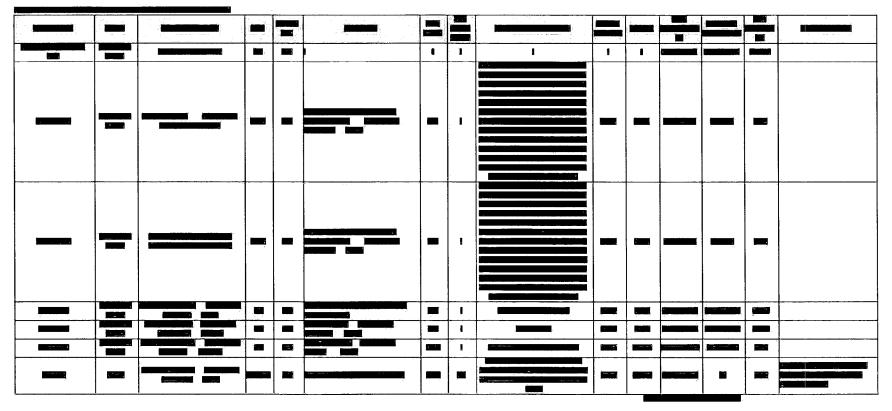
#### PUBLIC VERSION

| <u></u>         |   |                                       | 1        | 1                                     |
|-----------------|---|---------------------------------------|----------|---------------------------------------|
|                 |   |                                       |          |                                       |
| 1               |   | i i i i i i i i i i i i i i i i i i i |          |                                       |
|                 |   |                                       |          |                                       |
|                 |   |                                       |          |                                       |
| -               |   | +                                     | +        | · · · · · · · · · · · · · · · · · · · |
|                 |   |                                       |          |                                       |
| ( ) <b>***</b>  |   | , <b>mini</b>                         |          |                                       |
|                 |   |                                       |          |                                       |
|                 |   |                                       |          |                                       |
| (               |   |                                       |          |                                       |
|                 |   |                                       |          |                                       |
| -               |   |                                       |          |                                       |
| ·               |   |                                       |          |                                       |
|                 |   |                                       |          | 1                                     |
|                 |   |                                       |          | ļ                                     |
|                 |   |                                       |          |                                       |
| i 💻             |   |                                       |          |                                       |
|                 |   |                                       |          |                                       |
| <u>i</u> –      | - |                                       |          |                                       |
|                 |   |                                       |          |                                       |
| '   <del></del> |   |                                       | -        |                                       |
|                 |   | -                                     |          |                                       |
|                 |   |                                       |          |                                       |
|                 |   |                                       |          |                                       |
|                 | - |                                       |          |                                       |
| r 💼             |   | 0                                     |          |                                       |
| 1               |   |                                       |          |                                       |
|                 |   | . 131                                 |          |                                       |
|                 |   |                                       |          |                                       |
|                 |   |                                       |          | 1                                     |
|                 | - |                                       |          |                                       |
|                 | 1 | 1                                     | <u>†</u> | 1                                     |
|                 |   |                                       |          |                                       |
|                 |   |                                       | -        |                                       |
|                 |   |                                       |          |                                       |
|                 |   |                                       |          |                                       |
|                 |   | 1                                     |          |                                       |

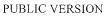



Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 42 of 45

PUBLIC VERSION


Appendix A - Reliability Results Detail Summary. Altx






Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 44 of 45

PUBLIC VERSION



Indianapolis Power & Light Company d/b/a AES Indiana Petersburg Energy Center AES Indiana Attachment MEL-1 Page 45 of 45





| 10000000000000000000000000000000000000                   |
|----------------------------------------------------------|
| \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ |
| 医氯化合物 医白细胞的                                              |

9400 Ward Parkway

Kansas City, MO

