FILED July 2, 2019 INDIANA UTILITY REGULATORY COMMISSION

STATE OF INDIANA

INDIANA UTILITY REGULATORY COMMISSION

PETITION OF DUKE ENERGY INDIANA, LLC)
PURSUANT TO IND. CODE §§ 8-1-2-42.7 AND)
8-1-2-61, FOR (1) AUTHORITY TO MODIFY)
ITS RATES AND CHARGES FOR ELECTRIC)
UTILITY SERVICE THROUGH A STEP-IN OF)
NEW RATES AND CHARGES USING A)
FORECASTED TEST PERIOD; (2) APPROVAL) CAUSE NO. 45253
OF NEW SCHEDULES OF RATES AND)
CHARGES, GENERAL RULES AND)
REGULATIONS, AND RIDERS; (3))
APPROVAL OF A FEDERAL MANDATE)
CERTIFICATE UNDER IND. CODE § 8-1-8.4-1;)
(4) APPROVAL OF REVISED ELECTRIC)
DEPRECIATION RATES APPLICABLE TO)
ITS ELECTRIC PLANT IN SERVICE; (5))
APPROVAL OF NECESSARY AND)
APPROPRIATE ACCOUNTING DEFERRAL)
RELIEF; AND (6) APPROVAL OF A)
REVENUE DECOUPLING MECHANISM FOR)
CERTAIN CUSTOMER CLASSES)

VERIFIED DIRECT TESTIMONY OF CICELY M. HART

On Behalf of Petitioner, DUKE ENERGY INDIANA, LLC

Petitioner's Exhibit 26

July 2, 2019

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

DIRECT TESTIMONY OF CICELY M. HART VICE PRESIDENT – CUSTOMER DELIVERY ENGINEERING DUKE ENERGY BUSINESS SERVICES LLC ON BEHALF OF DUKE ENERGY INDIANA, LLC BEFORE THE INDIANA UTILITY REGULATORY COMMISSION

1		I. <u>INTRODUCTION</u>
2	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
3	A.	My name is Cicely M. Hart, and my business address is 1000 East Main Street,
4		Plainfield, IN 46168.
5	Q.	BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?
6	A.	I am employed as Vice President – Customer Delivery Engineering by Duke
7		Energy Business Services LLC, a service company subsidiary of Duke Energy
8		Corporation, and a non-utility affiliate of Duke Energy Indiana, LLC ("Duke
9		Energy Indiana" or "Company").
10	Q.	PLEASE BRIEFLY DESCRIBE YOUR EDUCATIONAL AND
11		PROFESSIONAL BACKGROUND.
12	A.	I received a Bachelor of Science Degree in Electrical Engineering from Purdue
13		University and a Master's Degree in Business Administration from Indiana
14		Wesleyan University. I began my career at Cinergy Corp. as a System Protection
15		Engineer in 2001 and have held a variety of positions of increasing responsibility
16		across Duke Energy in the areas of transmission and distribution engineering. I
17		am a registered Professional Engineer in both Indiana and Ohio.

1	Q.	PLEASE BRIEFLY DESCRIBE YOUR DUTIES AND
2		RESPONSIBILITIES AS VICE PRESIDENT – CUSTOMER DELIVERY
3		ENGINEERING.
4	А.	My current responsibilities include distribution design engineering, reliability
5		engineering, project management, and geospatial mapping services for the
6		Customer Delivery organization of Duke Energy's Midwest service territory,
7		supporting electric service to 1.7 million customers located in Indiana, Ohio, and
8		Kentucky.
9	Q.	WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS
10		PROCEEDING?
11	A.	The purpose of my testimony is to provide an overview of Duke Energy Indiana's
12		distribution system planning and expenditures. Specifically, I will present Duke
13		Energy Indiana's distribution practices, which includes, forward looking capital
14		and operations outlays, under which the Company is making significant
15		investments to maintain and improve the reliability of its distribution system, to
16		enhance public safety, and grid modernization projects. I also discuss the metrics
17		Duke Energy Indiana uses to measure the reliability of its distribution system. In
18		addition, I will discuss the new and expanded reliability programs Duke Energy
19		Indiana has implemented. To execute the work involved with operating the
20		Company's distribution system, I support the level of distribution capital expenses
21		and operations and maintenance ("O&M") expenses during the historical base

1		period from January 1, 2018 through December 31, 2018, and the projected level
2		of distribution capital expenses and O&M expenses during the forward-looking
3		test period of January 1, 2020 through December 31, 2020.
4		I will discuss the distribution portion of Duke Energy Indiana's
5		Transmission Distribution and Storage System Improvement Charge ("TDSIC")
6		plan, approved by the Commission in Cause No. 44720 ("TDSIC Plan"). I will
7		discuss Duke Energy Indiana's storm costs and support the need for a storm
8		reserve. Finally, I will discuss Duke Energy Indiana's Targeted Underground
9		project and Self-Optimizing Grid initiative.
10		II. DISTRIBUTION SYSTEM CONDITIONS
11	Q.	PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S
11 12	Q.	PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S DISTRIBUTION SYSTEM.
11 12 13	Q. A.	PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S DISTRIBUTION SYSTEM. The Duke Energy Indiana electric delivery system provides electric service to
 11 12 13 14 	Q. A.	PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'SDISTRIBUTION SYSTEM.The Duke Energy Indiana electric delivery system provides electric service toapproximately 840,000 customers located within 69 out of Indiana's 92 counties.
 11 12 13 14 15 	Q. A.	PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'SDISTRIBUTION SYSTEM.The Duke Energy Indiana electric delivery system provides electric service toapproximately 840,000 customers located within 69 out of Indiana's 92 counties.Duke Energy Indiana owns and operates all of its electric distribution facilities.
 11 12 13 14 15 16 	Q. A.	 PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S DISTRIBUTION SYSTEM. The Duke Energy Indiana electric delivery system provides electric service to approximately 840,000 customers located within 69 out of Indiana's 92 counties. Duke Energy Indiana owns and operates all of its electric distribution facilities. Duke Energy Indiana's electric delivery system includes 500 substations,
 11 12 13 14 15 16 17 	Q. A.	 PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S DISTRIBUTION SYSTEM. The Duke Energy Indiana electric delivery system provides electric service to approximately 840,000 customers located within 69 out of Indiana's 92 counties. Duke Energy Indiana owns and operates all of its electric distribution facilities. Duke Energy Indiana's electric delivery system includes 500 substations, 106 transmission substations (locations with 69 kilovolt ("kV") or higher
 11 12 13 14 15 16 17 18 	Q. A.	 PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S DISTRIBUTION SYSTEM. The Duke Energy Indiana electric delivery system provides electric service to approximately 840,000 customers located within 69 out of Indiana's 92 counties. Duke Energy Indiana owns and operates all of its electric distribution facilities. Duke Energy Indiana's electric delivery system includes 500 substations, 106 transmission substations (locations with 69 kilovolt ("kV") or higher operating voltages) having a combined capacity of approximately 22,983
 11 12 13 14 15 16 17 18 19 	Q. A.	 PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S DISTRIBUTION SYSTEM. The Duke Energy Indiana electric delivery system provides electric service to approximately 840,000 customers located within 69 out of Indiana's 92 counties. Duke Energy Indiana owns and operates all of its electric distribution facilities. Duke Energy Indiana's electric delivery system includes 500 substations, 106 transmission substations (locations with 69 kilovolt ("kV") or higher operating voltages) having a combined capacity of approximately 22,983 megavolt-amperes ("MVA"), 394 distribution substations (locations that supply)
 11 12 13 14 15 16 17 18 19 20 	Q.	PLEASE PROVIDE AN OVERVIEW OF DUKE ENERGY INDIANA'S DISTRIBUTION SYSTEM. The Duke Energy Indiana electric delivery system provides electric service to approximately 840,000 customers located within 69 out of Indiana's 92 counties. Duke Energy Indiana owns and operates all of its electric distribution facilities. Duke Energy Indiana's electric delivery system includes 500 substations, 106 transmission substations (locations with 69 kilovolt ("kV") or higher operating voltages) having a combined capacity of approximately 22,983 megavolt-amperes ("MVA"), 394 distribution substations (locations that supply one or more circuits at 35 kV or lower voltage) having a combined capacity of

1		Indiana's service territory (20, 651 at 12.47kV, 733 at 13.8kV, 98 at 34.5kV
2		(delta), 771 at 34.5kV (wye), and 140 at 4.16kV). The Duke Energy Indiana
3		electric delivery system includes various other equipment and facilities, such as
4		control rooms, computers, capacitors, street lights, meters and protective relays,
5		and telecommunications equipment and facilities.
6	Q.	HOW HAS THE DISTRIBUTION SYSTEM CHANGED SINCE DUKE
7		ENERGY INDIANA'S LAST BASE RATE CASE?
8	A.	The number of counties that Duke Energy Indiana services has not increased since
8 9	A.	The number of counties that Duke Energy Indiana services has not increased since the last base rate case, but economic development and residential housing growth
8 9 10	A.	The number of counties that Duke Energy Indiana services has not increased since the last base rate case, but economic development and residential housing growth has influenced the needs for more infrastructure including substation capacity and
8 9 10 11	A.	The number of counties that Duke Energy Indiana services has not increased since the last base rate case, but economic development and residential housing growth has influenced the needs for more infrastructure including substation capacity and line capacity. The number of retail Duke Energy Indiana customers has grown

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

Year	RES	COM	IND	OPA	SL	Retail
2002	641,394	86,603	3,556	112	1,536	733,201
2003	648,572	86,642	3,400	2,472	1,350	742,436
2004	649,717	84,866	2,897	9,169	880	747,529
2005	659,371	86,310	2,907	9,414	989	758,991
2006	665,227	87,575	2,884	9,445	1,097	766,228
2007	671,839	88,687	2,868	9,471	1,188	774,053
2008	673,432	89,552	2,845	9,587	1,263	776,679
2009	672,841	89,436	2,815	9,863	1,406	776,361
2010	677,590	89,555	2,790	10,122	1,458	781,514
2011	679,432	89,502	2,755	10,352	1,440	783,483
2012	683,603	89,861	2,736	10,295	1,438	787,931
2013	688,312	89,975	2,726	10,298	1,473	792,783
2014	693,098	90,125	2,708	10,236	1,514	797,681
2015	700,023	90,407	2,707	10,221	1,574	804,932
2016	707,873	90,696	2,724	10,181	1,616	813,089
2017	714,050	91,019	2,722	10,145	1,666	819,601
2018	724,302	91,476	2,721	10,063	1,708	830,270
Total	12.9%	5.6%	-23.5%	8918.0%	11.2%	13.2%
CAGR	0.8%	0.3%	-1.7%	32.5%	0.7%	0.8%

Table 1

- 2 Customer growth continues throughout 2019. Table 2 depicts the number of retail
- 3 customers at time of filing.
- 4

1

Table 2

Year	RES	COM	IND	OPA	SL	Retail
2019	732,943	91,617	2,704	10,063	1,739	839,066

5 Q. PLEASE GENERALLY DESCRIBE HOW THE ELECTRIC

6 **DISTRIBUTION INFRASTRUCTURE IS DESIGNED, CONSTRUCTED,**

7 MANAGED, AND OPERATED.

1	А.	The electric distribution infrastructure is designed to receive bulk power at
2		transmission voltages, reduce the voltage to 34.5 kV, 12.5 kV, or 4 kV, and
3		deliver power to customers' premises. The distribution infrastructure generally
4		consists of substation power transformers, switches, circuit breakers, wood pole
5		lines, underground cables, distribution transformers, and associated equipment.
6		The physical design of the distribution system is also generally governed by the
7		National Electrical Safety Code ("NESC").
8		Duke Energy Indiana operates the distribution facilities it owns in
9		accordance with good utility practice. Duke Energy Indiana continuously runs the
10		system with a workforce that provides customer service 24 hours per day, 7 days
11		per week, 365 days per year, and includes trouble response crews. The Company
12		monitors outages with various systems, such as Supervisory Control and Data
13		Acquisition (or "SCADA"), Distribution Outage Management System, and
14		Electric Trouble Data Mart.
15	Q.	PLEASE GENERALLY DESCRIBE HOW DUKE ENERGY INDIANA
16		CURRENTLY MONITORS AND MAINTAINS ITS DISTRIBUTION
17		INFRASTRUCTURE AND ITS PERFORMANCE.
18	A.	Duke Energy Indiana maintains its distribution infrastructure in accordance with
19		good utility practice by adhering to inspections, monitoring, testing, and periodic
20		maintenance programs. Examples of these existing programs include, but are not
21		limited to, the following: (1) substation inspection program; (2) line inspection

1		program; (3) ground-line inspection and treatment program; (4) vegetation
2		management program; (5) underground cable replacement program; (6) capacitor
3		maintenance program; and (7) dissolved gas analysis.
4		III. <u>RELIABILITY METRICS</u>
5	Q.	WHAT IS DUKE ENERGY INDIANA'S MAIN GOAL FOR ITS
6		DISTRIBUTION SYSTEM?
7	A.	The main goal of Duke Energy Indiana's distribution system is to provide safe,
8		reliable, and affordable power to satisfy our customers' needs.
9	Q.	HOW DOES THE COMPANY MEASURE THE RELIABILITY OF ITS
10		DISTRIBUTION SYSTEM?
11	А.	Duke Energy Indiana uses various reliability indices to measure the effectiveness
12		of its maintenance programs and system reliability. The Company also uses
13		various indices to measure the effectiveness of its maintenance programs and
14		system reliability. Below are the key reliability indices for Duke Energy Indiana
15		for the 12 months ending December 31, 2018. The electric reliability measures
16		included in Table 3 include the most recent metrics that are submitted to the
17		Commission on an annual basis.

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

Table 3

Duke Energy Indiana, LLC				
Electric Delichility Measure	Reporting Year (12 Months Ending: December 31, 2018)			
Electric Renability Measure	Total	Without Major Events		
SAIFI	1.45 Interruptions/Customer	1.06 Interruptions/Customer		
SAIDI	366.0 Minutes/Customer	156.2 Minutes/Customer		
CAIDI	252.9 Minutes/Interruption	148.0 Minutes/Interruption		
CEMI 6	N/A	1.37% of Customers		

2 Q. PLEASE EXPLAIN THE VARIOUS RELIABILITY INDICES DUKE

3 ENERGY INDIANA USES.

4 A. Reliability indices are generally recognized standards for measuring the number,
5 scope, and duration of outages. These indices are defined as follows:

6	•	System Average Interruption Duration Index ("SAIDI") is the average
7		time each customer is interrupted and is expressed by the sum of customer
8		interruption durations divided by the total number of customers served.
9	•	System Average Interruption Frequency Index ("SAIFI") is the system
10		average frequency index and represents the average number of
11		interruptions per customer. SAIFI is expressed by the total number of
12		customer interruptions divided by the total number of customers served.
13	•	Customer Average Interruption Duration Index ("CAIDI") is the average
14		interruption duration or average time to restore service per interrupted
15		customer and is expressed by the sum of the customer interruption
16		durations divided by the total number of customer interruptions.

CICELY M. HART - 8 -

1

1		• Customers Experiencing Multiple Interruptions 6 ("CEMI 6") is the
2		percentage of customers that experienced 6 or more outages over the
3		course of the last 12 months.
4	Q.	ARE THERE ANY CHALLENGES WITH THESE INDICES? IF YES,
5		PLEASE EXPLAIN.
6	А.	Yes. For example, CAIDI is a measure of how long an average interruption lasts.
7		CAIDI can be lowered by reducing the length of interruptions, but can also be
8		lowered by increasing the proportion of shorter-than-average interruptions. As
9		such, a reduction in CAIDI does not necessarily reflect an improvement in
10		reliability; if SAIFI and SAIDI are both going down, but SAIFI is going down
11		faster than SAIDI, CAIDI will go up even though reliability is getting better. In
12		other words, CAIDI can move both up or down, regardless of reliability
13		improving or degrading.
14	Q.	WHAT EFFORTS HAS DUKE ENERGY INDIANA UNDERTAKEN TO
15		IMPACT CUSTOMER RELIABILITY?
16	А.	Overall, the Duke Energy Indiana grid is reliable and well-maintained. While the
17		Company has worked hard to maintain the system to reliably meet the needs of
18		customers, more must be done to improve the state's energy infrastructure and
19		enhance the customer's energy experience. Duke Energy Indiana has a dedicated
20		team supporting activities to improve customer reliability. Engineers proactively
21		identify equipment that can improve reliability on the system and make

1		recommendations for investments, based on their assessments. Other team
2		members review outages that meet a certain threshold and inspect the distribution
3		lines and recommend reliability improvement projects, such as Targeted
4		Undergrounding. The planning group identifies automation, such as Self-
5		Optimizing Grid, that can be installed on distribution lines to provide backup
6		power sources and isolate issues in the event of power loss from one source. The
7		Targeted Undergrounding and Self-Optimizing Grid programs are explained in
8		further detail, later in my testimony.
9	Q.	WHAT ARE THE PRIMARY CAUSES OF DISTRIBUTION OUTAGES IN
10		DUKE ENERGY INDIANA'S SERVICE TERRITORY?
11	A.	Over the last four years, the three major causes of outages have been vegetation
12		related outages, equipment failure, and planned outages to perform system
13		upgrades. For example, in 2018, 28.63% of all distribution outages were related
14		to vegetation and 21.58% to equipment failure.

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

Outage Cause	% of Total Number of Outages Excluding Planned Outages & MEDs			
	2015	2016	2017	2018
Vegetation	23.19%	24.14%	27.99%	28.63%
Wildlife	12.97%	9.06%	10.92%	9.80%
Public Accident/Damage	8.47%	8.07%	8.70%	7.38%
Unknown Cause	11.02%	11.92%	11.14%	11.37%
Lightning Strike	4.70%	4.79%	5.12%	3.83%
Equipment Failure	22.93%	20.29%	20.59%	21.58%
Other Cause	8.16%	8.73%	8.48%	11.40%
Loss of Transmission/Generation	3.79%	5.75%	1.51%	1.45%
Weather	4.78%	7.24%	5.54%	4.57%

Table 4

2 Q. DOES DUKE ENERGY INDIANA TRACK CUSTOMER OUTAGE

3 SATISFACTION?

1

4 A. Yes. A key driver of satisfaction in Indiana is the outage restoration 5 experience. Outage net satisfaction demonstrates a year over year increase. From 6 2018 to 2019, the average time to restore an outage in Indiana has improved from 7 124 minutes to 73 minutes. 8 The number of outage information points provided via proactive SMS text 9 and the Company's new Outage Maps (including Crew Status, estimated time of 10 restoration ("ETR") and Cause code rates) are up, signaling the Company's field 11 crews' continuous improvement and dedication to keeping customers 12 informed. These increases in satisfaction highlight how key investments the

CICELY M. HART - 11 -

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

1		Company has made in its customer digital channels (like proactive outage alert
2		SMS text and new outage maps, for example) are supporting our customers'
3		desire for more and faster communication.
4		IV. DISTRIBUTION EXPENDITURES
5	Q.	WHAT IS DUKE ENERGY INDIANA'S AMOUNT OF DISTRIBUTION
6		EXPENSE IN 2018?
7	A.	Total distribution Operations and Maintenance ("O&M") expenditure in 2018 was
8		\$117 million. Total capital expenditures in the distribution system totaled \$342
9		million in 2018, including \$142 million in TDSIC expenditures. The figure below
10		provides a breakdown of Duke Energy Indiana's 2018 distribution related capital
11		expenditures.

12

<u>Chart 1</u>

CICELY M. HART - 12 -

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

8

9 Q. WHAT IS DUKE ENERGY INDIANA'S FORECASTED AMOUNT OF

10 DISTRIBUTION EXPENSE IN 2020?

- 11 A. Duke Energy Indiana projects \$128 million in O&M distribution expense in 2020.
- 12 Total capital investment in the distribution system is projected at \$332 million in

CICELY M. HART - 13 -

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

2020, including \$100 million in TDSIC expenditures. The figure below provides
 a breakdown of Duke Energy Indiana's 2020 distribution related capital
 expenditures.
 Chart 3

Q. PLEASE EXPLAIN HOW DUKE ENERGY INDIANA'S DISTRIBUTION O&M AND CAPITAL COSTS HAVE CHANGED FROM 2018-2019 AND FROM 2019-2020.

A. Distribution O&M budget target levels have remained relatively flat over the past
few years. O&M variances (see Table 4) from year to year are typically driven by
larger events in a given year or due to program initiatives. Major storm
restoration costs are a significant driver for the O&M decrease between 2018 and

12 2019. Actual distribution major storm costs for 2018 were \$21 million as

CICELY M. HART - 14 -

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

1	compared to the annual 2019 budget for major storms of \$10 million. 2018
2	O&M costs also reflect higher TDSIC project O&M and higher outage
3	maintenance and underground restoration activity.
4	The major distribution O&M change from the 2019 Budget to 2020
5	Forecast is primarily driven by the \$26 million increase in Duke Energy Indiana's
6	planned distribution vegetation management program spend and increased project
7	O&M, primarily TDSIC and system capacity projects.

8

Table 5

\$ in Millions	2018 A	2019 B	2020 F
Distribution O&M	\$117	\$92	\$128
Increase / (Decrease)		(\$25)	\$36

9As can be seen in Table 6, there is a \$21 million increase in capital10expenditures between 2018 and 2019. The main drivers of this difference are the11increased number of capacity projects in 2019 and the increase associated with the12hazard tree removal program discussed below.13Duke Energy Indiana's distribution capital spend reduction from 2019 to

14 2020 is primarily driven by \$32 million reduction in AMI project spend as AMI

15 nears full deployment at the end of 2019. For further explanation on the

16 Company's AMI deployment see the testimony of Duke Energy Indiana witness

17 Mr. Donald Schneider.

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

Table 6

\$ in Millions	2018 A	2019 B	2020 F
Distribution Capital	\$342	\$363	\$332
Expenditures			
Increase / (Decrease)		\$21	(\$31)

2 Q. PLEASE BRIEFLY EXPLAIN ANY COST SAVING EFFORTS

3 UNDERTAKEN TO MANAGE COSTS.

A. Duke Energy Indiana's 2019 budget includes cost reductions associated with
multiple Customer Delivery initiatives such as changes to our Line & Vegetation

6 Contractor Oversight model, implementation of Technology enhancements

7 (referred to internally as Lighthouse), implementation of Operations Center

8 Standardization, changes to our non-Duke "Foreign Owned" pole inspection

9 process, refinement of our replace versus repair policy, Inventory Optimization

10 improvements, and better management of time spent in meetings & training.

- 11 Q. DID YOU PROVIDE THE 2020 DISTRIBUTION O&M EXPENSES
- 12 **REFLECTED ABOVE, TO WITNESS MR. CHRISTOPHER M. JACOBI**
- 13 FOR INCLUSION IN THE DUKE ENERGY INDIANA FORECASTED
- 14 **TEST PERIOD PROPOSED IN THIS CASE?**
- 15 A. Yes.

1

- 16A. Vegetation Management
- 17 Q. PLEASE SUMMARIZE THE COMPANY'S PLANNED DISTRIBUTION
- 18 VEGETATION MANAGEMENT PROGRAM.

2		
		distribution vegetation management program in detail. The program includes
3		both normal tree trimming cycles, as well as an increasing focus on hazard trees
4		that can be located outside the Company's right-of-way but still impact the
5		system, particularly in times of extreme weather. As part of that effort, Duke
6		Energy Indiana contractors are targeting the identification and removal of
7		approximately 20,000 hazard trees during 2019 and 2020.
8	Q.	WHAT ARE THE BENEFITS OF DUKE ENERGY INDIANA'S
9		PROPOSED VEGETATION MANAGEMENT PROGRAM?
10	A.	The Company anticipates its reliability metrics, as they pertain to the distribution
11		system, to improve after the implementation of the proposed hazard tree
12		vegetation management program and with increased funding of normal
13		vegetation management trim cycles. Duke Energy Indiana anticipates that a fully
14		funded vegetation management program will improve restoration efforts and
15		reduce outage times.
16		B. <u>TDSIC</u>
17	Q.	WHAT IS TDSIC?
18	A.	TDSIC is an acronym that stands for Transmission Distribution and Storage
19		System Improvement Charge which is a legislatively enacted recovery
20		mechanism codified in Indiana Code § 8-1-39 et seq.
21	Q.	DOES DUKE ENERGY INDIANA HAVE AN APPROVED TDSIC PLAN?

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

1	A.	Yes. Duke Energy Indiana's TDSIC Plan was approved in 2016 in IURC Docket
2		No. 44720. The Commission further approved plan updates and cost recovery in
3		Docket Nos. 44720 TDSIC 1 - 6.
4	Q.	HOW MUCH OF DUKE ENERGY INDIANA'S DISTRIBUTION
5		CAPITAL EXPENDITURES ARE RELATED TO ITS TDSIC PLAN?
6	A.	Duke Energy Indiana's distribution capital expenditures, related to TDSIC, is
7		\$142, million in 2018, \$116 million in 2019, and \$100 million in 2020.
8		C. <u>Reliability and Integrity ("R&I") Programs (Outside of TDSIC)</u>
9	Q.	PLEASE SUMMARIZE THE COMPANY'S R&I PROGRAMS
10		REFLECTED IN THE CAPITAL FORECAST PERIOD AND TEST YEAR.
11	A.	There are a few R&I programs outside of TDSIC. These are completed in
12		response to emergent or outage conditions.
13		<u>Cable replacement</u> . Replaces medium voltage underground cable that is nearing
14		end-of-life. Underground cable installation started in the 1970s and in the 1980s
15		became the default installation method for most residential customer connects
16		supporting residential neighborhoods and subdivisions. Duke Energy Indiana
17		currently has an estimated 8,471 miles of underground cable installed. Cable
18		technology has improved through the years and life expectancy continues to
19		increase. Cable technology used during the 1970s was non-jacketed, concentric
20		neutral using high molecular weight insulation. This cable is now beyond its
21		anticipated life span and experiences increased failure rates and needs replaced.

CICELY M. HART - 18 -

1	Declared Protection Zone. Improvement work performed on a circuit that is
2	experiencing an above average number of momentary and sustained power
3	outages. These circuits may also be considered the worst-performing circuits on
4	the distribution system. Circuit components are evaluated for repair or
5	replacement from a visual circuit walkdown by reliability engineers.
6	<u>Circuit Sectionalization</u> . This is a power outage mitigation project designed to
7	improve the reliability of distribution circuits by reducing the number of
8	customers exposed to power outages associated with circuit faults. Examples of
9	interruptions include outages caused by cars hitting poles, trees falling into lines,
10	and outages caused by storms. This reduction of exposure is accomplished by
11	adding and/or re-configuring a number of protective devices on mainlines, circuit
12	backbones, and branch circuits. The settings for these protective devices are
13	coordinated to cause the devices to operate in a manner that isolates only the
14	faulted section of a circuit. This minimizes the number of customers on the
15	faulted section of a circuit that experience an interruption. For Circuit
16	Sectionalization, reliability improvement is defined as a reduction in
17	interruptions, customer minutes, or both. The desired state is a fully developed
18	five-year sectionalization cycle for all circuits. This will improve optimization,
19	overall reliability, and rehabilitation of aging protective devices.
20	<u>Switchgear Replacements</u> . A switchgear is a pad mounted metal enclosure that
21	contains switches and fuses used for switching underground circuits and

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

1	underground fault isolation. These replacements are made for failed devices and
2	devices that have reached the end of their useful life.
3	<u>Recloser Replacements</u> . Reclosers are used on overhead distribution systems to
4	detect and interrupt momentary faults. An example of things that may cause a
5	fault is a tree falling on a circuit or a car hitting a pole. Reclosers open when a
6	fault occurs on the part of the distribution circuit, beyond where it is connected.
7	A timing device enables them to reclose a predetermined number of times for
8	short durations to allow the fault to clear. If the fault is of a temporary nature,
9	such as wires swaying together or a tree limb falling on the line, the recloser will
10	open and close and service will be restored. Should the fault persist, the recloser
11	will remain open, de-energizing that part of the circuit. These replacements are
12	made for failed devices and devices that have reached the end of their useful life.
13	<u>Capacitor Replacements</u> . A capacitor stores a charge of electricity and returns
14	the charge to the line when certain electrical conditions occur. Capacitors
15	improve the efficiency of the flow of electricity by reducing energy losses and
16	providing improved power factor. Capacitors, in an operating state, can reduce
17	power losses along distribution circuits, reduce reactive requirements from
18	generators, assist in maintaining the operating voltage for distribution customers,
19	and provide voltage stability on the transmission system. Capacitors are a critical
20	and essential device for operating an efficient electrical distribution grid. They
21	are strategically located on our system as identified by circuit analysis studies.

CICELY M. HART - 20 -

1		These replacements are made for failed devices and devices that have reached the
2		end of their useful life.
3	Q.	WHAT ARE THE DRIVERS OF THE COMPANY'S R&I PROGRAMS?
4	А.	The drivers for R&I Programs are asset age, technology upgrades, and inspection
5		based replacements.
6	Q.	WHAT ARE THE BENEFITS OF THE R&I PROGRAMS?
7	А.	Duke Energy Indiana's R&I programs facilitate proactive identification of
8		problems, thus enabling efficient resolution. In other words, Duke Energy
9		Indiana is identifying issues that may not have been caught during routine
10		inspections before they become a problem.
11		D. <u>Capacity Projects</u>
12	Q.	WHAT TYPE OF CAPACITY PROJECTS ARE REFLECTED IN THE
13		COMPANY'S CAPITAL FORECAST PERIOD AND TEST YEAR
14		OPERATING EXPENSES, AS WELL AS THE DRIVERS FOR THESE
15		PROJECTS.
16	A.	The Company has plans to execute projects that will enable the power distribution
17		system to deliver more power to customers and improve the reliability and quality
18		of the voltage that is supplied. The current infrastructure was designed with a
19		limited capacity to distribute power. This capacity was based on the cost of
20		construction at the time and the amount of power needed to supply customers.
21		Aside from addressing capacity concerns, the Company maintains acceptable

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

1		system performance by executing projects that provide alternate sources to supply
2		customers. This operating philosophy improves reliability by establishing backup
3		sources for customers, in the event a primary source is out of service. Finally,
4		physical characteristics of the distribution system can cause the quality of voltage
5		delivered to the customer to be unacceptable to operate their equipment. In these
6		cases, the company executes projects to modify the distribution system to ensure
7		the power supply meets the needs of customers' equipment.
8	Q.	WHAT ARE THE WORK SCOPES AND TIMING OF THE COMPANY'S
9		PLANNED MAJOR PROJECTS RELATED TO CAPACITY OF THE
10		DISTRIBUTION SYSTEM?
11	A.	System capacity projects are developed for both actual load growth and projected
12		load growth. Projects that are developed to expand the capacity of the distribution
13		system include the addition of substations, addition of transformers in existing
14		substations, extension of new circuits, and the replacement of existing circuits
15		with larger wires. From conception through execution, the timing of these
16		projects ranges from one to five years. After engineers develop scoping
17		documents, designers collaborate to ensure all necessary components are
18		integrated into the design to meet customer needs and system operational needs.
19		Aside from load growth projects that result from collaboration with the
20		Company's Large Account Management and Economic Development
21		organizations, planning engineers review system peak load data (summer and

CICELY M. HART - 22 -

1		winter) looking for overloaded infrastructure/equipment or projected overloading
2		due to impending load growth. Load projections are made using historical data
3		and growth rates. There are times when large customers do not provide long-term
4		plans for growth, which drives Duke Energy Indiana's need to execute short-term
5		projects.
6		Capacity projects are initiated with in-service dates that ensure the
7		necessary capacity will be in service to meet imminent load growth. These
8		projects usually transition from scope development to completion within 18-24
9		months. Whereas, longer range projects result from forecasted growth trends.
10	Q.	WHAT ARE THE WORK SCOPES AND TIMING OF THE COMPANY'S
11		CAPACITY PROJECTS RELATED TO RELIABILITY AND POWER
12		QUALITY OF THE DISTRIBUTION SYSTEM?
13	A.	Some system capacity projects enable the transfer of customers' supply between
14		sources; thereby enabling faster restoration of service when a customer's primary
15		source is unavailable. The system voltage must remain at the level necessary to
16		operate customers' equipment. This can be accomplished by increasing size of
17		the circuit. Duke Energy Indiana's planning engineers analyze the system for
18		proper voltage, reliability improvement opportunities, and system protection
19		conditions resulting from system loading. The system reliability improvement
20		aspect of the planning engineer's work involves evaluating the system for optimal

1		designed to improve reliability. If the voltage delivered to the customer is
2		incapable of operating the customer's equipment, planning engineers develop
3		projects to mitigate the system issues. These projects include replacing
4		distribution circuits, transferring load between the three phases of a circuit,
5		transferring load between circuits, and adding voltage regulation devices.
6		Considering the customer satisfaction impact, these projects are typically
7		scheduled to be executed within two years.
8	Q.	PLEASE EXPLAIN THE FORECASTED INCREASE IN CAPACITY
9		PROJECT EXPENDITURES.
10	A.	In 2019 and 2020 the Company will be completing several substation and circuit
11		upgrades projects. Substation projects include the addition of new substations
12		and/or the addition of transformers in existing substations. This is necessary to
13		prevent the overloading of transformers when new customer load is added to the
14		distribution system. Distribution circuit projects include extending new circuits
15		or increasing the size of existing circuits. New or larger circuits are necessary to
16		supply new load or prevent the overloading of existing circuits. Table 7 includes
17		some of the customer addition projects underway in 2019 and currently projected
18		for 2020.

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

<u>Table 7</u>

2019 Capacity Projects	2020 Capacity Projects
Chatham Hills Development	Bloomington 11th St
IU Health Hospital	Carmel Rohrer Rd 69 Sub Bus Circuit
Grand Park Expansion	Hoosier Energy Springport 1201
Midwest Poultry Farms	West Lafayette Cumberland Ave Bank 2
Spelterville Substation	Westfield Ditch 1291 & 1293
GEICO Expansion	Westfield Ditch Bk #1 22.4MVA
Med Tech Park, Fishers Field House	Zionsville Turkeyfoot 22.4 MVA Bk 2
Tredegar	Dist. OH/UG Line Improvements
KAR International Addition	West Lafayette 1227 Ln Ext
County Materials	Zionsville Turkeyfoot 1264-1265

2 Q. HOW DOES THE COMPANY PRIORITIZE ITS CAPACITY PROJECTS?

3 A. To ensure the most viable and cost-efficient distribution projects a	are funded each
---	-----------------

- 4 year, a project prioritization matrix has been developed. The intent of this matrix
- 5 is to maximize the use of objective data while minimizing subjective data. The

6 matrix uses loading criteria and reliability data for an overall project ranking.

- 7 The following considerations are used in determining project priority:
- 8 Percent Loading of Transformer
- 9 Percent Loading of Feeder
- 10 Estimated Unserved Load
- 11 Growth Rate

1

- 12 Other factors such as regulatory requirements and management discretion are also
- 13 considered on a case-by-case basis.

CICELY M. HART - 25 -

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

Q. WHAT ARE THE BENEFITS OF THE PLANNED CAPACITY PROJECTS?

3 A. Capacity projects can benefit both the ability to supply load and the quality of the 4 supply. As it relates to system capacity, these projects provide the ability to 5 supply new load. If projects that are designed to supply new load are not 6 completed, we may not be able to supply new customers. In some cases, capacity 7 projects provide a secondary supply to existing load. Secondary supplies provide 8 backup sources for customers. These backup sources enable load transfers for 9 maintenance purposes and expedite restoration during system faults. Finally, 10 capacity projects could be designed to eliminate power quality issues caused by 11 low voltage. Eliminating low system voltage permits customers' equipment to 12 operate as designed.

13 Q. ARE THERE ANY ALTERNATIVES TO THE COMPANY'S CAPACITY 14 PROJECTS?

A. Capacity projects must be completed to supply customer load and ensure the
quality of serve is acceptable. These projects provide the ability to supply new
load. If projects that are designed to supply new load are not completed, the
Company might not be able to supply new customers. If capacity projects that are
designed to provide a secondary supply to existing load are delayed, the Company
might not be able to transfer load to another source for maintenance purposes.
Failure to completes these projects could also increase the time needed to restore

1		service during system faults. If capacity projects that are designed to eliminate
2		power quality issues are not completed, customers could experience low voltage
3		that possibly disables their equipment. During the project scoping phase, planning
4		engineers vet alternatives. They seek to resolve system capacity and reliability
5		concerns by implementing the most viable, cost-efficient solutions. Generally,
6		alternative solutions are either impractical, less economical, or both.
7		E. <u>New Customer Expansion</u>
8	Q.	PLEASE EXPLAIN THE TYPE OF PROJECTS THAT ARE CLASSIFIED
9		AS NEW CUSTOMER EXPANSION?
10	A.	Customer expansion projects for Duke Energy Indiana can be separated into 4
11		basic categories:
12		1) Extensions of the Duke distribution system to serve an individual
13		residential single-family home.
14		2) Extensions of the Duke distribution system to serve subdivisions or
15		multi-family buildings.
16		3) Extension of the Duke distribution system to serve Commercial or
17		Industrial businesses or companies.
18		4) Customer-requested relocations of existing Duke distribution facilities
19		to accommodate new customer facilities on a lot/parcel.
20	Q.	WHAT IS THE WORK SCOPE AND TIMING OF THESE PROJECTS
21		RELATED TO THE DISTRIBUTION SYSTEM?

1	A.	The scope and timing for a customer expansion project is driven by the customers
2		projected load requirements, the existing Duke distribution system nearest the
3		project, and the customers requested in service dates.
4		For residential single-family homes, the scope is typically the extension of
5		overhead or underground primary conductors, poles, with the installation of a
6		single-phase transformer. These projects typically take 2 to 3 months to
7		complete, depending on complexity of the line extension.
8		The scope of a subdivision project typically includes an extension of
9		overhead primary distribution conductors and poles to get to the subdivision
10		entrance. From there it includes the extension of underground primary
11		conductors, pad-mounted transformer and sectionalizing module installations,
12		secondary conductors, and service lateral installations. Depending on the number
13		of lots in the subdivision, there could be a need for multiple distribution phases to
14		be extended throughout the development. Timing for the average typical
15		subdivision today is around 4 months.
16		Commercial and Industrial project scope is driven by customer load more
17		so than your typical residential installations. The customers' load requirements or
18		requests could lead to the installation of a customer substation and/or primary
19		distribution service. Large commercial developments also requiring capacity and
20		planning discussions and typically involve extensions or upsizing of the existing

1		distribution system. Once plans are finalized, these projects could take 12 months
2		or more to complete based on the complexity of the development
3		Customer-requested relocation project scopes are driven by the length of
4		the distribution system that needs relocated and the distribution feeder routing.
5		These projects can require the interconnection of multiple distribution feeders,
6		and the upgrading of existing feeder conductors to handle load growth/swap to the
7		feeder. These projects require completion prior to the customer being able to start
8		construction and the timing varies greatly depending on the size of the customer's
9		development.
10	Q.	HOW DOES THE COMPANY PRIORITIZE ITS NEW CUSTOMER
11		EXPANSION PROJECTS?
12	А.	Duke Energy Indiana works with its customers to prioritize new customer
13		expansion projects based on the customers requested need and timing.
14		F. Grid Improvement Projects
15	Q.	PLEASE SUMMARIZE THE COMPANY'S GRID IMPROVEMENT
16		PROJECTS REFLECTED IN THE CAPITAL FORECAST PERIOD AND
17		TEST YEAR OPERATING COSTS.
18	A.	Duke Energy Indiana's grid improvement projects comprise two major
19		components: Self-Optimizing Grid and Targeted Undergrounding. As explained
20		in more detail later in my testimony, the Self-Optimizing Grid project will utilize
21		advanced technology to redesign key portions of the distribution system and

1		transform it into a dynamic self-healing network that can detect and isolate issues
2		and limit the impact to customers. Targeted Undergrounding is the name for a
3		program whereby Duke Energy Indiana will strategically identify outage prone
4		overhead power line sections and relocate them underground.
5	Q.	WHAT ARE THE DRIVERS OF THE COMPANY'S GRID
6		IMPROVEMENT PROJECTS?
7	A.	Duke Energy Indiana's electrical network contains an extensive amount of
8		overhead distribution lines. These lines contain both backbone feeder conductors,
9		which carry power from electrical substations to neighborhoods, and tap lines that
10		distribute power throughout those neighborhoods. As customers expect more
11		from the Company, it must invest in the grid to provide ever-improving service
12		and maintain a reliable distribution system. To meet these expectations, Duke
13		Energy Indiana is utilizing technology that supports faster restoration to optimize
14		the total customer experience and transform the grid to prepare it for the energy
15		opportunities that lie ahead. Duke Energy Indiana is also selecting a subset of
16		these smaller overhead lines to implement targeted undergrounding.
17	Q.	PLEASE EXPLAIN WHAT A SELF-OPTIMIZING GRID IS AND WHY IT
18		IS NEEDED.
19	А.	The Self-Optimizing Grid, also known as the "smart-thinking grid," utilizes
20		advanced technology to redesign key portions of the distribution system and
21		transform it into a dynamic self-healing network that can detect and isolate issues

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

and limit the impact to customers, by finding the most efficient real-time solution
 to restore power.

3 Today the Company's system is constructed for one-way power flow in a 4 radial design with limited ability to integrate renewable energy. Self-optimizing technology can reduce outage impacts on customers and provide the foundation 5 6 for the two-way power flows needed to support more rooftop solar, battery 7 storage, electric vehicles and microgrids - technologies that will increasingly 8 power the lives of customers. Self-Optimizing Grid bears a relationship and 9 complements the Company's investments in self-healing "teams" included in its 10 TDSIC Plan; however, this is an even more integrated and "real time" response 11 that represents the next level of "smart" operation. Self-Optimizing Grid 12 investments seek to: 1) Increase system "connectivity" by building more circuit 13 ties that allow for more flexibility in restoration options. By tying more circuits 14 together, the system will shift from a radial design to more of a "spider web" 15 design. 2) Increase "capacity" by installing larger wires, transformers and system 16 banks to be able to handle dynamic switching and increased two-way power flow 17 from adjacent circuits and renewable generation. 3) Increase "control" through 18 additional system automation and intelligence. Increased automation and 19 intelligence is becoming a necessary requirement to manage an increasingly 20 dynamic system. Please see Petitioner's Exhibit 26-A (CMH) for a schematic of 21 self-optimizing grid.

CICELY M. HART - 31 -

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

1 Q. WHAT ARE THE BENEFITS OF THE SELF-OPTIMIZING GRID 2 PROJECT?

- A. With increased connectivity, capacity, and control, the Company will have an
 increasingly more resilient system with greater flexibility in restoring and
- 5 preventing outages. Instead of having circuit pairs that can back each other up,
- 6 the network allows for multiple options to re-energize circuit segments. With a
- 7 fully functional self-optimizing grid, a majority of Duke Energy Indiana's
- 8 customers will benefit from a decrease in sustained outages.

9 Q. WHAT ARE THE EXPECTED COSTS OF THE SELF-OPTIMIZING

- 10 **GRID PROJECT?**
- A. During the next couple of years, Duke Energy Indiana plans a small roll-out of
 this functionality, with budgets of \$7.0 million in 2019 and \$8.0 million in 2020,
- 13 for this program. This represents approximately 100 reclosers per year.
- 14 Q. PLEASE EXPLAIN WHAT TARGETED UNDERGROUNDING IS AND
- 15 WHY IT IS NEEDED.

A. Using the Targeted Undergrounding, Duke Energy Indiana will strategically
identify outage-prone overhead power line sections and relocate them

- 18 underground in an effort to harden the system against severe weather and reduce
- 19 the impact of vegetation related power quality issues, thereby increasing overall
- 20 reliability. Underground installations carry less exposure to environmental factors
- 21 that often cause electrical faults. The locations will be selected based on an

CICELY M. HART - 32 -

1		evaluation of the following: operational performance, costs (average outage
2		costs), construction designs that are inconsistent with the Company's current
3		standards, and age of the assets. Part of the selection process will be to identify
4		circuit segments using Duke Energy Indiana's outage history records, specifically
5		looking for repeat outage areas. Once located, engineers will overlay this
6		information with where vegetation management is most costly and where the
7		Company has limited access for its trucks, which drives up restoration costs,
8		outage duration, and increases employee risks. Targeted Undergrounding will
9		also be used to address infrastructure that is nearing its end of design life. Instead
10		of rebuilding the system with "like for like," this program proposes to uplift
11		facilities, bringing them up to current standards, many of which address reliability
12		gaps. Please see Petitioner's Exhibit 26-B (CMH) for more on targeted
13		undergrounding.
14	Q.	WHAT ARE THE BENEFITS OF THE PLANNED TARGETED
15		UNDERGROUND PROJECTS?
16	A.	Undergrounding overhead tap lines may reduce the frequency and duration of
17		outages for Duke Energy Indiana customers, especially in areas that historically
18		see the most damage in major storms. Restoration in other areas can be
19		accomplished faster due to the material reduction in outage events for these
20		outlier segments of overhead facilities. Faster restoration means life returns to
21		normal more quickly for Duke Energy Indiana's customers, decreasing the

1		economic impact major storms can have. This program also allows for vegetation
2		management resources to be reallocated to benefit more customers.
3		It's important to note that this is not a full undergrounding effort, as
4		undergrounding distribution and transmission lines can be very costly and may
5		also require longer outages to repair when they fail. This is a very targeted
6		program that addresses problem areas only.
7	Q.	WHAT ARE THE EXPECTED COSTS OF THE TARGETED
8		UNDERGROUND PROJECT?
9	A.	During the next couple of years, Duke Energy Indiana plans a small roll-out of
10		this project. Duke Energy Indiana has budgeted \$2.5 million in 2019 and \$5
11		million in 2020, for this program.
12	Q.	IN SUMMARY, WHY ARE THE GRID IMPROVEMENT PROJECTS
13		NECESSARY?
14	A.	Duke Energy Indiana is committed to providing safe and reliable service to our
15		customers. Continually improving operations and making investments that
16		improve reliability, avoid outages, and reduce restoration times are central to this
17		commitment. Further, as customer energy needs evolve, a smart thinking grid
18		that can communicate and provide information to Duke Energy Indiana and its
19		customers and automatically react to grid events is essential. Duke Energy
20		Indiana engages in a plan of continuous improvement of its distribution grid and

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

1		these programs represent two vital additions to the Company's efforts to provide
2		safe, reliable, and affordable service to customers.
3		V. STORM RESTORATION COSTS
4	Q.	DOES DUKE ENERGY INDIANA CLASSIFY STORMS?
5	А.	Yes. Duke Energy Indiana has four classifications, or severity levels, used to
6		determine the level of activation and support personnel required for a storm or
7		natural disaster; Level 0 is the least severe and Level 3, the most severe.
8	Q.	PLEASE PROVIDE A BRIEF DESCRIPTION OF EACH LEVEL.
9	A.	Level 0 (non-declared): Storms or events that affect or could affect only one part
10		of the service territory with minor isolated damage. Restoration is normally
11		accomplished by the affected area's resources without outside assistance and
12		typically within 6 hours.
13		Level 1: Storms or events with minor damage affecting one or a few Operations
14		areas. Restoration is normally accomplished by the affected area's resources
15		without outside assistance and typically between 6-12 hours.
16		Level 2: Storms or events causing damage to one or several Operations
17		areas. Restoration efforts require the movement of line resources, including
18		possible off-system contractors, to the affected areas. Restoration will typically
19		take between 12 and 24 hours.
20		Level 3: Storms or events producing extensive damage to the service
21		territory. Restoration efforts require management of large compliments of off-

CICELY M. HART - 35 -

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

- 1 system crews, as well as extensive materials, logistics, and engineering support.
- 2 Restoration will take more than 24 hours.

3 Q. HOW OFTEN DOES DUKE ENERGY INDIANA EXPERIENCE LEVEL 1,

- 4 **2 AND 3 STORMS**?
- 5 A. The table below summarizes storm activity since 2014.
- 6

2019 (through Storm 2014 2015 2016 2017 2018 June 9th) Level 10 10 3 Level 1 2 6 3 Level 2 0 4 10 11 4 4 Level 3 1 0 3 0 1 1 Number of 5 6 4 7 10 5 **MEDs**

Table 8

7 Q. HOW DOES DUKE ENERGY INDIANA DETERMINE IF A STORM

8 QUALIFIES AS A MED STORM?

9 A. A Major Event Day ("MED") is defined by IEEE 1366 as a day in which the daily

- 10 system SAIDI exceeds an MED threshold value (calculated from a 5-year average
- 11 daily SAIDI). MEDs should be analyzed and reported separately.
- 12 Q. WHAT LEVEL OF ANNUAL O&M EXPENSE HAS DUKE ENERGY

13 INDIANA INCLUDED IN ITS 2020 FORECAST FOR MED STORMS?

- 14 A. Our annual O&M budget for MED Storm expense is \$10.0 million, but our actual
- 15 expenditures will vary year to year based on the actual number of MED storms
- 16 and the types of restoration required. Over the past 5 years (2014-2018) our MED

DUKE ENERGY INDIANA 2019 BASE RATE CASE DIRECT TESTIMONY OF CICELY M. HART

storm expenses were as follows (\$ in Millions):

2

1

Distribution Transmission Total Year 2014 \$5.2 \$1.3 \$6.5 2015 \$6.8 \$.4 \$7.2 2016 \$12.1 \$.7 \$12.8 2017 \$14.8 \$.8 \$15.6 2018 \$20.9 \$.5 \$21.4 **5** Year Average \$12.0 \$.7 \$12.7

Table 9

3 Based upon the trend in rising storm costs and the variability and unpredictability of annual MED storm level amounts, Duke Energy Indiana believes it is 4 appropriate to establish an MED storm level amount in base rates and then 5 6 establish a reserve for any amounts below or above that level. 7 **VI. CONCLUSION** 8 Q. WERE PETITIONER'S EXHIBITS 26-A (CMH) AND 26-B (CMH) 9 **PREPARED BY YOU OR UNDER YOUR DIRECTION?** Yes, they were. 10 A. 11 0. **DOES THIS CONCLUDE YOUR PREFILED TESTIMONY?** 12 A. Yes, it does.

PETITIONER'S EXHIBIT 26-A (CMH) Duke Energy Indiana 2019 Base Rate Case Page 1 of 2

Self-Optimizing Grid (SOG) Vision

Existing Distribution

- One way power flow
- Radial design
- Any lockout of a breaker or recloser results in a large # of customers out.
- Limited capacity to manually back-feed from other circuits and for renewables

The Goal: Customers rarely experience interruptions due to a dynamic self-optimizing grid which automatically reacts to and mitigates failures and accepts and effectively manages renewable energy.

Future Distribution

- Networked system with dynamic energy flow. i.e. most circuits will have restoration capabilities from alternate sources.
- Solar/Renewable ready
- Essentially transform the distribution system into one big self healing network that can react automatically to faults and accommodate renewables

1

The Self Optimizing Grid is transforming the radial distribution system to an automated distribution <u>network</u> that provides:

- ✓ **Connectivity** with automated devices between circuits.
- ✓ Capacity on circuits and substation banks to allow dynamic switching. Can't back-feed without capacity.
- ✓ Segmentation such that circuits have much smaller line segments, thus reducing the number of customers that are affected by outages.
- ✓ Automated Control to manage the grid. This is the automated head-end system, plus SCADA enabled field devices.

PETITIONER'S EXHIBIT 26-A (CMH) Duke Energy Indiana 2019 Base Rate Case Page 2 of 2

Self-Optimizing Grid (SOG) Objective

Duke Energy's objective is to build a better energy future for Duke Energy Indiana customers by making smart investments to strengthen the distribution electrical grid.

A self-optimized grid will:

- Improve power quality and reliability.
- Position Duke Energy Indiana to meet customers' growing expectations, demands, and needs.
- Further locate and isolate faults (short circuits) into smaller line segments and automatically reconfigure the system.

PETITIONER'S EXHIBIT 26-B (CMH) Duke Energy Indiana 2019 Base Rate Case Page 1 of 2

Targeted Undergrounding

Leveraging historic data to strategically move thousands of miles of hard-to-access overhead power lines underground to improve reliability for customers

TARGETED UNDERGROUNDING BENEFITS

- Significantly reduce outages
- Minimize momentary interruptions
- Restore power faster
- Eliminate tree trimming in hard-to-access areas

Targeted undergrounding drives **higher reliability** by significantly reducing risk on outage-prone power line segments.

PETITIONER'S EXHIBIT 26-B (CMH) Duke Energy Indiana 2019 Base Rate Case Page 2 of 2

Targeted Undergrounding

LINEMAN IN RAIN IN AREAS INACCESSIBLE BY BUCKET TRUCK, LINEMEN HAVE TO CLIMB POLES TO MAKE REPAIR

VERIFICATION

I hereby verify under the penalties of perjury that the foregoing representations are true to the best of my knowledge, information and belief.

Signed: <u>Cicely M. Hart</u> Cicely M. Hart

Dated: <u>7/2/2019</u>