FILED December 23, 2020 INDIANA UTILITY REGULATORY COMMISSION

NIPSCO 2018 IRP Attach<u>Appendrx</u>A Page 608

45472

Barbara Bolling Williams (right), president of the NAACP State Conference and national board member of the NAACP, welcomes invited panelists to the "Just Energy: Reducing Pollution and Creating Jobs" town hall meeting. The NAACP is a conduit for environmental justice and primarily advocates for clean energy, climate, environment (air, water, food), stewardship and connecting the community with a green economy.

At the meeting, which was held at Mount Zion Baptist Church, Dana Reed Wise (left), chief of the bureau of environmental health for the Marion County Public Health Department, speaks on environmental climate issues as Rep. Vanessa Summers, D-Indianapolis, listen to her perspective. (Photos/Curtis Guynn)

OUR AIR, OUR ENERGY, OUR WATER, OUR CHILDREN & OUR ENVIRONMENT

DEMOGRAPHIC FACTS:

 41.6% PEOPLE OF COLOR LIVE WITHIN INDIANAPOLIS- MARION COUNTY¹

✓ 83% LOW INCOME LIVE WITHIN A 3 MILE RADIUS OF IPL POWER PLANT²

✓ BLACK CHILD THREE TIMES LIKELY TO BE ADMITTED INTO THE HOSPITAL, TWO TIMES LIKELY TO DIE OF AN ASTHMA ATTACK ³

1 Brown, Amos "Blacks continue to power city's population growth, Census says" July 10, 2014

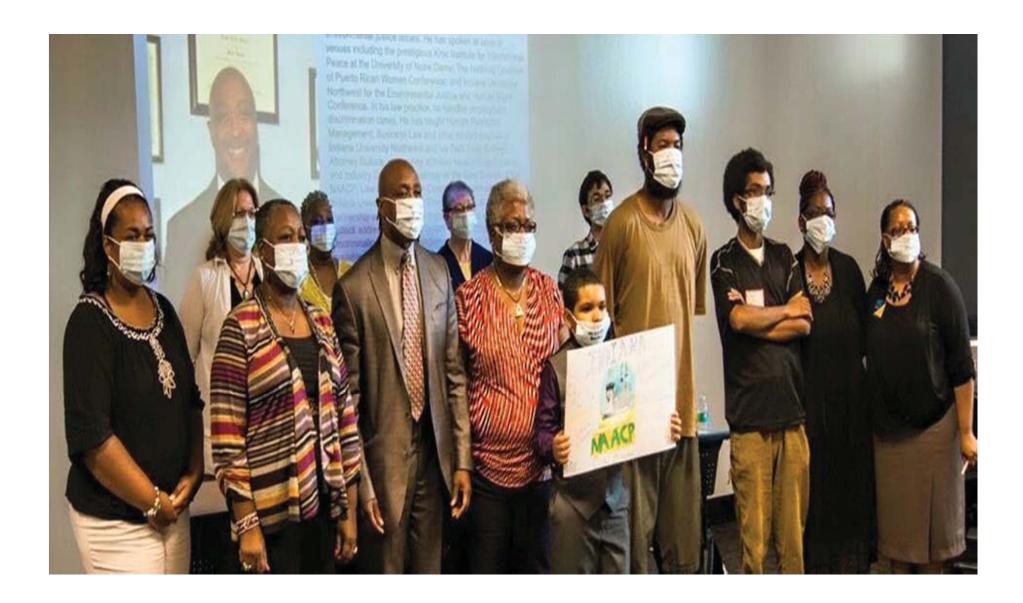
2.3 Coal Blooded: Putting Profits Before People. National Association for the Advancement of Colored People, 2013

Attend Indianapolis City County Council Meeting August 18th, 2014 at 7:00 pm VOTE TO AMEND RESOLUTION 241 NAACP A 2016 Closure is a Win For All VOTE to AMEND RESOLUTION 241 RESOLUTION 241 RESOLUTION 241 CHILDREN & CHILDREN & OUR ENVIRONMENT NOW !

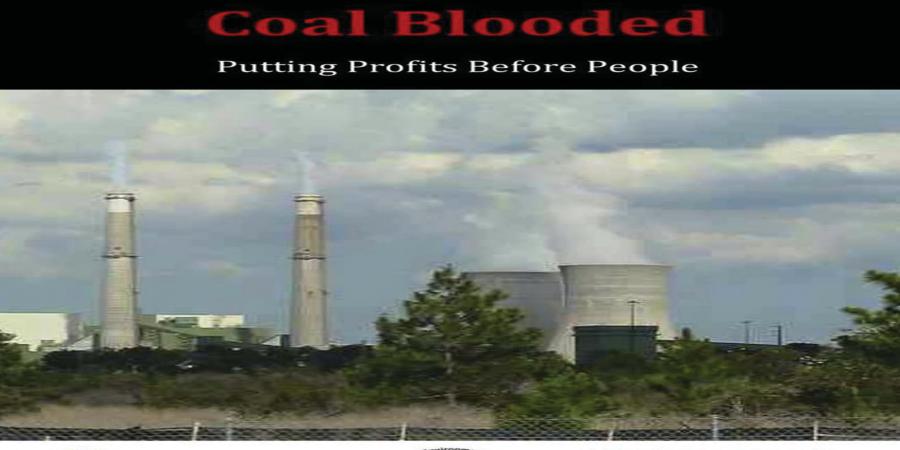
NAACP THE OLDEST CIVIL RIGHTS ORGANIZATION IN THE NATION! 105 YEARS!

NAACP WANTS JUSTICE NOW! 2016 A WIN FOR ALL!

WE WANT JUSTICE FOR OUR EXISTING COMMUNITIES, EXISITING YOUTH AND EXISTING BUSINESSES RIGHT HERE AND RIGHT NOW ! IPL HARDING STREET RETIRE UNIT #7 NOW!


---Environmental Justice Score of an F

Assure: *No Job losses and Just transition


*Provide Community Benefit Agreement

*Renewable & Clean Energy *Along with MBE & WBE Contract Opportunities

NIPSCO 2018 IRP Attach<u>Appendix</u>A Page 613

罰LVEJO陸

Indianapolis Power and Light

Just Energy Reducing Pollution and Creating Jobs Campaign Called for 2016 stop burning coal

Town Hall Mount Zion Baptist Church

Resolutions

City County Council

Burned coal until February 2016 and currently burning "natural" gas.

Huge polluter in 2014, 77% of the City of Indianapolis industrial air pollution according to Energy Justice Network

NIPSCO 2018 IRP Attachappendix A Page 615

Michigan City Coal Burning Cooling Tower

NIPSCO 2018 IRP Attachappendix Page 616

NIPSCO 2018 IRP Attach<u>Appendrx</u>A Page 617

INDUSTRIAL FOSSIL FUEL POWER PLANT

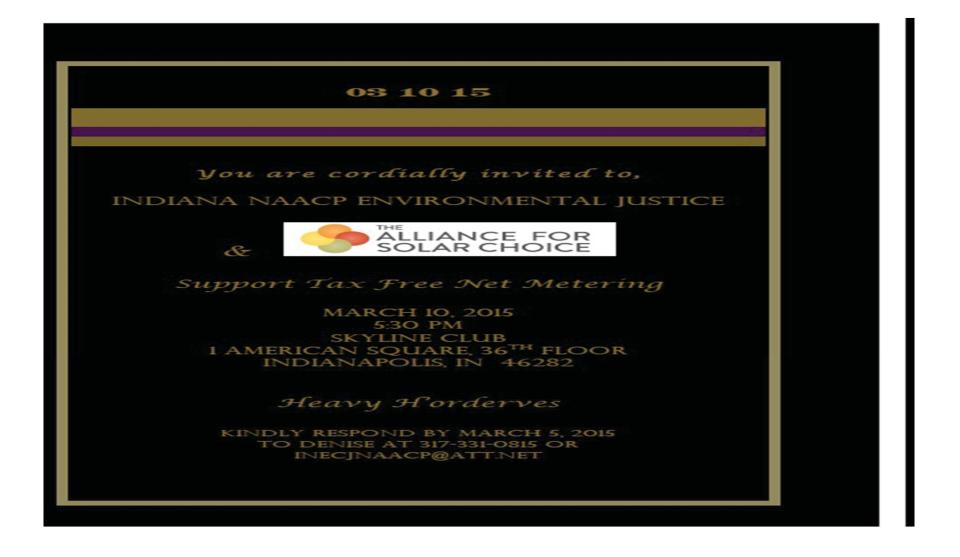
- People of color disproportionately host industrial power plants
- Nearly 1600 die from asthma attack yearly
- Black child three times as likely to be rushed to emergency
- African Americans pay 41 billion a year to the energy sector and only held 1.1% of the sector jobs 2009 AABE
- Property values decline by 15%
- Homeland Security Weakness
- Climate Change and Carbon Pollution
- Fixed Rate Charges and Volumetric Charges

JUST ENERGY CHOICE

CLEAN AND RENEWABLE ENERGY

- Only 600 early adapters in Indiana, so opportunity is vast
- Job Growth is 418% nationwide
- MBE Solar Development & Installation opportunities
- Healthier communities
- Increase property values
- Solar price falling
- A Strength to Homeland Security
- Offers Climate Preparedness to our communities
- Energy Empowerment the ability to generate energy and obtain credit

Indiana NAACP Environmental Climate Justice Prepared by Indiana Green Outreach IGO



Legislation and Net Metering Symposium

HB 1320 Distributed Generation *IBLC Net Metering

SB 412 Integrated Resource Plans (requires plan submission one time every three years, no third party required to implement Energy Efficiency and evaluation, verification to be conducted by independent evaluation

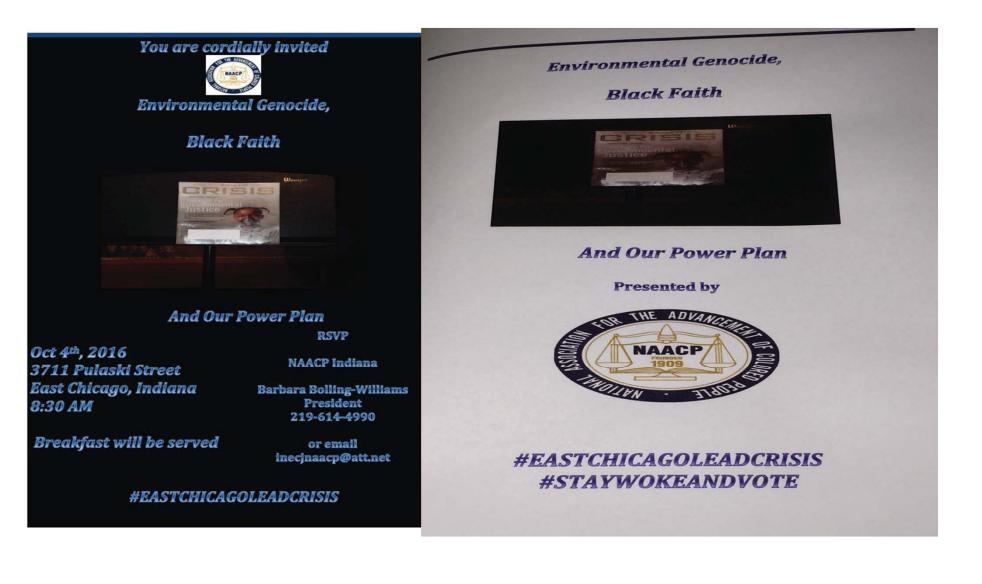
SB 340 Demandside Management (allowed Industrials to opt out)

NIPSCO 2018 IRP Attach<u>Appentotx</u>A Page 621

Indiana Utility Regulatory Commission/Office of Utility Consumer Counseling

- Five Investor owned utilities
- Equity- CO 2 reductions, oppose carbon markets, better energy efficiency programs like inclusive on bill financing
- Equitable location of solar development
- Solar/Wind Apprenticeships
- MBE/WBE contracting opportunities
- Provided survey on Bill Design based on the number of high disconnects

LIGHTS OUT IN THE COLD


Reforming Utility Shut-Off Policies as If Human Rights Matter

Environmental and Climate Justice Program, NAACP

Clean Power Plan and the Clean Energy Incentive Plan Our Power Plan EPA Region V, over 10 organization and 85 attendees

NIPSCO 2018 IRP Attachment 2-A Page 626

OUR COMMUNITY SCIENTISTS

October 14, 2017

First Baptist Church, 10:00 AM - 1:00 PM

Community Scientist Project

* Everyone Welcome

* Free Training on Water, Soil, and Air Kits

In accordance with Department of Transportation -Assistance, Relocation and Real Property Acquisit (1378.0) and Uniform Relocation Assistance and F Acquisition Policies Act, as amended, 24 CFR 07C applicable program guidance, ECHA will provide n expenses in one of four ways: (1) Flat rate self-mo and moving provided by ECHA contract; (3) Self P by ECHA contractor; or (4) Actual Reasonable Mor

1 Flat Rate Self Move

The Authority will provide a flat moving expense allowance which shall be lim amount in the Department of Transportation's Fixed Resident Moving Cost S table below). The allowance reflects the number of rooms in the displaced d room, dining room/kitchen, laundry room, and bedrooms).

Department of Transportation (DOT) Uniform Relocation Assistance and Real Pr Moving Cost Schedule 2015

Studio/Zero Bedroom	1-Bedrrom	2-bedroom	3-bedroom	4- bedroom
2 Rooms	4 Rooms	5 Rooms	6 Rooms	7 Rooms
\$700	\$1100	\$1300	\$1500	\$1700

ing and Moves provided by ECHA contracts:

HA will provide residents with moving contractors that will pack the resid and transport them to the new unit within a 50-mile radius. This option will r inventory of the assets and liability waivers between the moving company a

Pack/ECHA contract move:

3

ECHA will provide materials necessary for packing and ECHA will provide contractors to move the boxes to the new unit within a fifty-mile radius. Th require an inventory of assets and liability waivers between the moving co resident.

<u>Actual Reasonable Moving Expenses</u> - Residents will receive reimbursable reasonable moving expenses, as documented with valid receipts, up to the ECHA is paying for its contracted movers including transportation of personal sectors. 4

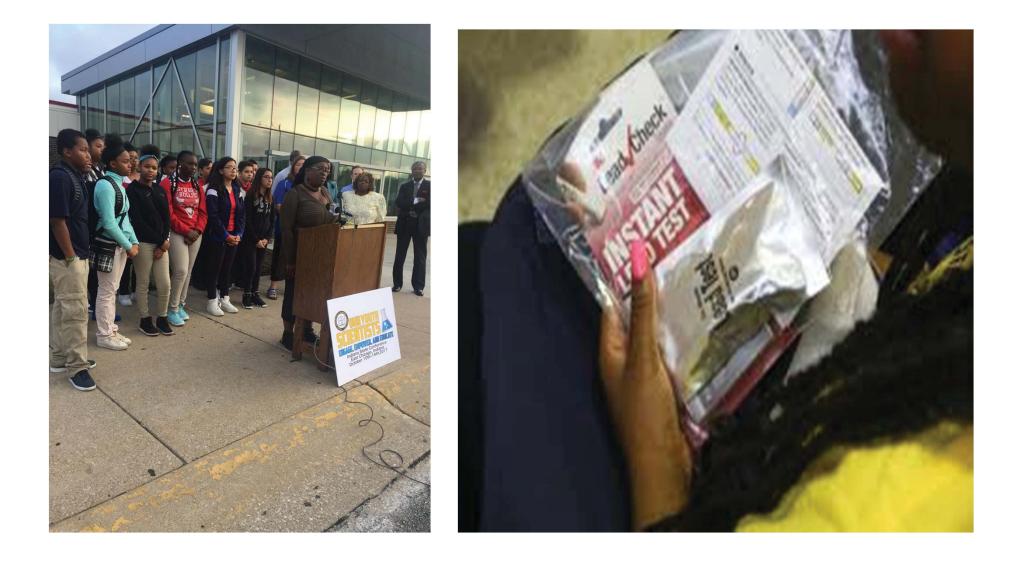
NIPSCO 2018 IRP Attach<u>appendix</u> A Page 627

NIPSCO 2018 IRP Attach<u>Appendix</u>A Page 628

East Chicago Listening Sessions, Roundtable, Food Absorbs Lead Campaign, Filtration Systems, Petitions and Letters to the Governor

NIPSCO 2018 IRP Attach<u>Appendix</u>A Page 633

judgeblackburneradio@gmail.com Text CRISIS to 62227 NAACP Delegation to People's Climate March 2017, East Chicago resident and Indianapolis resident deliver water to Indigenous Women Water Protectors


Site 0153

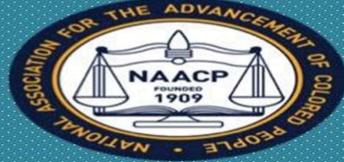
Starkly advocated for the adherence of Executive Order 12898 and recognizing that the community met the criteria of an Environmental Justice Community

Called for Due Diligence and Meaningful involvement

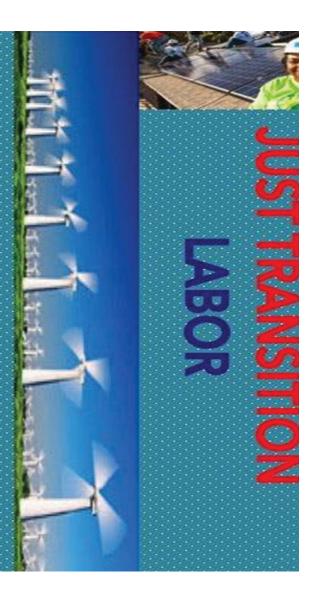
NIPSCO 2018 IRP Attach<u>Appent 07 A</u> Page 637

NIPSCO 2018 IRP Attach<u>Appentat</u>A Page 638

NIPSCO 2018 IRP Attach<u>Appentat</u>A Page 639

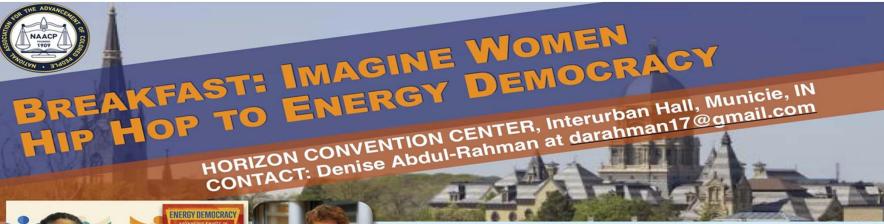


Blight to Flight on our Just Transition from lead, climate change and Green Economics woman lead forum



NIPSCO 2018 IRP Attach<u>Appendix</u> A Page 641

INDIANA NAACP STATE CONFERENCE

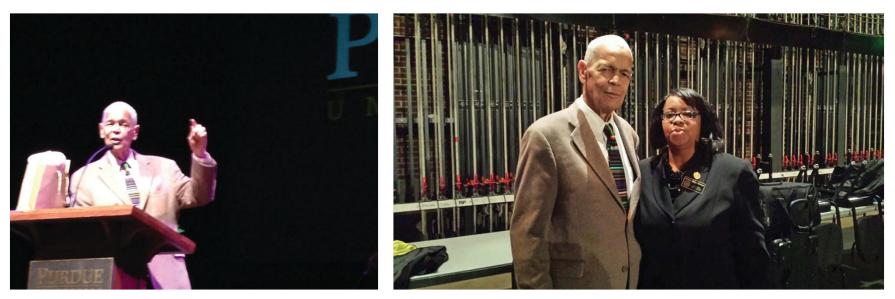

WE ARE MOVING OUR COMMUNITIES FROM BLIGHT TO FLIGHT ENVIRONMENTAL AND CLIMATE JUSTICE IT'S ABOUT US!

Our Impact

- Our Methodology is for Collective Systemic Change
- Our work is Instrumental in amplifying, and starkly lifting the EJ narrative of Indiana
- Opened opportunity for the inclusion of community and MBE's relating to Resiliency planning, energy decisions, environmental hazard and more
- Creates academia opportunities for student research that does not exist in Indiana and beyond
- Protect Health
- Ramping Education Green Economic Job training Opportunity
- Location of energy development
- Youth empowerment and adult empowerment via Citizen Science
- Federal, State and Local Legislative Impact
- More within Indiana Utility Regulatory Commission, Office of Utility Consumer Counseling
- Climate, water, air, incineration, food access, brownfields, energy, housing, economics, criminal justice, schools, transportation equity, recycling equity and much more

FREE! JOIN US OCT 26 7:30am-9:30am

Celebrating People Power, Healthy Communities, and Make Art with


Dr. Denise Fairchild, Keynote Speaker Janet McCabe, Special Guest Speaker Jacqueline Patterson, Key Address Nicole Burts, Moderator Manon Voice, Hip Hop Artist Stacia Moon, Trained Musician Ess McKee, Mixed Media Creator

Denise Abdul-Rahman, Speaker, Organizer and Facilitator

Julian Bond once said to me, 'If you don't speak, Noone Can Hear You' One aspect of my theory of change is to reimagine and utilize oratory as a pathway to movement and change

NIPSCO 2018 IRP Attach<u>Appendix</u> A Page 646

THANK YOU QUESTIONS?

Denise Abdul-Rahman BS, MBA, HCM, HIS <u>darahman17@gmail.com</u> 317-331-0815 @denisearahman

אוומכרה פייאווי	· Avienty Monting	· A DARINAANA DARININANA
First Name:	Last Name:	First Name: Last Name: Company:
Denise	Abdul-Rahman	Indiana State Conference of the NAACP
Robert	Adams	AES-IPL
Lauren	Aguilar	OUCC
Jake	Allen	IPL
Anthony	Alvarez	oucc
Laura	Arnold	Indiana Distributed Energy Alliance (IndianaDG)
Pat	Augustine	Charles River Associates
Kim	Ballard	IURC
Richard	Benedict	Self
Anne	BEcker	Lewis Kappes
Mahamadou	Bikienga	NiSource
Marc	Blanchard	BP
Peter	Boerger	Indiana Office of Utility Consumer Counselor
Bradley	Borum	IURC
Wendy	Bredhold	Sierra Club
Andy	Campbell	NIPSCO
Kelly	Carmichael	NiSource
Joseph	Conn	NWI Beyond Coal Campaign
Jeffrey	Corder	St. Joseph Phase II, LLC
Nick	Corder	EnFocus Development
Dan	Douglas	NIPSCO
Jeffery	Earl	Indiana Coal Council
Michael	Eckert	Office of Utility Consumer Counselor
Amy	Efland	NiSource/NIPSCO
Gregory	Ehrendreich	MEEA
Clare	Everts	Charles River Associates
Steve	Francis	Sierra Club - Hoosier Chapter
John	Garvey	CRA
Fred	Gomos	NiSource
Doug	Gotham	State Utility Forecasting Group
Abby	Gray	oucc
Stacie	Gruca	oucc
Corey	Hagelberg	Beyond Coal
Jeffrey	Hammons	Environmental Law & Policy Center
John	Haselden	oucc
Shelby	Houston	IPL/AES
Paul	Kelly	NIPSCO
Will	Kenworthy	Vote Solar
Sam	Kliewer	Cypress Creek Renewables
Mark	Kornhaus	NextEra Energy
Kim	Krupsaw	Vectren Corp
Tim	Lasocki	Orion Renewable Energy Group LLC
Jonathan	Mack	NIPSCO
Patrick	Maguire	Indianapolis Power and Light
Finnian	McCabe	Ground Star Energy IIc
	-	

Progressive Community Church	Whittaker, Sr.	Rev. Curtis
NiSource Inc.	Watson	Adam
CAC	Washburn	Jennifer
NIPSCO	Wagner	John
NIPSCO	Vrab	Victoria
Inovateus Solar	Vogel	Nathan
Indiana Utility Regulatory Commission	Veneck	Bob
Indianapolis Power & Light	Vance	William
NiSource	Turman	Maureen
IURC	Thomas	Dale
peabody	Tharenos	Alice
Ranger Power	Straka	Emily
IURC	Stevens	George
Indiana Coal Council	Stevens	Bruce
NIPSCO	Staciwa	Jennifer
OUCC	Smith	Barbara
NIPSCO	Sistovaris	Violet
Indiana Michigan Power Company	Sistevaris	Regiana
NIPSCO	Shambo	Frank
NIPSCO	Seren	Rob
PSG Energy Group	Scott	Zachary
NIPSCO	Scott	Cliff
Ranger Power LLC	Scott	Carter
Indiana Office of Consumer Counselor	Rutter	Edward
Lockheed Martin	Ritchie	Chad
NextEra Energy Resources LLC	Rickel	Adam
JET Inc	Repp	David
OUCC	Reed	Jeff
Development Partners Group	Rainwater	Thom
Energy & Environmental Prosperity Works!	Rackers	Dennis
The Power Bureau	Pruitt	Mark
Inovateus Solar LLC	Powers	Timothy
Sierra Club	Perras	Jodi
IURC	Pauley	Bob
Indiana Office of Utility Consumer Counselor	Paronish	April
Citizens Action Coalition of IN	Olson	Kerwin
Indiana Utility Regulatory Commission	Ober	David
NIPSCO	Newcomer	Adam
Blue Marble Analytics	Mileva	Ana
NIPSCO	Meyer	Nick
NextEra Energy Resources	Melda	Zachary
EVA	Medine	Emily
CRA	McMahon	James
Earthjustice	McCrae	Cassandra
NIPSCO	McCall	Debi
Company:	Last Name:	First Name:
NIPSCO Public Advisory Meeting 4 Registered Participants	lic Advisory Meetii	NIPSCO Publ

NIPSCO Public Advisory Meeting 4 Registered Participants	Aeeting 4 Regist	ered Participants
First Name: Last Name:	: Company:	ΥΥ:
Ryan Wilhelmus	Vectren	
Ashley Williams	Sierra Club	lub
Bryndis Woods	Applied	Applied Economics Clinic
David Woronecki-Ellis		Sierra Club Dunelands Group
Jen Woronecki-Ellis		Sierra Club Dunelands Group
Fang Wu	SUFG	
Jim Zucal	NIPSCO	

hibit

App en d1

NIPSCO 2018 IRP AttachAppatatik Page 1

Attachappatax Page 2

Market Potential Study for Electricity Northern Indiana Public Service Company (NIPSCO) Demand-side Management (DSM)

Revised Report

Applied Energy Group, Inc. 500 Ygnacio Valley Road Suite 450 Walnut Creek, CA 94596 510.982.3525 www.appliedenergygroup.com

> Prepared for: Northern Indiana Public Service Company

February 18, 2016, Revised August 8, 2016 In cooperation with Morgan Marketing Partners

Project Director: I. Rohmund Project Manager: B. Kester D. Costenaro F. Nguyen K. Walter S. Yoshida

Applied Energy Group, Inc. 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA 94596

This report was prepared by

Attachingpendix B Page 3

Contents

AttachAppatar Page 5

B Market A	A Market Profiles		Dema	7 Dema Analy Dema	7 Dema Dema
Market Adoption Rates	rofiles	Summary or Potential Savings Potential Estimates by Option Potential Estimates by Class Potential DR Program Costs Cost Benefit Analysis	Market Characterization Identify Demand Response Options Program Participation Hierarchy DR Program Key Assumptions Cost Effectiveness Assessment Demand Response Potential Results	Demand Response Potential Analysis Approach Market Characterization Identify Demand Response Optiv Program Participation Hierarchy DR Program Key Assumptions Cost Effectiveness Assessment . Demand Response Potential Results	Supply Curves
		ngs s	• Options	• Options archy ons nent	Surves
				79 79 81 	

C

Measure Data

List of Figures

	Supply Curve 2016-2021 (Peak MW Savings vs. \$/kW)	-igure 6-6
	Supply Curve 2016-2021 (MWh Savings vs. \$/kWh)	Figure 6-5
	Net Cumulative Summer Peak Demand Savings by Program (MW)	Figure 6-4
	Net Cumulative Energy Savings by Program (MWh)	Figure 6-3
	Utility Costs by Budget Category	Figure 6-2
	Utility Costs by Program (\$ million)	Figure 6-1
	Industrial Achievable Savings Forecast (Summer Peak, MW)	Figure 5-18
	Industrial Achievable Savings Forecast (Annual Energy, GWh)	Figure 5-17
	Industrial Energy Efficiency Savings (Peak Demand)	Figure 5-16
gy) 59	Industrial DSM Potential as a % of the Baseline Projection (Annual Energy)	Figure 5-15
	Commercial Sector Achievable Savings Forecast (Summer Peak, MW)	Figure 5-14
	Commercial Achievable Savings Forecast (Annual Energy, GWh)	Figure 5-13
	Commercial DSM Potential (Summer Peak)	Figure 5-12
	Commercial Energy Efficiency Savings (Energy)	Figure 5-11
	Residential Achievable Savings Forecast (Summer Peak, MW)	Figure 5-10
	Residential Achievable Savings Forecast (Annual Energy, GWh)	Figure 5-9
	Residential DSM Savings as a % of Summer Peak Baseline Projection	Figure 5-8
rgy) 47	Residential DSM Savings as a % of the Baseline Projection (Annual Energy)	Figure 5-7
	Achievable DSM Potential by Sector (Summer Peak Demand, MW)	Figure 5-6
	Achievable DSM Potential by Sector (Annual Energy, GWh)	Figure 5-5
MW) 44	Summary of the Summer Peak Baseline Projection and DSM Forecasts (MW)	Figure 5-4
	Summary of DSM Potential as % of Summer Peak Baseline Projection	Figure 5-3
	Baseline Projection and DSM Forecast Summary (Annual Energy, GWh).	Figure 5-2
	Summary of DSM Potential as % of Baseline Projection (Annual Energy)	Figure 5-1
	Baseline Summer Peak Projection Summary (MW)	Figure 4-9
	Baseline Projection Summary (GWh)	Figure 4-8
	Industrial Summer Peak Baseline Projection by End Use (MW)	Figure 4-7
	Industrial Baseline Projection by End Use (GWh)	Figure 4-6
	Commercial Summer Peak Baseline Projection by End Use (MW)	Figure 4-5
	Commercial Baseline Projection by End Use	Figure 4-4
	Residential Summer Peak Baseline Projection by End Use (MW)	Figure 4-3
	Residential Baseline Projection by End Use – Annual Use per Household	Figure 4-2
	Residential Baseline Projection by End Use (GWh)	Figure 4-1
	Industrial Electricity Use by End Use (2014), All Segments	Figure 3-5
	Commercial Sector Electricity Consumption by End Use (2014)	Figure 3-4
	Residential Energy Intensity by End Use and Segment (kWh/HH, 2014).	Figure 3-3
l) 22	Residential Electricity Use and Summer Peak Demand by End Use (2014)	Figure 3-2
	Sector-Level Electricity Use in Base Year 2014	Figure 3-1
	Approach for Energy-Efficiency Measure Assessment	Figure 2-2
	LoadMAP Analysis Framework	-igure 2-1

NIPSCO 2018 IRP AttachAppatary Page 7

Annual Achievable Potential Program Costs94	Figure 7-5
Achievable Potential by Class92	Figure 7-4
Achievable Potential by DR Option9	Figure 7-3
Achievable Potential vs. Baseline Projection90	Figure 7-2
Summary of Demand Response Savings	Figure 7-1

List of Tables

. 59	DSM Potential for the Industrial Sector (Annual Energy, GWh)	Table 5-12
. 57	Commercial Sector Top Measures in 2021 (Summer Peak, MW)	Table 5-11
55	Commercial Sector Top Measures in 2021 (Annual Energy, GWh)	Table 5-10
54	DSM Potential for the Commercial Sector (Summer Peak Demand)	Table 5-9
53	DSM Potential for the Commercial Sector (Energy Savings)	Table 5-8
51	Residential Top Measures in 2021 (Summer Peak Demand, MW)	Table 5-7
. 49	Residential Top Measures in 2021 (Annual Energy, GWh)	Table 5-6
. 48	Residential DSM Potential (Summer Peak Demand, MW)	Table 5-5
. 47	Residential DSM Potential (Annual Energy, GWh)	Table 5-4
45	Achievable DSM Potential by Sector (Annual Use and Summer Peak)	Table 5-3
43	Summary of DSM Potential (Summer Peak, MW)	Table 5-2
41	Summary of DSM Potential (Annual Energy, GWh)	Table 5-1
. 39	Baseline Summer Peak Projection Summary (MW)	Table 4-10
З8	Baseline Projection Summary (GWh)	Table 4-9
. 37	Industrial Summer Peak Baseline Projection by End Use (MW)	Table 4-8
. 36	Industrial Baseline Projection by End Use (GWh)	Table 4-7
35	Commercial Summer Peak Baseline Projection by End Use (MW)	Table 4-6
. 34	Commercial Baseline Projection by End Use and Technology (GWh)	Table 4-5
ω ω	Commercial Baseline Projection by End Use (GWh)	Table 4-4
. 32	Residential Summer Peak Baseline Projection by End Use (MW)	Table 4-3
ω	Residential Baseline Projection by End Use and Technology (GWh)	Table 4-2
. 30	Residential Baseline Projection by End Use (GWh)	Table 4-1
28	Average Electric Market Profile for the Industrial Sector, 2014	Table 3-7
. 26	Industrial Sector Control Totals (2014)	Table 3-6
. 26	C&I Opt-Out Customers (2014)	Table 3-5
25	Average Electric Market Profile for the Commercial Sector, 2014	Table 3-4
23	Average Market Profile for the Residential Sector, 2014	Table 3-3
21	Residential Sector Control Totals (2014)	Table 3-2
. 20	NIPSCO Sector Control Totals (2014)	Table 3-1
18	Data Needs for the Measure Characteristics in LoadMAP	Table 2-10
. 17	Industrial Electric Equipment Standards	Table 2-9
. 16	Commercial Electric Equipment Standards	Table 2-8
15	Residential Electric Equipment Standards	Table 2-7
14	Data Needs for the Baseline Projection and Potentials Estimation in LoadMAP	Table 2-6
14	Data Applied for the Market Profiles	Table 2-5
. 10	Number of Measures Evaluated	Table 2-4
9	Example Non-Equipment Measures – Single Family Home, Existing	Table 2-3
:. 9	Example Equipment Measures for Central AC – Single-Family Home	Table 2-2
6	Overview of NIPSCO Analysis Segmentation Scheme	Table 2-1
2	Explanation of Abbreviations and Acronyms	Table 1-1

NIPSCO 2018 IRP AttachAppatar Page 9

Cost Effectiveness Scores for DR Programs95	Table 7-19
Achievable Potential Incremental Program Costs93	Table 7-18
Achievable Potential Program Costs93	Table 7-17
Achievable Potential by DR Class92	Table 7-16
Achievable Potential by DR Option91	Table 7-15
Summary of Demand Response Savings90	Table 7-14
DR Program Life Assumptions	Table 7-13
C&I Third Party Aggregator Program Cost Assumptions88	Table 7-12
C&I Interruptible Load Tariff Cost Assumptions88	Table 7-11
C&I Direct Load Control Program Cost Assumptions87	Table 7-10
Residential Direct Load Control (A/C and Water Heating) Program Cost Assumptions .86	Table 7-9
Per-Unit Load Reduction by Option and Customer Class	Table 7-8
eligible customers)	
Participation Hierarchy in DK options by Customer Segment	Table 7-6
	Table 7-5
List of DR Options	Table 7-4
Coincident Peak Projection by Segment (MW)81	Table 7-3
DR Baseline Projection of Customer by Segment80	Table 7-2
Overall DR Market Segmentation Scheme80	Table 7-1
Supply Curve 2016-2021 (Peak MW Savings vs. \$/kW)77	Table 6-7
Supply Curve 2016-2021 (MWh Savings vs. \$/kWh)76	Table 6-6
DSM Action Plan Cost Effectiveness Summary75	Table 6-5
Net Cumulative Summer Peak Demand Savings by Program (MW)73	Table 6-4
Net Cumulative Energy Savings by Program (MWh)72	Table 6-3
Utility Costs by Program (\$ million)71	Table 6-2
Portfolio of DSM Program Groupings Included in Program Potential	Table 6-1
Industrial Top Measures in 2021 (Summer Peak Demand, MW)	Table 5-15
Industrial Sector Top Measures in 2021 (Annual Energy, GWh)	Table 5-14
DSM Potential for the Industrial Sector (Summer Peak, MW)	Table 5-13

Introduction

Code (IC 8-1-8.5-9). opt-out of participation in NIPSCO's electric energy efficiency programs as allowed by Indiana study included an accounting for the exclusion of the large industrial customers that elected to Program Potential based on the market potential study and to complete the overall benefit cost and natural gas. NIPSCO also retained Morgan Marketing Partners (MMP) to develop the DSM Group (AEG) to conduct a Demand Side Management (DSM) Market Potential Study for electricity results based on the program potential as determined by the market potential study. Part of this In October 2015, Northern Indiana Public Service Company (NIPSCO) retained Applied Energy

Management (DSM) Potential Study and Action Plan for Natural Gas." 2016 to 2036. The natural gas analysis is described in a separate report, "NIPSCO Demand-Side for electricity customers in the NIPSCO service territory from energy efficiency (EE) efforts from provides estimates of the potential reductions in annual electricity use and summer peak demand This report uses the information from the 2014 Forecast, conducted by AEG and MMP, and

performed the following tasks to meet NIPSCO's key objectives: To produce a reliable and transparent estimate of the DSM resource potential, the AEG team

- describe how customers use energy by sector, segment, end use and technology. Used updated information and data from NIPSCO, as well as secondary data sources, to
- 8.5-9 Removed the commercial and industrial customers who had already opted out or who NIPSCO forecasted to opt out of EE programs as of January 1, 2016 as allowed by IC 8-1-
- efficiency legislation that will impact DSM potential. energy baselines that reflect both current and anticipated federal, state, and local energy are measured. This projection utilized updated technology data, modeling assumptions, and of future programs. The baseline provides the metric against which future program savings Developed a baseline projection of how customers are likely to use electricity in the absence
- planning horizon, including annual energy savings and summer peak demand savings. efficiency and demand response within the NIPSCO service territory over the 2016-2036 Estimated the technical, economic, and achievable potential at the measure level for energy

potential. effectiveness modeling using the DSMore tool to finalize the cost-effective program savings measures that fit these criteria. The final budgets and impacts are then run through costpotential. The program potential includes budget and impact estimates for the subset of Morgan Marketing Partners used the measure-level savings estimates to develop program

Abbreviations and Acronyms

abbreviation or acronym, along with an explanation. Throughout the report several abbreviations and acronyms are used. Table 1-1 shows the

_

Explanation
American Community Survey
Annual Energy Outlook forecast developed by EIA
Association of Home Appliance Manufacturers
Advanced Metering Infrastructure
Automated Meter Reading
Automated Demand Response
Benefit to Cost Ratio
AEG's Building Energy Simulation Tool
Commercial and Industrial
Central Air Conditioning
Compact Fluorescent Lamp
Critical Peak Pricing
Domestic Hot Water
Direct Load Control
Demand Response
Demand Side Management
Energy Efficiency
Energy Information Administration
Estimated Useful Life
Energy Usage Intensity
Federal Energy Regulatory Commission
Household
High Intensity Discharge Lamps
Heating Ventilation and Air Conditioning
Installed Capacity
Investor Owned Utility
Light Emitting Diode lamp
AEG's Load Management Analysis and Planning TM tool
Megawatt
Net Present Value
Operations and Maintenance
Programmable Communicating Thermostat
Roof top Unit
Total Resource Cost test
Utility Cost Test
Unit Energy Consumption

Table 1-1 Explanation of Abbreviations and Acronyms

ЯЧ

Water heater

Analysis Approach and Data Development

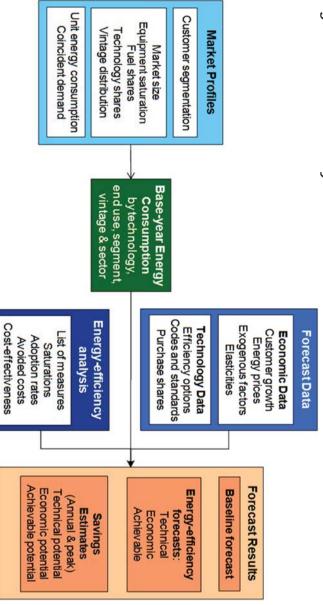
This section describes the analysis approach utilized in the study and the data sources used to develop the potential estimates

Overview of Analysis Approach

chapter. listed below. These analysis steps are described in more detail throughout the remainder of this To perform the potential analysis, AEG used a bottom-up approach following the major steps

- commercial, and industrial sectors for the base year, 2014. This included using NIPSCO data and other secondary data sources such as the Energy Information Administration (EIA). Perform a market characterization to describe sector-level electricity use for the residential,
- N and end use for 2014 through 2036. Develop a baseline projection of energy consumption and peak demand by sector, segment
- ω segments, and end uses. Define and characterize several hundred DSM measures to be applied to all sectors
- 4 energy and peak demand impacts from DSM measures for 2016-2036 Estimate technical, economic, and achievable potential at the measure level in terms of
- σ Develop program designs to support the DSM program planning

LoadMAP Model


potential. AEG developed LoadMAP in 2007 and has enhanced it over time, using it for the EPRI has the following key features: Built in Excel, the LoadMAP framework (see Figure 2-1) is both accessible and transparent and For the measure-level DSM analysis, AEG used its Load Management Analysis and Planning tool (LoadMAPTM) version 4.5 to develop both the baseline projection and the estimates of DSM National Potential Study and numerous utility-specific forecasting and potential studies since.

- COMMEND) but in a more simplified, accessible form. Embodies the basic principles of rigorous end-use models (such as EPRI's REEPS and
- the measure life and appliance vintage distributions defined by the user stock separately from newer, more efficient equipment. Equipment is replaced according to Includes stock-accounting algorithms that treat older, less efficient appliance/equipment
- . and availability of data resources. market data are available, and treats end uses separately to account for varying importance Balances the competing needs of simplicity and robustness by incorporating important modeling details related to equipment saturations, efficiencies, vintage, and the like, where
- decisions for new construction and existing buildings separately. Isolates new construction from existing equipment and buildings and treats purchase
- . results that require calibration or even overriding. The LoadMAP approach allows the user to drive the appliance and equipment choices year by year directly in the model. This flexible parameters tend to be difficult to estimate or observe and sometimes produce anomalous purpose embody complex decision choice algorithms or diffusion assumptions, and the model Uses a simple logic for appliance and equipment decisions. Other models available for this

approach allows users to import the results from diffusion models or to input individual assumptions. The framework also facilitates sensitivity analysis

- lighting is distinct from refrigerators and freezers Includes appliance and equipment models customized by end use. For example, the logic for
- income level). level (e.g., total residential) or for customized segments within sectors (e.g., housing type or Can accommodate various levels of segmentation. Analysis can be performed at the sector
- Incorporates energy-efficiency measures, demand-response options, combined heat and power (CHP) and distributed generation options and fuel switching.

existing and new buildings. It also provides forecasts of total energy use and energy-efficiency savings associated with the various types of potential.¹ model provides forecasts of baseline energy use by sector, segment, end use, and technology for Consistent with the segmentation scheme and the market profiles described below, the LoadMAP

Figure 2-1 LoadMAP Analysis Framework

Definitions of Potential

screening

assumptions about the decisions consumers are likely to make regarding the efficiency of the equipment they purchase, the maintenance activities they undertake, the controls they use for potential are both theoretical limits to efficiency savings. Achievable potential embodies a set of potential. The first three levels are developed at the measure level. Technical and economic types of potential: technical potential, economic potential, achievable potential and program DSM potential. In this study, the savings estimates represent gross savings² developed for four Before delving into the details of the analysis approach, it is important to define the meaning of

Annual-energy and peak-demand savings are calculated as the difference between the value in the baseline projection and the value in ¹ The model computes energy and peak-demand forecasts for each type of potential for each end use as an intermediate calculation

² Savings in "gross" terms instead of "net" terms mean that purchasing the more efficient option in the base year and are held steady throughout the baseline projection. beyond the base year. In other words, the baseline assumes that energy efficiency levels reflect that some customers are already terms mean that the baseline projection does not include naturally occurring efficiency

energy-consuming equipment, and the elements of building construction. Finally, program described below. potential estimates what is likely to occur through utility programs. The various levels are

• equipment option. available. In new construction, customers and developers also choose the most efficient equipment failure, customers replace their equipment with the most efficient option that customers adopt all feasible measures regardless of their cost. At the time of existing Technical Potential is defined as the theoretical upper limit of DSM potential. It assumes

immediately available all at once. years to align with the stock turnover of related equipment units, rather than modeled as central and room air conditioning. These retrofit measures are phased in over a number of construction opportunities and air conditioner maintenance in all existing buildings with applicable. For example, it includes installation of high-efficiency windows in all new Technical potential also assumes the adoption of every other available measure, where

- most efficient cost-effective option applicable to them at any decision juncture. measure is included in the economic potential. Customers are then assumed to purchase the the benefits outweigh the costs (that is, if the TRC ratio is greater than 1.0), a given through a utility program, with incentives not included since they are a transfer payment. If compares lifetime energy and capacity benefits to the costs of the delivering the measure analysis, the cost-effectiveness is measured by the total resource cost (TRC) test, which Economic Potential represents the adoption of all cost-effective DSM measures. In this
- other factors that affect market penetration of DSM measures. that account for market barriers, customer awareness and attitudes, program maturity, and Achievable Potential refines economic potential by applying customer participation rates
- constraints, as well as long-term strategic goals and planning constraints considering alignment with near-term implementation accomplishments and budgetary results. This includes the subset of measures that can realistically be implemented Program Potential creates utility programs from the measure-level, achievable potential

Market Characterization

segmentation of NIPSCO's electricity footprint to quantify energy use by sector, segment, end-NIPSCO and secondary sources as necessary. use application, and the current set of technologies used. AEG rely primarily on information from is used today and what equipment is currently being used. This characterization begins with a savings potential from energy-efficient measures, it is necessary to understand how much energy The first step in the analysis approach is market characterization. In order to estimate the

Segmentation for Modeling Purposes

project is presented in Table 2-1. dimensions) that are relevant in the NIPSCO service territory. The segmentation scheme for this The market assessment first defined the market segments (building types, end uses, and other

Dimension	Segmentation Variable	Description
1	Sector	Residential, commercial, industrial
2	Segment	Residential: single family, multi family, mobile homes and low income Commercial: small (<1M kWh/year) and large (>1M kWh/year)
		Industrial: small (<1M kWh/year) and large (>1M kWh/year)
З	Vintage	Existing and new construction
4	End uses	Cooling, lighting, water heat, motors, etc. (as appropriate by sector)
л	Appliances/end uses and technologies	Technologies such as lamp type, air conditioning equipment, motors by application, etc.
6	Equipment efficiency levels for new purchases	Baseline and higher-efficiency options as appropriate for each technology

Table 2-1 **Overview of NIPSCO Analysis Segmentation Scheme**

explained later in the data sources section. This information provided control totals at a sector and segments such that the total customer count, energy consumption, and peak demand NIPSCO data and secondary sources to allocate energy use and customers to the various sectors of electricity sales in the base year to allocate sales to each customer segment. AEG used With the segmentation scheme defined, AEG then performed a high-level market characterization level for calibrating the LoadMAP model to known data for the base-year. matched the NIPSCO system totals from 2014 billing data. Data sources used in this study are

Market Profiles

technology. A market profile includes the following elements: The next step was to develop market profiles for each sector, customer segment, end use, and

- Market size is a representation of the number of customers in the segment. For the measured in square feet. For the industrial sector, it is number of employees residential sector, it is number of households. In the commercial sector, it is floor space
- indicates more than one unit is present in the average home or facility Saturations define the fraction of homes and square feet with the various technologies. (e.g., homes with electric space heating). Equipment with a saturation greater than 100%
- ٠ electricity consumed in 2014 by a specific technology in buildings that have the technology UEC (unit energy consumption) or EUI (energy-use index) describes the amount of kWh/square foot or kWh/employee for the commercial and industrial sectors, respectively. UECs are expressed in kWh/household for the residential sector, and EUIs are expressed in
- employees in 2014 for NIPSCO's customers. and the EUI, represents the average use for the technology across all floor space or all the commercial and industrial sectors, intensity, computed as the product of the saturation product of the saturation and the UEC and is defined as kWh/household for electricity. For for the technology across all NIPSCO customers' homes in 2014. It is computed as the Annual Energy Intensity for the residential sector represents the average electricity use
- product of the market size and intensity and is quantified in GWh Annual Usage is the annual energy use by an end use technology in the segment. It is the

peak fractions of annual energy use from AEG's EnergyShape library and NIPSCO system Peak Demand for each technology for summer peak and winter peak are calculated using peak data

The market characterization results and the market profiles are presented in Chapter 3

Baseline Projection

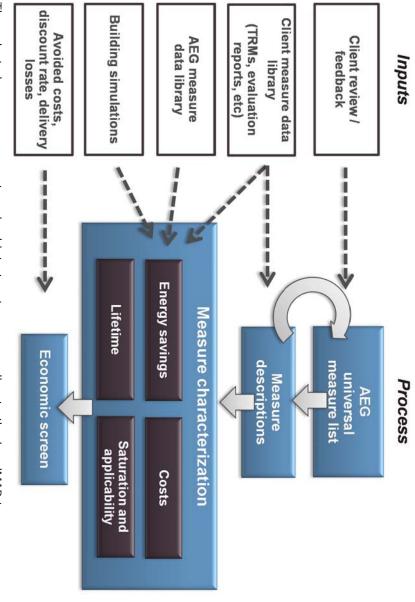
specifically considered. The baseline projection is the foundation for the analysis of savings from mandates that were defined as of June 2015 are included in the baseline. Note that the status of the Clean Power Plan was still in flux at the time of this analysis and therefore was not demand for 2014 through 2036 by customer segment and end use without new utility programs. future EE efforts as well as the metric against which potential savings are measured as well as codes and standards that will unfold over the study timeframe. All such legislation and The end-use projection includes the relatively certain impacts of known and adopted legislation, The next step was to develop the baseline projection of annual electricity use and summer peak

Inputs to the baseline projection include:

- Current economic growth forecasts (i.e., customer growth, income growth)
- Electricity price forecasts
- Trends in fuel shares and equipment saturations
- Existing and approved changes to building codes and equipment standards
- Known and adopted legislation
- Naturally occurring efficiency improvements, which include purchases of high-efficiency equipment options by early adopters.

Chapter 4. baseline-projection results for the system as a whole and for each sector are presented in fractions from the energy market profiles to the annual energy forecast in each year. The AEG also developed a baseline projection for summer and winter peak by applying the peak

DSM Measure Analysis


used this information, along with NIPSCO's most recent avoided costs data, in the economic analyses as well as for determining measure-level savings. For all measures, AEG assembled screen to determine economically feasible measures. information to reflect equipment performance, incremental costs, and equipment lifetimes. AEG This section describes the framework used to assess the savings, costs, and other attributes of DSM measures. These characteristics form the basis for measure-level cost-effectiveness

Energy-Efficiency Measures

effectiveness screening. each market sector and segment, fully characterizing each measure, and performing costthe list of energy efficiency measures to include in the analysis, determining their applicability to assessing savings, costs, and other attributes of energy efficiency measures involves identifying Figure 2-2 outlines the framework for energy-efficiency measure analysis. The framework for

actions to reduce energy consumption. If considered today, some of these measures would not universal list of EE measures covers all major types of end-use equipment, as well as devices and sector, drawing upon NIPSCO program experience, AEG's own measure databases and building As part of this step, AEG compiled a robust list of energy efficiency measures for each customer equipment costs or higher avoided costs. pass the economic screens initially, but may pass in future years as a result of lower projected simulation models, and secondary sources, as explained in the data sources section. This

equipment measures and non-equipment measures The selected measures are categorized into two types according to the LoadMAP taxonomy:

- equipment measures, many efficiency levels may be available for a given technology, ranging example is an ENERGY STAR refrigerator that replaces a standard efficiency refrigerator. For maximum efficiency of a SEER 24 unit. product commercially available. For instance, in the case of central air conditioners, this list begins with the current federal standard SEER 13 unit and spans a broad spectrum up to a from the baseline unit (often determined by code or standard) up to the most efficient by providing the same service with a lower energy requirement than a standard unit. An Equipment measures are efficient energy-consuming pieces of equipment that save energy
- one of the following categories: energy use of both space heating and cooling. Non-equipment measures typically fall into apply to more than one end use. For instance, addition of wall insulation will affect the heating and cooling systems only when people are home. Non-equipment measures can Non-equipment measures save energy by reducing the need for delivered energy, but do not involve replacement or purchase of major end-use equipment (such as a refrigerator or air conditioner). An example would be a programmable thermostat that is pre-set to run

•

- Building shell (windows, insulation, roofing material)
- 0 Equipment controls (thermostat, energy management system)
- 0 Equipment maintenance (cleaning filters, changing setpoints)
- 0 Whole-building design (building orientation, passive solar lighting)
- 0 prior to the equipment's normal end of life) Lighting retrofits (included as a non-equipment measure because retrofits are performed
- 0 Displacement measures (ceiling fan to reduce use of central air conditioners)

0 Commissioning and retro commissioning (initial or ongoing monitoring of building energy systems to optimize energy use)

serves as the basis for developing the economic and achievable potential. factors. Following the characterization, the measures were screened for economic viability, which characteristics, as well as the measure's incremental cost, service life, and other performance Once the list of EE measures was assembled, the project team assessed their energy-saving

Representative EE Measure Data Inputs

corresponding useful life, energy usage, and cost estimates. The columns labeled On Market and Table 2-2 displays the various efficiency levels available as equipment measures, as well as the examples of the detailed data inputs behind both equipment and non-equipment measures. products to the market. Off Market reflect equipment availability due to codes and standards or the entry of new respectively, for the case of residential central air conditioning (A/C) in single-family homes To provide an example of the energy-efficiency measure data, Table 2-2 and Table 2-3 present

Efficiency Level	Useful Life	Equipment Cost	Energy Usage (kWh/vr)	On Market	Off Market
SEER 13.7	18	\$2,898	1,749	2014	n/a
SEER 14 (Energy Star)	18	\$3,236	1,604	2014	n/a
SEER 15 (CEE Tier 2)	18	\$3,573	1,538	2014	n/a
SEER 16 (CEE Tier 3)	18	\$3,910	1,482	2014	n/a
SEER 18	18	\$4,588	1,394	2014	n/a
SEER 21	18	\$5,472	1,299	2014	n/a

Table 2-2	
Example Equipme	
ent Measures for Central AC	
r Central AC – S	
ingle-Family Home	
ne	

measure, and the savings as a percentage of the relevant energy end uses the study and depend on the base year saturation of the measure, the applicability³ of the relative to the cost of the measure. The total savings and costs are calculated for each year of family home. All measures are evaluated for cost-effectiveness based on the lifetime benefits Table 2-3 lists some of the non-equipment measures applicable to A/C in an existing single-

	•		C		(
End Use	Measure	Saturation in 2014 ⁴	Applica- bility	Lifetime (yrs)	Measure Installed Cost	Energy Savings (%)
Cooling	Insulation - Ceiling	43%	75%	25	\$978	3%
Cooling	Ducting - Repair and Sealing	30%	75%	20	\$442	4%
Cooling	Windows - High Eff/ENERGY STAR	33%	75%	25	\$412	24%
Cooling	Attic Fan - Installation	15%	40%	19	\$597	.25%

Table 2-3 Example Non-Equipment Measures – Single Family Home, Existing

Screening EE Measures for Cost-Effectiveness

Only measures that are cost-effective are included in economic and achievable potential. Therefore, for each individual measure, LoadMAP performs an economic screen. This study uses

at all. ³ The applicability factors take into account whether the measure is applicable to a particular building type and whether it is feasible to install the measure. For instance, attic fans are not applicable to homes where there is insufficient space in the attic or there is no attic

⁴ Note that saturation levels reflected for the base year change over time as more measures are adopted

discounting the dollar savings to the present value equivalent. Lifetime costs represent demand savings for each measure by all appropriate avoided costs for each year, and the TRC test that compares the lifetime energy and peak demand benefits of each applicable measure with its cost. The lifetime benefits are calculated by multiplying the annual energy and described above savings, costs, and lifetimes that were developed as part of the measure characterization process incremental measure cost and annual O&M costs. The analysis uses each measure's values for

and cost data over time. Thus, some measures pass the economic screen for some The LoadMAP model performs this screening dynamically, taking into account changing savings of the years in the forecast. but not all

It is important to note the following about the economic screen:

- consumption of a baseline condition. measure, kWh consumption with the measure applied must be compared to the kWh The economic evaluation of every measure in the screen is conducted relative to a baseline condition. For instance, in order to determine the kilowatt-hour (kWh) savings potential of a
- building type and vintage; thus if a measure is deemed to be irrelevant to a particular building type and vintage, it is excluded from the respective economic screen The economic screening was conducted only for measures that are applicable to each
- delivery costs. Those are considered in the assessment of program potential. The economic screen at the measure level does not include any assumption about program

Table 2-4 summarizes the number of measures evaluated for each segment within each sector.

1 ADIC 2-4	Multibet of Measures Evaluated	aluateu		
	Sector	Total Measures	Measure Permutations w/	Measure Permutations w/
			2 Vintages	Segments
Residential		80	160	640
Commercial		97	194	388
Industrial		72	144	288
Total Measures Evaluated	es Evaluated	249	498	1,316

Table 2-4 Number of Measures Evaluated

vintage, end use and measure for all sectors The appendix to this volume presents results for the economic screening process by segment,

EE Potential

The approach AEG used for this study to calculate the EE potential adheres to the approaches and conventions outlined in the National Action Plan for Energy-Efficiency (NAPEE) Guide for Conducting Potential Studies (November 2007).⁵ The NAPEE Guide represents the most credible four types of potential were developed as part of this effort: technical potential, economic potential, achievable potential, and program potential. and comprehensive industry practice for specifying DSM potential. As described in Chapter 1,

The calculation of **technical potential** and **economic potential** is a straightforward algorithm as described in Section 1. To develop estimates for **achievable potential**, AEG develops market adoption rates for each measure that specify the percentage of customers that will select the

⁵ National Action Plan for Energy Efficiency (2007). National Action Plan for Energy Efficiency Vision for 2025: Developing a Framework for Change. www.epa.gov/eeactionplan

secondary sources, as well as past program history from NIPSCO highest-efficiency, cost-effective option. These adoption rates are based on a variety of

results are presented in Chapter 5. opportunity for EE savings regardless of the type of intervention (i.e., utility program government program, equipment promotion by manufacturers, etc.). The measure-level potential Achievable potential is at the measure-level and includes every possible cost-effective

strategic goals and planning constraints. The program potential is what is recorded in the DSM near-term implementation accomplishments and budgetary constraints as well as long-term AEG and MMP then developed program potential by selecting the subset of measures in the Action Plan and is presented in Chapter 6. achievable potential amount that can realistically be implemented considering alignment with

Data Development

local sources for measure data and local weather for building simulations sources were applied. In general, data were adapted to local conditions, for example, by using This section describes the data sources used in this study, followed by a discussion of how these

Data Sources

The data sources are organized into the following categories:

- NIPSCO data
- AEG's databases and analysis tools
- Other secondary data and reports

NIPSCO Data

Our highest priority data sources for this study were those that were specific to NIPSCO

- and energy use for each sector. NIPSCO customer data: NIPSCO provided billing data for development of customer counts
- forecasts forecast; peak-demand forecasts at the sector level; and retail electricity price history and Load forecasts: NIPSCO provided an economic growth forecast by sector; electric load
- Economic information: NIPSCO provided avoided cost forecasts, a discount rate, and line loss factor.
- including program descriptions, goals, and achievements to date NIPSCO program data: NIPSCO provided information about past and current programs
- . NIPSCO's 2010 EE Potential Study: NIPSCO provided the KEMA 2010 Electricity and Natural Gas Potential studies, which included results from a saturation survey

AEG Data

for this study. studies. Relevant data from these tools has been incorporated into the analysis and deliverables AEG maintains several databases and modeling tools that are used for forecasting and potential

end-use consumption for the residential, commercial, and industrial sectors. These profiles AEG Energy Market Profiles: For more than 10 years, AEG staff has maintained profiles of (electricity and natural gas), customer segment and end use for 10 regions in the U.S. include market size, fuel shares, unit consumption estimates, and annual energy use by fuel The

G-69 ⁶ Cause No. 44001, Petitioner's Exhibit No. EGH-3, NIPSCO Gas Efficiency Market Potential Study, KEMA Inc., March 30, 2011, page

statistics and local customer research provide the foundation for these regional profiles. Energy Information Administration surveys (RECS, CBECS and MECS) as well as state-level

- ٠ savings for the HVAC-related measures building simulation model, used to estimate base-year UECs and EUIs, as well as measure Building Energy Simulation Tool (BEST). AEG's BEST is a derivative of the DOE 2.2
- AEG's EnergyShape[™]: This database of load shapes includes the following:

•

- 0 Residential – electric load shapes for ten regions, three housing types, 13 end uses
- 0 Commercial – electric load shapes for nine regions, 54 building types, ten end uses
- 0 various 3-digit and 4-digit SIC codes Industrial - electric load shapes, whole facility only, 19 2-digit SIC codes, as well as
- including: database of measure data for our studies. Our database draws upon reliable sources AEG's Database of Energy Efficiency Measures (DEEM): AEG maintains an extensive

•

- 0 Commission. Technical resource manuals (TRMs) from across the U.S., including the Indiana TRM from 2013. The TRM 2.2 was not used since it has not been filed or approved by the
- Ο information about measures. The RTF updates the measures on an ongoing basis. Northwest Power and Conservation Council Plan workbooks and Regional Technical Forum (RTF). To develop its Power Plan, the Council maintains workbooks with detailed
- 0 the DEEM database. database to cross check the measure savings developed using BEST and other sources in costs, and effective useful life (EUL) for the state of California. AEG uses the DEER provide well-documented estimates of energy and peak demand savings values, measure California Public Utilities Commission (CPUC) sponsor this database, which is designed to Database for Energy Efficient Resources (DEER). The California Energy Commission and
- 0 Technologies – Reference Case The EIA Technology Forecast Updates – Residential and Commercial Building
- 0 Other sources of cost data including RS Means cost data and Grainger Catalog Cost data
- codes and appliance standards from recent reports for the Edison Electric Institute⁷. Indianapolis Power & Light. In addition, AEG used the information about impacts of building these other studies, which include Ameren Illinois, Ameren Missouri, Vectren Energy, and Input assumptions and analysis results from NIPSCO were checked against the results from Recent studies. AEG has conducted numerous studies of EE potential in the last five years

Other Secondary Data and Reports

sources are identified below Finally, a variety of secondary data sources and reports were used for this study. The main

energy topics. For this study, data from the 2015 AEO was used U.S. Energy Information Administration (EIA), presents yearly projections and analysis of Annual Energy Outlook. The Annual Energy Outlook (AEO), conducted each year by the

http://www.edisonfoundation.net/iee/Documents/IEE_CodesandStandardsAssessment_2010-2025_UPDATE.pdf http://www.edisonfoundation.net/IEE/Documents/IEE_RohmundApplianceStandardsEfficiencyCodes1209.pdf including appliance standards and building codes. Links to all three white papers are provided: http://www.edisonfoundation.net/iee/Documents/IEE_FactorsAffectingUSElecConsumption_Final.pdf AEG staff has prepared three white papers on the topic of factors that affect U.S. electricity consumption.

- available for this study. http://www.census.gov/acs/www/ survey that provides data every year on household characteristics. Data for NIPSCO were American Community Survey: The US Census American Community Survey is an ongoing
- Indiana was used as the basis for building simulations. Local Weather Data: Weather from NOAA's National Climatic Data Center for South Bend
- applied to electricity prices, household income, home size and heating and cooling EPRI End-Use Models (REEPS and COMMEND). These models provide the elasticities
- Efficiency, the EPA, and the American Council for an Energy-Efficient Economy. Other relevant regional sources: These include reports from the Consortium for Energy

Application of Data to the Analysis

This section describes how the data sources listed above were used at each step of the study.

Data Application for Market Characterization

sales and customers to housing type and income level in the residential sector. American Community Survey and the customer surveys from 2010 were used to allocate energy use and households/floor space for the residential, commercial, and industrial sectors. The NIPSCO billing data was used to construct the high-level market characterization of electricity

Data Application for Market Profiles

approach: shown in Table 2-5. To develop the market profiles for each segment, AEG used the following The specific data elements for the market profiles, together with the key data sources, are

- Developed control totals for each segment. These include market size, segment-level annual electricity use, and annual intensity.
- N Used NIPSCO's 2010 Potential Study, the American Community Survey and AEG's Energy characteristics, and building characteristics. Market Profiles database to develop existing appliance saturations, appliance and equipment
- ω Ensured calibration to control totals for annual electricity sales in each sector and segment.
- 4. Compared and cross-checked with other recent AEG studies.
- ъ Worked with NIPSCO staff to vet the data against their knowledge and experience

Data Application for Baseline Projection

inputs are required for each segment within each sector, as well as for new construction and Table 2-6 summarizes the LoadMAP model inputs required for the baseline projection. These existing dwellings/buildings.

Table 2-5 Data App	Data Applied for the Market Profiles	
Model Inputs	Description	Key Sources
Market size	Base-year residential dwellings, commercial floor space, and industrial employment	NIPSCO billing data NIPSCO Load Forecast AEO 2015
Annual intensity	Residential: Annual use per household Commercial: Annual use per square foot Industrial: Annual use per employee	NIPSCO billing data AEG's Energy Market Profiles AEO 2015 Other recent studies
Appliance/equipment saturations	Fraction of dwellings with an appliance/technology Percentage of C&I floor space/employment with equipment/technology	NIPSCO 2010 Residential Saturation Survey American Community Survey AEG's Energy Market Profiles NIPSCO Load Forecast
UEC/EUI for each end- use technology	UEC: Annual electricity use in homes and buildings that have the technology EUI: Annual electricity use per square foot/employee for a technology in floor space that has the technology	Recent Midwest potential studies HVAC uses: BEST simulations using prototypes developed for NIPSCO Engineering analysis
Appliance/equipment age distribution	Age distribution for each technology	Recent AEG studies, EIA Data (CBECS, RECS)
Efficiency options for each technology	List of available efficiency options and annual energy use for each technology	AEG DEEM AEO 2015 Previous studies
Peak factors	Share of technology energy use that occurs during the peak hour	NIPSCO system peak data EnergyShape database

Table 2-6 Data Needs for the Baseline Projection and Potentials Estimation in LoadMAP

Model Inputs	Description	Key Sources
Customer growth forecasts	Forecasts of new construction in residential and C&I sectors	NIPSCO load forecast AEO 2015 economic growth forecast
	For each equipment/technology,	Shipments data from AEO AEO 2015 regional forecast
Equipment purchase	purchase shares for each efficiency	assumptions [®]
shares for baseline	level; specified separately for existing	Appliance/efficiency standards
projection	equipment replacement and new	analysis
	construction	NIPSCO program results and
		evaluation reports
Electricity prices	Forecast of average energy and capacity avoided costs and retail prices	NIPSCO forecast
Intilization mode	Drice electicities electicities for other	EPRI's REEPS and COMMEND
parameters	variables (income, weather)	models

⁸ AEG developed baseline purchase decisions using the Energy Information Agency's *Annual Energy Outlook* report (2015), which utilizes the National Energy Modeling System (NEMS) to produce a self-consistent supply and demand economic model. AEG calibrated equipment purchase options to match manufacturer shipment data for recent years and then held values constant for the study period. This removes any effects of future increases in naturally occurring conservation or effects of future DSM programs that may be embedded in the AEO forecasts.

NIPSCO 2018 IRP Attachment 2-A Page 24

In addition, AEG implemented assumptions for known future equipment standards as of December 2013, as shown in Table 2-7, Table 2-8 and Table 2-9. The assumptions tables here extend through 2025, after which all standards are assumed to hold steady.

Table 2-7 Residential Electric Equipment Standards^o

2013's Efficiency or Standard Assumption

1st Standard (relative to 2013's standard) 2nd Standard (relative to 2013's standard)

End Use	Technology	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	Central AC			••			S	EER 13			•	•	•	
C asting	Room AC	EER 9.8						EER	11.0					
Cooling	Evaporative Central AC						Con	ventional						
	Evaporative Room AC						Con	ventional						
Cooling/Heating	Heat Pump	SEER 13.0/H	ISPF 7.7					SEEF	R 14.0/HSP	F 8.2				
Space Heating	Electric Resistance						Electri	c Resistan	ce					
Materille	Water Heater (<=55 gallons)	EF 0.9	0						EF 0.95					
Water Heating	Water Heater (>55 gallons)	EF 0.9	0					Heat Pu	imp Wate	r Heater				
Lighting	Screw-in/Pin Lamps	Incandescent	Adva	anced Inca	ndescent	- tier 1 (20	lumens/v	watt)	Adva	anced Inca	ndescent	- tier 2 (45	i lumens/v	vatt)
Lighting	Linear Fluorescent		T8 (89 I	umens/wa	tt)				т	8 (92.5 lur	nens/wat	t)		
	Refrigerator/2nd Refrigerator	NAECA Standard						25% more	efficient					
	Freezer	NAECA Standard						25% more	efficient					
Appliances	Dishwasher				14%	more eff	icient thar	n 2010 star	ndard (307	/ kWh/yr)				
	Clothes Washer	Convention 1.26 for top	-	MEF 1.7	72 for top	loader			N	/IEF 2.0 foi	r top loade	er		
	Clothes Dryer	Conventional	(EF 3.01)						EF 3.73					
	Microwave Ovens	Con	ventional					1.0 Watt	s (maximu	ım standb	y power)			
Miscellaneous	Furnace Fans			Conventio	onal					40%	more effi	cient		

⁹ The assumptions tables here extend through 2025, after which all standards are assumed to hold steady.

Table 2-8 Commercial Electric Equipment Standards¹⁰

2013's Efficiency or Standard Assumption

1st Standard (relative to 2013's standard) 2nd Standard (relative to 2013's standard)

End Use	Technology	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	Chillers		<u>.</u>	ļ	<u>. </u>		2007 AS	HRAE 90	.1	1		1		
Cooling	Roof Top Units						EER 1	1.0/11.2						
	Packaged Terminal AC/HP						EER 1	1.0/11.2						
Cooling/Heating	Heat Pump						EER 11.	0/COP 3.	3					
Ventilation	Ventilation				Co	onstant A	ir Volum	e/Variab	le Air Vo	lume				
	Screw-in/Pin Lamps	Incandescent	Advan	ced Incar	descent	- tier 1 (2	0 lumen	s/watt)	Advan	ced Incar	ndescent	- tier 2 (4	5 lumens	s/watt)
Lighting	Linear Fluorescent		T8 (89 lu	mens/wa	itt)				T8	3 (92.5 lui	mens/wa	tt)		
	High Intensity Discharge	EPACT 2005	(Mercury Phase-o		ixture			Met	al Halide	e Ballast I	mproven	nent		
Water Heating	Water Heater						EF	0.97						
	Walk-in Refrigerator/Freezer	EISA	4 2007 St a	andard					10-38%	6 more et	fficient			
	Reach-in Refrigerator	EPAC	CT 2005 S	tandard					40% I	more eff	icient			
	Glass Door Display	EPAC	CT 2005 S	tandard					12-28%	6 more et	fficient			
Refrigeration	Open Display Case	EPAG	CT 2005 S	tandard					10-20%	6 more et	fficient			
	Vending Machines				33%	% more e	fficient t	han EPAC	2005 Sta	andard				
	lce maker		2010	Standard					1	15% more	e efficien	t		
Miscellaneous	Non-HVAC Motors	EISA 200	7 Standa	rds				Expan	ded EISA	2007 Sta	ndards			

Table 2-9 Industrial Electric Equipment Standards¹¹

2013's Efficiency or Standard Assumption

1st Standard (relative to 2013's standard) 2nd Standard (relative to 2013's standard)

End Use	Technology	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	Chillers			-			2007 AS	HRAE 90.	1					
Cooling	Roof Top Units						EER 1	1.0/11.2						
	Packaged Terminal AC/HP						EEI	R 11.0						
Cooling/Heating	Heat Pump						EER 11.	0/COP 3.	3					
Ventilation	Ventilation				Co	onstant A	ir Volum	e/Variab	le Air Vo	lume				
	Screw-in/Pin Lamps	Incandescent	Advan	ced Incar	ndescent	- tier 1 (2	0 lumens	s/watt)	Advan	ced Incar	ndescent	- tier 2 (4	5 lumens	s/watt)
Lighting	Linear Fluorescent		T8 (89 lui	nens/wa	itt)				т	8 (92.5 lui	nens/wa	tt)		
	High Intensity Discharge	EPACT 2005	EPACT 2005 (Mercury Vapor Fixture Phase-out) Metal Halide Ballast Improveme						ient					
Motors	Pumps, Fans & Blowers, Compressed Air, Material Handling and Processing	EISA 200	7 Standar	ds				Expan	ded EISA	2007 Sta	ndards			

 ¹⁰ The assumptions tables here extend through 2025, after which all standards are assumed to hold steady.
 ¹¹ The assumptions tables here extend through 2025, after which all standards are assumed to hold steady.

DSM Measure Data Application

input and identifies the key sources used in the NIPSCO analysis. Table 2-10 details the energy-efficiency data inputs to the LoadMAP model. It describes each

Table 2-10 Data Nee	Table 2-10 Data Needs for the Measure Characteristics in LoadMAP	1AP
Model Inputs	Description	Key Sources
Energy Impacts	The annual reduction in consumption attributable to each specific measure. Savings were developed as a percentage of the energy end use that the measure affects.	AEG DEEM AEG BEST (HVAC only)
Peak Demand Impacts	Savings during the peak demand periods are specified for each electric measure. These impacts relate to the energy savings and depend on the extent to which each measure is coincident with the system peak.	AEG DEEM AEG BEST (HVAC only) EnergyShape
Costs	Equipment Measures: Includes the full cost of purchasing and installing the equipment on a per- household, per-square-foot, or per employee basis for the residential, commercial, and industrial sectors, respectively. Non-equipment measures: Existing buildings – full installed cost. New Construction - the costs may be either the full cost of the measure, or as appropriate, it may be the incremental cost of upgrading from a standard level to a higher efficiency level.	AEG DEEM
Measure Lifetimes	Estimates derived from the technical data and secondary data sources that support the measure demand and energy savings analysis.	AEG DEEM
Applicability	Estimate of the percentage of dwellings in the residential sector, square feet in the commercial sector, or employees in the industrial sector where the measure is applicable and where it is technically feasible to implement.	AEG DEEM
On Market and Off Market Availability	Expressed as years for equipment measures to reflect when the equipment technology is available or no longer available in the market.	AEG appliance standards and building codes analysis

Υ. 5 F

Data Application for Cost-effectiveness Screening

customers were provided by NIPSCO in order to gross up impacts to the generator for economic energy delivery losses of 2.97% for residential, 2.65% for commercial and 1.65% for industrial 6.53% in real dollars. All impacts in this report are presented at the customer meter, but electric analysis. To perform the cost-effectiveness screening, a number of economic assumptions were needed. All cost and benefit values were analyzed as real 2014 dollars. AEG applied a discount rate of

Achievable Potential Estimation

decision making behavior with respect to energy-efficiency choices. To estimate achievable potential, two sets of parameters are needed to represent customer

periodicity, so rather than installing all available non-equipment measures in the first year of Technical diffusion curves for non-equipment measures. Equipment measures are installed when existing units fail. Non-equipment measures do not have this natural

equipment measures. are used within LoadMAP to generate the Technical and Economic potentials for nonthat generally align with the diffusion of similar equipment measures. These adoption rates the projection (instantaneous potential), they are phased in according to adoption schedules

• pace, then the market adoption rates for that measure were adjusted upward the initial adoption assumption and customer participation is expected to continue at this alignment. For example, if the program achieved a higher adoption rate than suggested by program results and adjustments were made, if necessary, to bring the adoption rates into potential studies from the region. The initial rates were then compared with recent NIPSCO in this case is customer preferences. The initial adoption rates were developed from other are assumed to be established and efficient for marketing, educating consumers, and coordinating with trade allies and delivery partners. The primary barrier to adoption reflected efficiency programs under a reasonable policy or regulatory framework. Information channels economic measures when delivered through a best-practice portfolio of well-operated potential to estimate Achievable Potential. These rates represent customer adoption of Achievable adoption rates. Customer adoption rates or take rates are applied to Economic

Achievable adoption rates are presented in Appendix B

Market Characterization and Market Profiles

rounding. year of the study, 2014. It begins with a high-level summary of energy use across all sectors and then delves into each sector in more detail. Note that the totals may not always add up due to This section describes how customers in the NIPSCO service territory use electricity in the base

Energy Use Summary

due to the high saturation of air conditioning equipment. Street lighting was not a part of the scope of this potential study. and Table 3-1, the industrial sector is 22% of the total energy used for the study. The remaining 9,120 GWh, once opt-out customers were removed from consideration¹². As shown in Figure 3-1 peak demand, the total system peak in 2014 was 1,938 MW. The residential sector has the lowest load factor at 43% and, therefore, a proportionally higher contribution to peak. This is use is split almost evenly between the residential and commercial sectors. In terms of summer Total electricity use for the residential, commercial and industrial sectors for NIPSCO in 2014 was

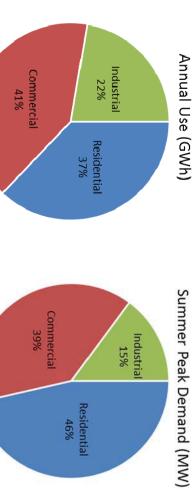


Figure 3-1 Sector-Level Electricity Use in Base Year 2014

Table 3-1 NIPSCO Sector Control Totals (2014)

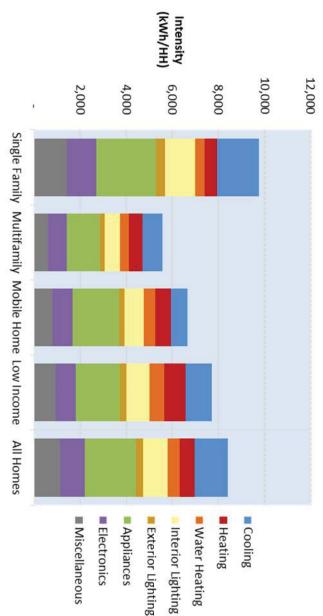
54%	100%	1,938	100%	9,120	Total
80%	15%	288	22%	2,031	Industrial
56%	39%	750	41%	3,705	Commercial
43%	46%	006	37%	3,384	Residential
Implied Summer Load Factor (%)	% of Summer Peak	Summer Peak Demand (MW)	% of Annual Use	Annual Electricity Use (GWh)	Sector

¹² Information about the number of opt-out customers and their energy use is presented in the industrial-sector discussion below.

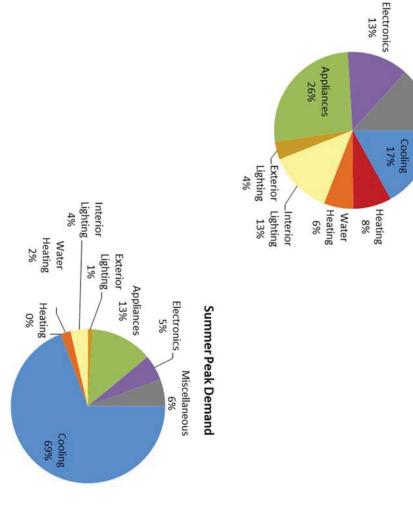
Residential Sector

are shown in Table 3-2. regions of the country. AEG allocated these totals into four residential segments and the values in the NIPSCO territory that used a total of 3,384 GWh with peak demand of 900 MW. The obtained from NIPSCO's customer database. In 2014, there were just over 400,000 households average use per customer (or household) of 8,411 kWh is relatively low compared to other The total number of households and residential electricity sales for the service territory were

900	8,411	100%	3,384	402,339	Total
216	7,713	29%	997	129,290	Low Income
10	6,662	1%	46	6,896	Mobile Home
93	5,573	10%	338	60,685	Multi Family
581	9,747	59%	2,003	205,468	Single Family
Summer Peak (MW)	Annual Use/Customer (kWh/HH)	% of Annual Use	Electricity Use (GWh)	Number of Customers	Segment


Table 3-2 Residential Sector Control Totals (2014)

Energy Market Profile


Potential Study. customers. In this MPS, AEG incorporated NIPSCO-specific saturations from the 2010 KEMA of the baseline projection and the potential estimates. The average market profile for the residential sector is presented in Figure 3-3. Segment-specific market profiles are presented in Appendix A. Figure 3-2 shows the distribution of annual electricity use by end use for all As described in the previous chapter, the market profiles provide the foundation for development

dryers, dishwashers, and microwaves. The remainder of the energy falls into the electronics, pool pumps, and other "plug" loads (all other usage not covered by those listed in lighting, water heating and the miscellaneous category – which is comprised of furnace fans 51% of total use. Appliances include refrigerators, freezers, stoves, clothes washers, clothes Three main electricity end uses —appliances, space heating, and space cooling — account for

saturation of air conditioning and larger home size family homes have the highest use per customer at 9,747 kWh/year, which reflects a higher contribution. Figure 3-3 presents the electricity intensities by end use and housing type. Singlesummer peak demand, followed by appliances. Lighting has low coincidence and makes a small estimates of summer peak demand by end use. As expected, A/C is the largest contributor to Table 3-3, such as hair dryers, power tools, coffee makers, etc.). Figure 3-2 also shows

DSM Market Potential Study - Electricity

Miscellaneous

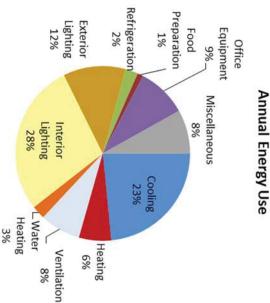
Annual Use by End Use

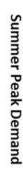
13%

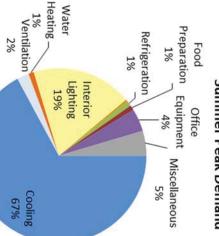
Attachiappahax A

900	3,384	8,411			Total	
17	143	354	354	100.0%	Miscellaneous	Miscellaneous
7	59	148	626	23.6%	Dehumidifiers	Miscellaneous
2	18	45	564	8.0%	Well pump	Miscellaneous
23	192	478	658	72.7%	Furnace Fan	Miscellaneous
ω	29	72	2,053	3.5%	Hot Tub / Spa	Miscellaneous
0	ц	2	1,370	0.2%	Pool Heater	Miscellaneous
1	6	16	1,363	1.2%	Pool Pump	Miscellaneous
ы	44	108	108	100.0%	Devices and Gadgets	Electronics
14	117	291	112	258.5%	Set-top Boxes/DVR	Electronics
2	18	45	60	75.2%	Printer/Fax/Copier	Electronics
20	166	412	165	249.1%	TVs	Electronics
ω	25	62	49	128.0%	Laptops	Electronics
2	20	51	78	65.5%	Monitor	Electronics
ы	40	100	184	54.5%	Personal Computers	Electronics
11	52	129	129	99.8%	Microwave	Appliances
18	91	225	426	52.8%	Stove	Appliances
13	112	279	1,045	26.7%	Second Refrigerator	Appliances
11	85	211	589	35.8%	Freezer	Appliances
35	300	745	745	100.0%	Refrigerator	Appliances
9	78	195	395	49.4%	Dishwasher	Appliances
18	150	372	772	48.2%	Clothes Dryer	Appliances
ω	26	65	88	73.7%	Clothes Washer	Appliances
9	124	307	307	100.0%	Screw-in	Exterior Lighting
7	94	233	233	100.0%	Specialty	Interior Lighting
4	50	125	125	100.0%	Linear Fluorescent	Interior Lighting
23	298	741	741	100.0%	Screw-in	Interior Lighting
7	69	172	3,116	5.5%	Water Heater > 55 Gal	Water Heating
13	136	338	2,973	11.4%	Water Heater <= 55 Gal	Water Heating
0	4	11	6,516	0.2%	Geothermal Heat Pump	Space Heating
0	43	106	6,879	1.5%	Air-Source Heat Pump	Space Heating
0	145	360	10,513	3.4%	Electric Furnace	Space Heating
0	75	186	6,120	3.0%	Electric Zonal Room Heat	Space Heating
2	2	4	2,329	0.2%	Geothermal Heat Pump	Cooling
16	13	33	2,152	1.5%	Air-Source Heat Pump	Cooling
06	140	347	806	43.1%	Room AC	Cooling
507	420	1,043	2,207	47.3%	Central AC	Cooling
(MW)	(GWh)	(kWh/HH)	(kWh)			
Summer Peak	Usage	Intensity	UEC	Saturation	Technology	End Use
1		nr, 2014	tial Secto	ie Kesiden.	Average Market Profile for the Residential Sector,	Table 3-3 AVen

Table 3-3 Average Market Profile for the Residential Sector, 2014


Commercial Sector


segmentation. Although the opt-out customers are typically large industrial customers, allowed by IC-8-1-8.5-9. opted out or who NIPSCO forecasted to opt out of EE programs as of January 1, 2016, as was 3,705 GWh. The average intensity of use was 11.7 kWh/square foot. A key difference from approximately 160 GWh was also removed from the commercial sector. the 2014 forecast is that these control totals now exclude customers who opted-out of participation in EE programs. AEG received a list from NIPSCO of customers who had already The total electric energy consumed by commercial customers in NIPSCO's service area in 2014 The opt-out customers were then removed after the initial market


Energy Market Profile

which comprise 50% of annual electricity usage. Summer peak demand is dominated by cooling. Figure 3-4 shows the distribution of annual electricity consumption and summer peak demand by end use across all commercial buildings. Electric usage is dominated by cooling and lighting,

3,705	11.68			Total	
288.9	0.91	0.91	100.0%	Other	Miscellaneous
0.2	0.00	0.03	1.7%	Pool Heater	Miscellaneous
0.3	0.00	0.02	3.8%	Pool Pump	Miscellaneous
10.6	0.03	0.15	22.1%	Non-HVAC Motors	Miscellaneous
12.0	0.04	0.05	81.8%	POS Terminal	Office Equipment
25.7	0.08	0.08	100.0%	Printer/Copier/Fax	Office Equipment
33.1	0.10	0.10	100.0%	Monitor	Office Equipment
55.1	0.17	0.17	100.0%	Server	Office Equipment
29.0	0.09	0.09	100.0%	Laptop	Office Equipment
187.8	0.59	0.59	100.0%	Desktop Computer	Office Equipment
0.8	0.00	0.02	14.6%	Hot Food Container	Food Preparation
4.2	0.01	0.09	14.6%	Steamer	Food Preparation
5.7	0.02	0.12	14.6%	Dishwasher	Food Preparation
10.0	0.03	0.08	39.1%	Griddle	Food Preparation
12.4	0.04	0.09	44.0%	Fryer	Food Preparation
7.4	0.02	0.06	38.0%	Oven	Food Preparation
5.6	0.02	0.05	35.5%	Vending Machine	Refrigeration
11.8	0.04	0.11	35.5%	lcemaker	Refrigeration
42.9	0.14	0.38	35.6%	Open Display Case	Refrigeration
7.2	0.02	0.06	35.6%	Glass Door Display	Refrigeration
8.9	0.03	0.06	45.0%	Reach-in Refrigerator	Refrigeration
10.2	0.03	0.28	11.6%	Walk-in Refrigerator	Refrigeration
36.7	0.12	0.12	100.0%	Linear Fluorescent	Exterior Lighting
334.9	1.06	1.06	100.0%	HID	Exterior Lighting
56.5	0.18	0.18	100.0%	Screw-in	Exterior Lighting
614.0	1.93	1.93	100.0%	Linear Fluorescent	Interior Lighting
271.7	0.86	0.86	100.0%	High-Bay Fixtures	Interior Lighting
160.4	0.51	0.51	100.0%	Screw-in	Interior Lighting
92.1	0.29	0.69	42.3%	Water Heating	Water Heating
280.0	0.88	0.88	100.0%	Ventilation	Ventilation
6.2	0.02	2.43	0.8%	Geothermal Heat Pump	Heating
11.4	0.04	3.83	0.9%	Air-Source Heat Pump	Heating
49.3	0.16	4.47	3.5%	Electric Room Heat	Heating
153.6	0.48	4.70	10.3%	Electric Furnace	Heating
6.2	0.02	2.42	0.8%	Geothermal Heat Pump	Cooling
11.7	0.04	3.97	0.9%	Air-Source Heat Pump	Cooling
47.6	0.15	4.06	3.7%	Room AC	Cooling
691.5	2.18	3.97	54.9%	RTU	Cooling
66.3	0.21	3.51	6.0%	Water-Cooled Chiller	Cooling
45.6	0.14	3.22	4.5%	Air-Cooled Chiller	Cooling
(GWh)	(kWh/Sqft)	(kWh)	Saturation	Technology	End Use
Usage	Intensity	ECI			

	Table 3-4
	Table 3-4 Average Electric Market Profile for the Commercial Sector, 2014
	et Profile for
1	the Commercial
-	Sector, 2
:	2014

Table 3-4 shows the average market profile for electricity of the commercial sector as a whole, representing a composite of all segments and buildings. Market profiles for each segment are presented in the appendix to this volume.

DSM Market Potential Study - Electricity

Attachappatara

Page 34

Industrial Sector

segment, which represented approximately 75% of the total sector sales. As a result, the DSM the largest segment affected by the removal of opt-out customers is the Large Industrial removed from the control totals, broken down by the segments used in LoadMAP. As expected opt-out of EE programs as of January 1, 2016, as allowed by IC-8-1-8.5-9. AEG then removed those customers from the overall sector control totals. Table 3-5 shows the amount of electricity NIPSCO provided a list of customers who had already opted out or who NIPSCO forecasted to in the programs programs will need to focus on the smaller customers and will likely change the mix of measures

Table 3-5 Lat	opi-oui d	Table 3-5 C&I Upt-Uut Customers (2014)		
Segment		2014 GWh All Customers	2014 GWh from Opt Out Customers	% of Total Sector Sales from Opt Out Customers
Commercial		3,872	166	4.3%
Small Industrial		839	527	5.2%
Large Industrial		9,230	7,511	74.6%
C&I Total		13,941	8,205	58.9%

Table 3-5 C&I Opt-Out Customers (2014)

The total electricity used in 2014 by NIPSCO's industrial customers, after removing the opt-out customers, was 2,031 GWh, while peak demand was 288 MW. NIPSCO billing data, load forecast and of energy intensity (annual kWh/employee). Using the electricity use and intensity estimates, AEG These are shown in Table 3-6. inferred the number of employees which is the unit of analysis in LoadMAP for the industrial sector. secondary sources were used to allocate usage to large and small segments and to develop estimates

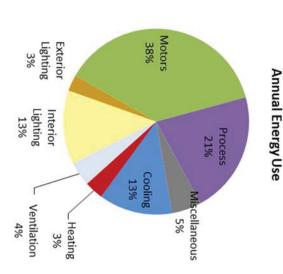

Total 2,031	Large Industrial 251 (>1M kWh/year)	Small Industrial (<1M kWh/year) 1,779	Segment Electricity Sales (GWh)
29,658	247,963	26,377	Sales Intensity (Annual kWh/employee)
68,467	1,014	67,453	Number of Employees
288	27	262	Summer peak Demand (MW)

Table 3-6 Industrial Sector Control Totals (2014)

Energy Market Profile

end use for all industrial customers. Motors are the largest overall end use for the industrial system peak and therefore do not appear in the pie chart. summer peak demand with 43%. Exterior lighting and space heating are not coincident with the sector, accounting for 38% of energy use. Note that this end use includes a wide range of Figure 3-5 shows the distribution of annual electricity consumption and summer peak demand by heating, cooling, refrigeration, and electro-chemical processes. Cooling contributes the most to motors, and fans. The process end use accounts for 21% of annual energy use, which includes industrial equipment, such as air compressors and refrigeration compressors, pumps, conveyor

Figure 3-5 Industrial Electricity Use by End Use (2014), All Segments

Summer Peak Demand

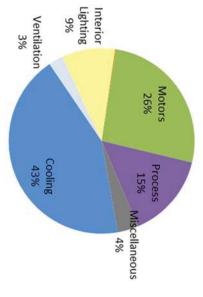


Table 3-7 shows the composite market profile for the industrial sector.

288	2,030.6	29,658			Total	
01	105.0	1,534	1,534	100.0%	Miscellaneous	Miscellaneous
<u>ц</u>	10.6	154	154	100.0%	Other Motors	Motors
33	330.7	4,830	4,830	100.0%	Conveyors	Motors
13	129.7	1,894	1,894	100.0%	Compressed Air	Motors
16	159.9	2,336	2,336	100.0%	Fans & Blowers	Motors
13	131.4	1,919	1,919	100.0%	Pumps	Motors
2	15.2	222	222	100.0%	Process Other	Process
4	38.9	568	568	100.0%	Process Electro-Chemical	Process
ы	55.2	807	807	100.0%	Process Refrigeration	Process
ы	55.2	807	807	100.0%	Process Cooling	Process
27	267.5	3,906	3,906	100.0%	Process Heating	Process
0	9.3	135	135	100.0%	Linear Fluorescent	Exterior Lighting
0	45.2	660	660	100.0%	HID	Exterior Lighting
0	2.4	35	35	100.0%	Screw-in	Exterior Lighting
22	34.9	510	510	100.0%	Linear Fluorescent	Interior Lighting
4	214.2	3,128	3,128	100.0%	High-Bay Fixtures	Interior Lighting
1	12.0	175	175	100.0%	Screw-in	Interior Lighting
7	86.1	1,258	1,258	100.0%	Ventilation	Ventilation
0	1.8	27	3,779	0.7%	Geothermal Heat Pump	Heating
0	3.5	52	4,215	1.2%	Air-Source Heat Pump	Heating
0	14.9	218	5,651	3.9%	Electric Room Heat	Heating
0	45.5	665	7,044	9.4%	Electric Furnace	Heating
2	1.8	27	3,767	0.7%	Geothermal Heat Pump	Cooling
86	3.7	54	4,381	1.2%	Air-Source Heat Pump	Cooling
11	14.1	205	6,316	3.3%	Room AC	Cooling
7	205.6	3,003	5,877	51.1%	RTU	Cooling
ц	22.4	327	2,936	11.1%	Water-Cooled Chiller	Cooling
7	13.9	204	4,056	5.0%	Air-Cooled Chiller	Cooling
(MW)	(GWh)	(kWh/ Employee)	(kWh)	Saturation	recumorogy	
Summer Peak	Usage	Intensity	EUI			
	14	I Sector, 20	Industria	file for the	Average Electric Market Profile for the Industrial Sector, 2014	Table 3-7 Aver

Baseline Projection

savings from future programs are captured by the potential estimates. baseline projection assumes that those past programs cease to exist in the future. Possible efficiency programs. The savings from past programs are embedded in the forecast, but the projection to quantify what the consumption is likely going to be in the future absent any Prior to developing estimates of energy-efficiency potential, AEG developed a baseline end-use

The baseline projection incorporates assumptions about:

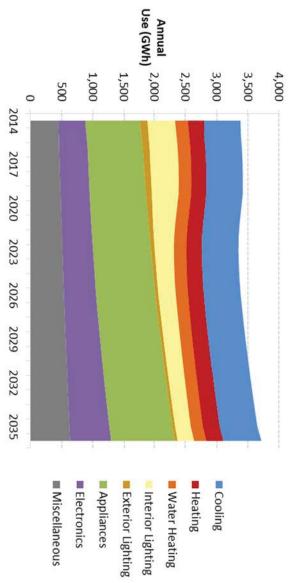
- Customer and economic growth
- Appliance/equipment standards and building codes already mandated (see Section 2)
- Forecasts of future electricity prices and other drivers of consumption
- electricity growth Trends in fuel shares and appliance saturations and assumptions about miscellaneous
- and equipment by early adopters outside of utility programs. options in response to new appliance standards and purchases of high-efficiency appliances Naturally occurring energy efficiency, which reflects the manufacture of more efficient

presents the baseline projections AEG developed for this study. Below, AEG presents the baseline projections for each sector, which include projections of annual use in GWh and summer peak Although it aligns closely, the baseline projection is not NIPSCO's official load forecast. Rather it demand in MW as well as a summary across all sectors. was developed to serve as the metric against which DSM potentials are measured. This chapter

Residential Sector

Annual Use

4-2 presents the baseline projection of annual electricity use per household. Most noticeable is Independence and Security Act of 2007 (EISA) come into effect. that lighting use decreases throughout the time period as the lighting standards from the Energy table also shows the estimate of naturally occurring energy efficiency, which has the greatest impact in the lighting end uses due to early adoption of light emitting diode (LED) lamps. Figure 3,720 GWh in 2036, an increase of 9.9%. This reflects a modest customer growth forecast. This Table 4-1 and Figure 4-1 present the baseline projection for electricity at the end-use level for the residential sector as a whole. Overall, residential use increases from 3,384 GWh in 2014 to


in general alignment with NIPSCO's residential load forecast. Specific observations include: Table 4-2 shows the end-use forecast at the technology level for select years. This projection is

- Lighting use declines as a result of the EISA lighting standards in 2020
- N offset by customer growth. Appliance energy use experiences significant efficiency gains from new standards, but this is
- ω future growth assumptions that are consistent with the Annual Energy Outlook. use is also substantial. This end use has grown consistently in the past and AEG incorporates electronics and the trend toward higher-powered computers. Growth in other miscellaneous Growth in use in electronics is substantial and reflects an increase in the saturation of

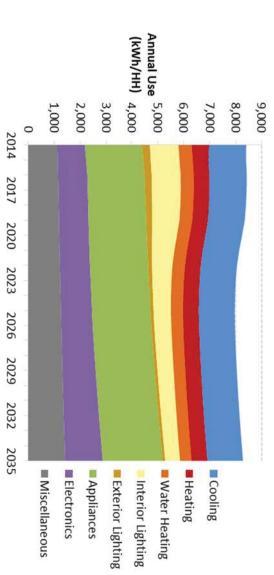

					111		
End Use	2014	2016	2018	2021	2026	2036	% Change (14-36)
Cooling	574	583	580	582	587	612	6.6%
Heating	267	238	240	244	251	265	-0.6%
Water Heating	205	205	204	203	198	198	-3.8%
Interior Lighting	442	451	443	358	279	266	-40.0%
Exterior Lighting	124	109	100	72	48	44	-64.7%
Appliances	894	902	914	936	970	1,039	16.2%
Electronics	430	460	465	478	516	659	53.2%
Miscellaneous	449	461	475	497	538	638	42.3%
Total	3,384	3,408	3,421	3,371	3,388	3,720	9.9%

Table 4-1 Residential Baseline Projection by End Use (GWh)

Figure 4-1 Residential Baseline Projection by End Use (GWh)

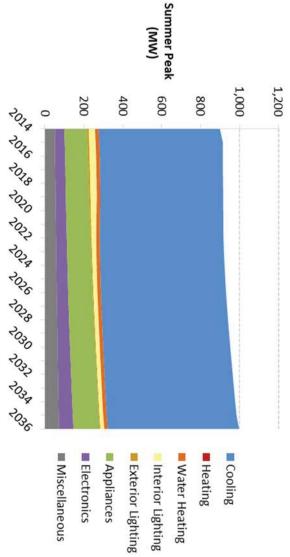
Table 4-2 R	Residential Baseline Projection by End Use and Technology (GWh)	rojectior	ו by Ena	Use an	d Techn	ology ((GWh)	
End Use	Technology	2014	2016	2018	2021	2026	2036	% Change (14-36)
	Central AC	420	427	428	431	441	468	11.6%
	Room AC	140	140	137	134	129	123	-11.9%
Cooling	Air-Source Heat Pump	13	14	14	15	16	18	35.4%
	Geothermal Heat Pump	2	2	2	2	2	ω	72.8%
	Electric Furnace	145	129	129	131	133	136	-5.9%
	Electric Zonal Room Heat	43	39	39	41	44	51	19.7%
пеания	Air-Source Heat Pump	4	4	4	л	л	7	56.5%
	Geothermal Heat Pump	75	66	67	89	69	71	-5.2%
	Water Heater <= 55 gal	136	137	138	141	145	159	16.7%
water neating	Water Heater > 55 gal	69	89	66	62	52	39	-44.0%
	Screw-in	298	300	295	223	152	138	-53.8%
Interior Lighting	Linear Fluorescent	50	51	51	52	53	55	9.0%
	Specialty	94	100	97	83	74	73	-22.2%
Ext. Lighting	Screw-in	124	109	100	72	48	44	-64.7%
	Refrigerator	300	303	307	315	327	346	15.6%
	Second Refrigerator	112	114	117	121	128	141	25.9%
	Freezer	85	87	68	93	86	105	23.6%
Ampliances	Clothes Washer	26	26	25	24	21	19	-26.0%
Appliances	Clothes Dryer	150	152	154	158	163	173	15.2%
	Dishwasher	78	77	76	76	77	85	8.3%
	Stove	52	53	53	54	56	60	15.4%
	Microwave	91	92	93	96	100	109	20.5%
	Personal Computers	40	42	44	48	55	74	82.4%
	Monitor	20	21	21	21	22	24	15.7%
	Laptops	25	26	28	30	34	46	82.9%
Electronics	Printer/Fax/Copier	18	19	19	21	24	33	81.2%
	TVs	166	172	179	190	211	256	54.6%
	Set-top Boxes/DVR	117	133	124	112	102	127	9.0%
	Devices and Gadgets	44	47	50	57	69	66	128.3%
	Well Pump	6	6	7	7	7	7	16.7%
	Dehumidifier	1	1	1	1	1	1	10.0%
	Pool Pump	29	29	29	30	31	33	15.1%
Miscellaneous	Pool Heater	192	194	196	197	197	196	1.8%
	Hot Tub / Spa	18	18	18	19	20	21	15.1%
	Furnace Fan	59	59	60	61	62	66	10.2%
	Other	143	153	164	183	220	315	120.6%
))))		

Table 4-Ń Residential Baseline P Þ ctio 3 bv 7 Ø, Use b Ø, H 3 С Š R (GWh)

Total

3,384 3,408 3,421 3,371 3,388 3,720

9.9%


Residential Summer Peak Demand Projection

annual energy use. electronics and miscellaneous uses increases substantially, in correspondence with growth in the end-use level. Overall, residential summer peak increases from 900 MW in 2014 to 999 MW heating decreases slightly and lighting declines significantly. The summer peak associated with in 2036, an increase of 11.0%. Cooling and appliances show a modest increase while water Table 4-3 and Figure 4-3 present the residential baseline projection for summer peak demand at

Table 4-3 Residential Sulfilier reas baseline ri ujection by End Ose (MW)	Jennal Sun	The Peak	Dasenne P	n oječnom k	Jy Ella Use	(AAIAI)	
End Use	2014	2016	2018	2021	2026	2036	% Change (14-36)
Cooling	624	634	632	635	644	676	8.3%
Heating	0	0	0	0	0	0	0.0%
Water Heating	19	19	19	18	18	18	-3.6%
Interior Lighting	33	33	33	27	21	20	-40.0%
Exterior Lighting	9	∞	7	л	4	ω	-64.7%
Appliances	116	117	119	122	126	135	16.6%
Electronics	48	52	52	54	58	74	53.1%
Miscellaneous	51	52	54	57	61	72	42.1%
Total	900	915	916	918	932	999	11.0%

Tahle 4-5 Residential Summer Peak Baseline Projection by End Use (MW)

Figure 4-3 Residential Summer Peak Baseline Projection by End Use (MW)

Commercial Sector Baseline Projections

Annual Use

Annual electricity use in the commercial sector grows during the overall forecast horizon, starting at 3,705 GWh in 2014, and increasing to 4,127 in 2036 representing 11.4% growth. Table 4-4 and Figure 4-4 present the baseline projection at the end-use level for the commercial sector as a whole. Usage in lighting is declining slightly throughout the forecast, due largely to the phasing in of codes and standards such as the EISA 2007 lighting standards.

		,	,				
End Use	2014	2016	2018	2021	2026	2036	% Change (14-36)
Cooling	869	068	893	006	913	939	8.1%
Heating	220	196	197	198	200	199	-9.8%
Ventilation	280	278	275	271	264	265	-5.5%
Water Heating	92	91	92	92	93	88	-4.9%
Interior Lighting	1,046	1,044	1,042	1,030	1,020	1,008	-3.6%
Ext. Lighting	428	434	436	434	430	422	-1.4%
Refrigeration	87	88	68	92	96	101	16.5%
Food Prep	40	40	40	41	42	44	9.4%
Office Equip	343	348	353	368	405	480	40.2%
Miscellaneous	300	324	349	388	454	581	93.7%
Total	3,705	3,734	3,766	3,814	3,917	4,127	11.4%

Table 4-4 Commercial Baseline Projection by End Use (GWh)

Figure 4-4 Commercial Baseline Projection by End Use

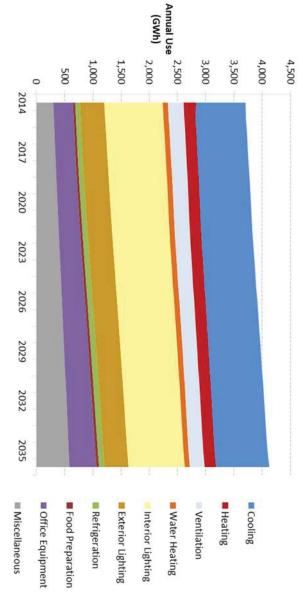


Table 4-5 presents the commercial sector annual forecast by technology for select years. Screw-in lighting technologies decrease significantly over the forecast period as a result of efficiency standards.

Total			Miscellaneous				Office Equip.	Office Equip					rood riep.	Ecod Drep					Nelligeration	Defrigeration				Ext. Lighting			Int. Lighting				חבמוווא						COOIIIIS				End Use	Table 4-5 Co
	Other	Non-HVAC Motors	Pool Pump	Pool Heater	POS Terminal	Printer/Copier/Fax	Server	Monitor	Laptop	Desktop Computer	Hot Food Container	Steamer	Griddle	Fryer	Oven	Dishwasher	Vending Machine	Icemaker	Open Display Case	Glass Door Display	Reach-in Refrigerator	Walk-in Refrigerator	Linear Fluorescent	HID	Screw-in	Linear Fluorescent	High-Bay Fixtures	Screw-in	Water Heater	Ventilation	Geo. Heat Pump	Air Source Heat Pump	Electric Zonal Heat	Electric Furnace	Geo. Heat Pump	Air Source Heat Pump	Room AC	RTU	Water-Cooled Chiller	Air-Cooled Chiller	Technology	Commercial Baseline Projection by End Use and Technology (GWh)
3,705	289	11	0	0	12	26	55	33	29	188	1	4	10	12	7	6	6	12	43	7	9	10	37	335	56	614	272	160	92	280	6	11	49	154	6	12	48	691	66	46	2014	rojectic
3,734	313	11	0	0	13	25	58	33	28	191	1	4	10	13	7	6	6	10	45	7	9	10	37	343	53	615	283	146	91	278	л	10	44	137	6	12	51	699	72	51	2016	on by En
3,766	337	11	0	0	14	25	60	33	27	195	1	4	10	13	7	ы	6	9	47	∞	9	11	37	349	51	615	291	135	92	275	л	10	45	137	6	12	54	691	76	55	2018	d Use a
3,814	376	11	0	0	15	25	64	34	26	204	1	4	10	13	7	ы	6	∞	50	∞	9	11	37	354	44	614	303	112	92	271	л	9	45	139	6	11	59	681	82	61	2021	nd Techi
3,917	442	12	0	0	17	27	72	37	28	224	1	4	10	14	œ	ы	6	8	53	∞	9	11	37	357	36	611	318	91	93	264	4	6	46	141	6	11	68	664	93	71	2026	nology (
4,127	568	13	0	0	22	32	98	43	32	266	1	4	11	15	∞	ы	7	∞	56	9	10	12	36	352	34	598	325	85	88	265	4	8	47	140	л	10	88	633	112	91	2036	GWh)
11.4%	96.5%	20.6%	5.0%	2.2%	79.4%	23.5%	55.6%	30.5%	11.8%	41.6%	22.7%	0.2%	7.3%	21.4%	11.6%	-10.8%	18.2%	-29.7%	30.1%	18.2%	8.8%	17.9%	-2.3%	5.1%	-39.6%	-2.6%	19.6%	-46.9%	-4.9%	-5.5%	-41.6%	-30.7%	-4.7%	-8.6%	-15.7%	-10.8%	84.0%	-8.5%	69.4%	99.8%	% Change (14-36)	

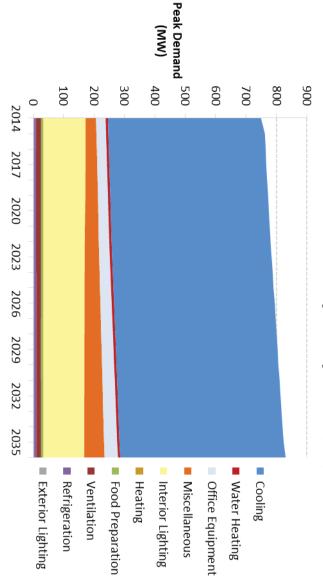

Commercial Summer Peak Demand Projection

Table 4-6 and Figure 4-5 present the summer peak baseline projection at the end-use level for the commercial sector as a whole. Summer peak demand stays relatively flat during the overall forecast horizon, starting at 750 MW in 2014 and increasing to 831 in 2036.

10.8%	831	795	770	767	765	750	Total
93.7%	67	52	40	38	37	34	Miscellaneous
40.2%	44	37	33	32	32	32	Office Equip
9.4%	8	7	7	7	7	۲	Food Prep
16.5%	8	8	7	7	7	۲	Refrigeration
-1.4%	ω	З	З	ω	ω	З	Ext. Lighting
-3.6%	134	136	139	139	139	139	Interior Lighting
-4.9%	7	7	7	7	7	7	Water Heating
-5.5%	16	16	16	16	16	17	Ventilation
0.0%	0	0	0	0	0	0	Heating
8.1%	544	529	517	516	516	503	Cooling
% Change (14-36)	2036	2026	2021	2018	2016	2014	End Use
	(ann)	<u> </u>	900001 2				

Tai
ble
4-
9
60
nn
leri
ciai
SL
imi
ner
·P€
ak
Ba
sel
ine
Pro
yje
ctio
nb
N N
nd
Commercial Summer Peak Baseline Projection by End Use (MM
e G
ШM
2

Industrial Sector Baseline Projections

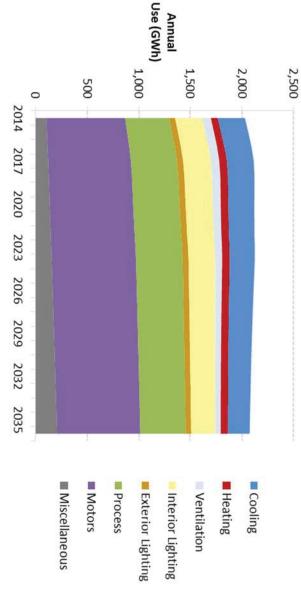
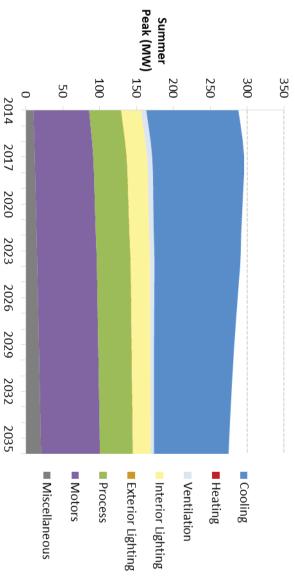

Annual Use

Figure 4-6 present the projection at the end-use level. Overall, industrial annual electricity use (not including opt-out customers) increases from 2,031 GWh in 2014 to 2,076 GWh in 2036. This comprises an overall increase of 2.2% over the 32-year period. Annual industrial use remains relatively flat throughout the forecast horizon. Table 4-7 and

2.2%	2,076	2,114	2,122	2,123	2,094	2,031	Total
100%	210	168	144	129	118	105	Miscellaneous
6%	805	813	808	804	790	762	Process
3%	445	455	455	454	447	432	Motors
-8%	52	56	58	59	58	57	Exterior Lighting
-10%	235	251	261	268	267	261	Interior Lighting
-40%	52	66	76	81	84	86	Ventilation
-1%	65	68	69	69	68	66	Heating
-19%	212	237	251	259	262	261	Cooling
% Change (14-36)	2036	2026	2021	2018	2016	2014	End Use

Table 4-7 Industrial Baseline Projection by End Use (GWh)

Figure 4-6 Industrial Baseline Projection by End Use (GWh)


Industrial Summer Peak Demand Projection

sector. Once the opt-out customers are removed, the peak forecast decreases by 4.6% between 2014 and 2036. Table 4-8 and Figure 4-7 present the projection of summer peak demand for the industrial

-4.6%	275	287	293	296	294	288	Total
100%	21	17	14	13	12	10	Miscellaneous
6%	80	81	80	80	78	76	Motors
3%	44	45	45	45	44	43	Process
-8%	0	1	Ъ	ц	Ц	ц	Exterior Lighting
-10%	24	26	27	27	27	27	Interior Lighting
-40%	4	6	6	7	7	7	Ventilation
0%	0	0	0	0	0	0	Heating
-19%	101	113	120	124	125	125	Cooling
% Change (14-36)	2036	2026	2021	2018	2016	2014	End Use
	(44		CUOIDY E			Juline	ומטופ ד-ט - ווועמסגוומו סעווווופן רכמא במסכווווכן ויטקיבנוטו בין בווע בסכ (וווויר)

Table 4-8 Industrial Summer Peak Baseline Projection by End Use (MW)

Figure 4-7 Industrial Summer Peak Baseline Projection by End Use (MW)

Summary of Baseline Projections across Sectors

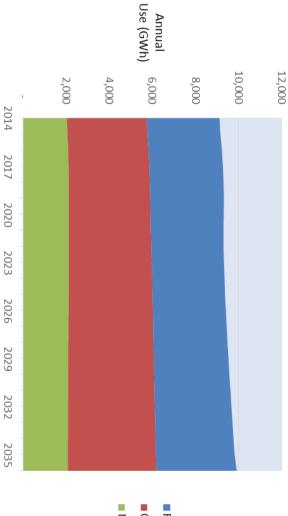

Annual Use

Table 4-9 and Figure 4-8 provide a summary of the baseline projection for annual use by sector for the entire NIPSCO service territory. Overall, the forecast shows relatively modest growth in electricity use, driven primarily by customer growth forecasts.

Table 4-9 Baseline Projection Summary (GWn)	ne Projectio	on summa	ry (GVVh)				
							%
Sector	2014	2016	2018	2021	2026	2036	Change (14-36)
Residential	3,384	3,408	3,421	3,371	3,388	3,720	9.9%
Commercial	3,705	3,734	3,766	3,814	3,917	4,127	11.4%
Industrial	2,031	2,094	2,123	2,122	2,114	2,076	2.2%
Total	9,120	9,235	9,310	9,307	9,419	9,923	8.8%

Table 4-9 Baseline Projection Summary (GWh)

Figure 4-8 Baseline Projection Summary (GWh)

Residential
 Commercial
 Industrial

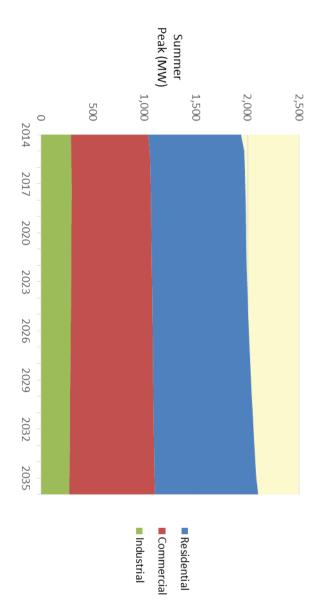

Summer Peak Demand Projection

Table 4-10 and Figure 4-9 provide a summary of the baseline projection for summer peak demand. Overall, the forecast shows modest growth of 8.6%, aligning with the energy forecast.

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000000000	The second second	(41		
Sector	2014	2016	2018	2021	2026	2036	% Change (14-36)
Residential	900	915	916	918	932	666	11.0%
Commercial	750	765	770	778	795	831	10.8%
Industrial	288	294	296	293	287	275	-4.6%
Total	1,938	1,975	1,982	1,989	2,014	2,104	8.6%

Table 4-10 Baseline Summer Peak Projection Summary (MW)

Figure 4-9 Baseline Summer Peak Projection Summary (MW)

Measure-Level DSM Potential

measure that is considered in the measure list, regardless of program implementation concerns. This chapter presents the measure-level DSM potential for NIPSCO. This includes every possible

energy-efficiency measures. Year-by-year savings for annual energy and peak demand are available in the LoadMAP model, which was provided to NIPSCO at the conclusion of the study. The annual energy savings are in GWh and the summer peak demand savings in MW from

first, followed by details for each sector. A summary of annual energy and summer peak demand savings across all three sectors is shown

Overall Summary of DSM Potential

This section presents the annual energy and peak demand savings from energy-efficiency measures for eligible customers. Compared to the 2014 Forecast, the savings are dramatically lower for two reasons:

- Opt-out customers are excluded from this study, which affects primarily the industrial sector savings
- Estimates of Achievable Potential represent a realistic level of potential that can be achieved

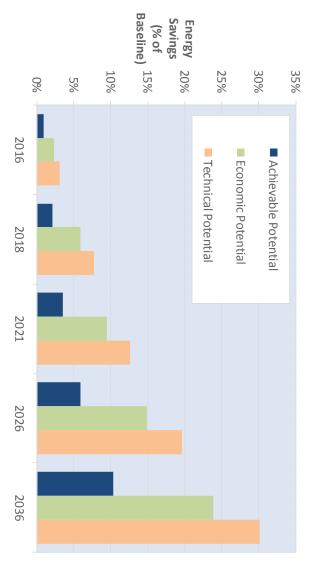

Summary of Annual Energy Savings

Table 5-1 and Figure 5-1 summarize the EE savings in terms of annual energy use for all measures for three levels of potential relative to the baseline projection. Figure 5-2 displays the EE forecasts.

- cumulative savings reach 2,984 GWh, or 30.1% of the baseline. Cumulative gross savings in 2021 are 1,171 GWh, or 12.6% of the baseline. By 2036 effectiveness. First-year savings are 284 GWh, or 3.1% of the baseline projection. Technical potential reflects the adoption of all EE measures regardless of cost-
- baseline projection. By 2021, cumulative savings reach 881 GWh, or 9.5% of the baseline. By 2036, cumulative savings reach 2,367 GWh, or 23.9% of the baseline projection. are taken by all customers. The first-year savings in 2016 are 214 GWh, or 2.3% of the Economic potential reflects the savings when the most efficient cost-effective measures
- of the baseline projection. By 2036, cumulative savings reach 1,027 GWh, or 10.4% of the horizon. baseline projection. This results in average annual savings of 0.5% of the baseline each year. Achievable potential reflects 36%-44% of economic potential throughout the forecast first year, or 0.9% of the baseline and by 2021 cumulative savings reach 328 GWh, or 3.5% participation, customer preferences, and budget constraints. It shows 82 GWh savings in the Achievable potential refines the economic potential by taking into account expected

Table 5-1 Summary of DSM Potential (Annual Energy, GWh)	SM Potential	(Annual Ener	rgy, GWh)		
	2016	2018	2021	2026	2036
Baseline projection (GWh)	9,236	9,310	9,307	9,419	9,906
Cumulative Savings (GWh)					
Achievable Potential	82	199	328	558	1,027
Economic Potential	214	548	881	1,403	2,367
Technical Potential	283	717	1,171	1,848	2,984
Cumulative Savings as a % of Baseline	3aseline				
Achievable Potential	0.9%	2.1%	3.5%	5.9%	10.4%
Economic Potential	2.3%	5.9%	9.5%	14.9%	23.9%
Technical Potential	3.1%	7.7%	12.6%	19.6%	30.1%

Figure 5-1 Summary of DSM Potential as % of Baseline Projection (Annual Energy)

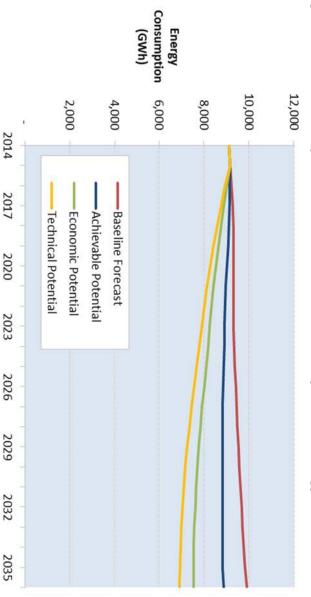


Figure 5-2 Baseline Projection and DSM Forecast Summary (Annual Energy, GWh)

Summary of Summer Peak Demand Savings from EE

of summer peak demand. three levels of potential relative to the baseline projection¹³. Figure 5-4 displays the EE forecasts Table 5-2 and Figure 5-3 summarize the summer peak demand savings from all EE measures for

- baseline projection. **Technical potential** for summer peak demand savings is 226 MW in 2021, or 11.3% of the baseline projection. This increases to 671 MW by 2036, or 31.9% of the summer peak
- peak baseline projection. peak demand baseline projection. In 2036, savings are 525 MW or 24.9% of the summer Economic potential is estimated to be 163 MW or 8.2% reduction in the 2021 summer
- . **Achievable potential** is 62 MW by 2021, or 3.1% of the baseline projection. By 2036, cumulative savings reach 230 MW, or 10.9% of the baseline projection.

Table 5-2 Summary of DSM Potential (Summer Peak, MW)	DSM Potentiá	al (Summer P	eak, MW)		
	2016	2018	2021	2026	2036
Baseline projection (MW)	1,975	1,982	1,989	2,014	2,104
Cumulative Savings (MW)					
Achievable Potential	15	35	62	113	230
Economic Potential	37	92	163	284	525
Technical Potential	50	126	226	388	671
Cumulative Savings as a % of Baseline	of Baseline				
Achievable Potential	0.8%	1.7%	3.1%	5.6%	10.9%
Economic Potential	1.9%	4.6%	8.2%	14.1%	24.9%
Technical Potential	2.5%	6.3%	11.3%	19.3%	31.9%

¹³ The savings from Demand Response programs are shown in Chapter 7. The demand response analysis was done separately from the Energy Efficiency analysis

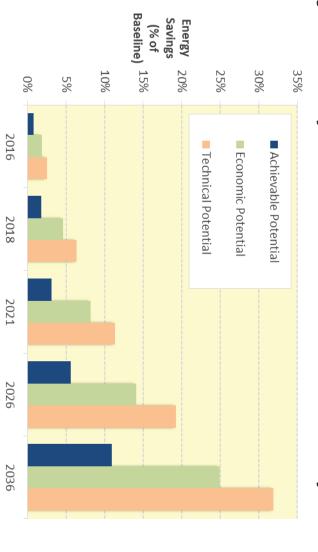
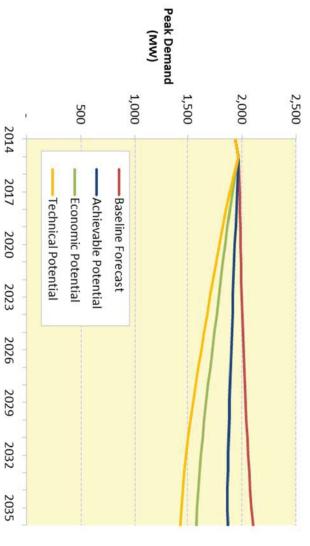



Figure 5-3 Summary of DSM Potential as % of Summer Peak Baseline Projection

Figure 5-4 Summary of the Summer Peak Baseline Projection and DSM Forecasts (MW)

Summary of DSM Potential by Sector

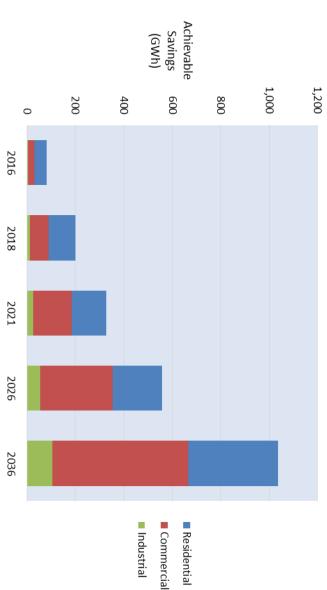
savings is on smaller industrial customers. For peak demand, Residential provides the most potential reduction throughout the study. customers who opt out from DSM programs are typically large consumers of energy, the focus of sector. Residential provides the most early energy potential, but Commercial surpasses it after 2021, and has nearly doubled the 20 year potential of Residential. Because the Industrial Table 5-3, Figure 5-5, and Figure 5-6 summarize the range of electric achievable potential by

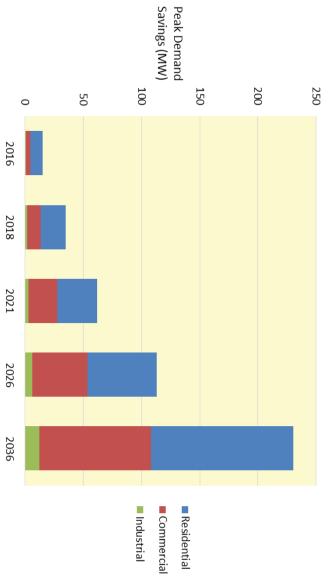
	2016	2018	2021	2026	2036
Cumulative Annual Energy Savings (GWh)	y Savings (GWh)				
Residential	51	109	144	203	362
Commercial	26	77	157	300	560
Industrial	Л	13	27	55	106
Total	82	199	328	558	1,027
Cumulative Summer Peak Demand Savings (MW)	C Demand Savings (MW)			
Residential	11	21	34	59	122
Commercial	4	12	25	48	96
Industrial	1	1	ω	6	12

Table 5-3 Achievable DSM Potential by Sector (Annual Use and Summer Peak)

Figure 5-5 Achievable DSM Potential by Sector (Annual Energy, GWh)

15


36


62

113

230

Total

Figure 5-6 Achievable DSM Potential by Sector (Summer Peak Demand, MW)

Residential DSM Potential

baseline projection. Achievable potential represents roughly 44% of economic potential. sector in terms of annual energy savings. Achievable potential in the first year, 2016 is 51 GWh, or 1.5% of the baseline projection. By 2021, cumulative savings are 144 GWh, or 4.3% of the Table 5-4 and Figure 5-7 present estimates for measure-level EE potential for the residential

	ישויו רטוכווומו	(Annual Enci	igy, owin		
	2016	2018	2021	2026	2036
Baseline projection (GWh)	3,408	3,421	3,371	3,388	3,702
Cumulative Savings (GWh)					
Achievable Potential	51	109	144	203	362
Economic Potential	119	278	354	461	814
Technical Potential	160	364	491	659	1,074
Cumulative Savings as a % of Baseline	f Baseline				
Achievable Potential	1.5%	3.2%	4.3%	6.0%	9.8%
Economic Potential	3.5%	8.1%	10.5%	13.6%	22.0%
Technical Potential	4.7%	10.6%	14.6%	19.5%	29.0%

Table 5-4 Residential DSM Potential (Annual Energy, GWh)

Figure 5-7 Residential DSM Savings as a % of the Baseline Projection (Annual Energy)

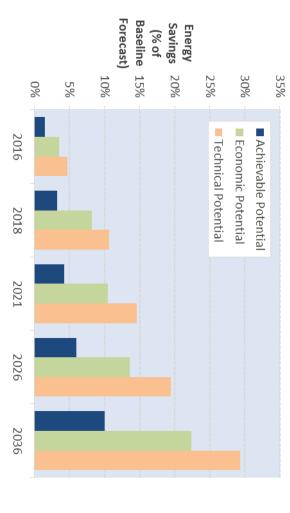
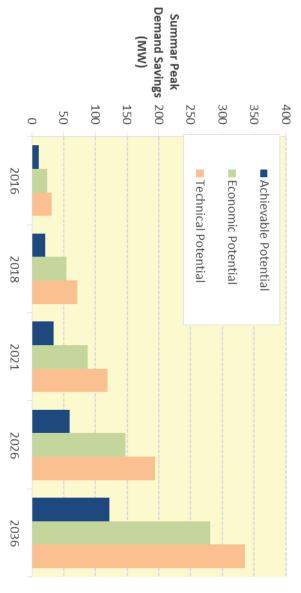



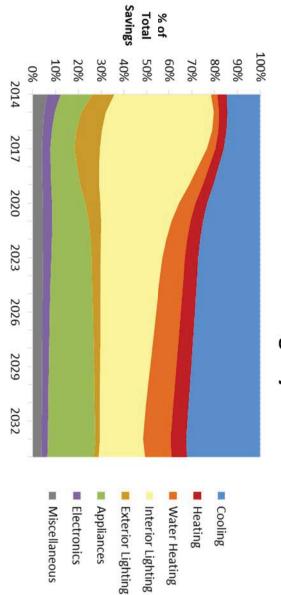
Table 5-5 and Figure 5-8 show residential DSM potential in terms of summer peak savings. In the first year, 2016, summer peak savings are 11 MW, or 1.2% of the baseline summer peak projection. By 2021, cumulative savings are 34 MW, or 3.7% of the baseline summer peak projection.

	annar (Sann	HELFEAN D	SILIALIA, IVIVV		
	2016	2018	2021	2026	2036
Baseline projection (MW)	915	916	918	932	666
Cumulative Savings (MW)					
Achievable Potential	11	34	34	59	122
Economic Potential	24	55	88	147	281
Technical Potential	31	71	119	194	335
Cumulative Savings as a % of Baseline					
Achievable Potential	1.2%	2.3%	3.7%	6.3%	12.2%
Economic Potential	2.6%	5.9%	9.6%	15.8%	28.1%
Technical Potential	3.4%	7.8%	12.9%	20.8%	33.6%

Table 5-5 Residential DSM Potential (Summer Peak Demand, MW)

Figure 5-8 Residential DSM Savings as a % of Summer Peak Baseline Projection

Below are the top residential measures from the perspective of annual energy use and summer peak demand


lamps, which are cost effective throughout the forecast horizon. NIPSCO's currently running savings in 2021. The top measure is interior screw in lighting as a result of purchases of LED behavioral program is the second highest-achieving measure by 2021. Table 5-6 identifies the top 20 residential measures from the perspective of annual energy

100%	144.0	Total All Measures	
96.2%	138.5	Total Top 20 Measures	Total
0.5%	0.8	Electronics - Laptops	20
0.7%	1.0	Miscellaneous - Furnace Fan	19
0.7%	1.0	Miscellaneous - Dehumidifier	18
0.8%	1.2	Electronics - Personal Computers	17
0.9%	1.3	Whole-House Fan - Installation	16
1.0%	1.5	Room AC - Removal of Second Unit	15
1.0%	1.5	Heating - Air-Source Heat Pump	14
1.8%	2.7	Appliances - Freezer	13
2.5%	3.6	Thermostat - Smart / Interactive	12
2.5%	3.6	Appliances - Refrigerator	11
2.5%	3.7	Ceiling Fan - Installation	10
2.8%	4.0	Ducting - Repair and Sealing	9
3.8%	5.4	Refrigerator - Remove Second Unit	∞
4.0%	5.8	Water Heating – HP Water Heater <= 55 gal	7
4.2%	6.0	Cooling - Central AC	6
5.0%	7.2	Windows - High Efficiency/ENERGY STAR	л
8.0%	11.5	Exterior Lighting - Screw-in LEDs	4
12.6%	18.1	Interior Lighting – Specialty LEDs	ω
15.5%	22.3	Behavioral Programs	2
25.3%	36.5	Interior Lighting - Screw-in LEDs	1
IOLAI	(GWh)		
% of	2021 Cumulative Energy Savings	Residential Measure	Rank
	·		

Table 5-6 Residential Top Measures in 2021 (Annual Energy, GWh)

heat pump water heaters becoming cost effective at that time. Savings from cooling measures and appliances are steadily increasing throughout the forecast horizon. and cumulative savings. Lighting savings account for a substantial portion of the savings throughout the forecast horizon, but the share declines over time as the market is transformed The same is true for exterior lighting. Water heater savings increase after 2021 as a result of Figure 5-9 presents forecasts of energy savings by end use as a percent of total annual savings

Figure 5-9 Residential Achievable Savings Forecast (Annual Energy, GWh)

Share of Annual Savings by End Use

- Cooling
- Heating
- Water Heating
- Interior Lighting

GWh 200

250

300

350

400

Cumulative Savings (GWh)

150

100

50

ï

2020

2025

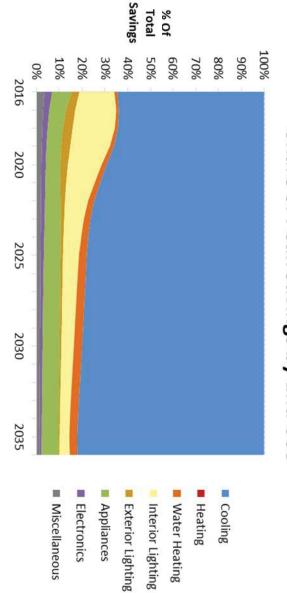
2030

2035

- Exterior Lighting
- Appliances
- Electronics
- Miscellaneous

Table 5-7 identifies the top 20 residential measures from the perspective of summer peak savings in 2021. The top measure is central AC replacement, at 21.1% of the savings in 2021. The top 20 measures account for 97.4% of total savings in 2021. Figure 5-10 presents the forecasts of summer peak savings by end use as a percent of total annual savings and horizon because it is the most peak-coincident end use. cumulative savings. Savings from cooling-related measures dominate throughout the forecast

97.4%	33.2	Total Top 20 Measures	Total
0.3%	0.1	Miscellaneous - Dehumidifier	20
0.4%	0.1	Electronics - Personal Computers	19
0.4%	0.1	Insulation - Ceiling	18
0.5%	0.2	Insulation - Ducting	17
0.9%	0.3	Cooling - Air-Source Heat Pump	16
0.9%	0.3	Windows - High Efficiency/ENERGY STAR	15
1.0%	0.3	Appliances - Freezer	14
1.2%	0.4	Appliances - Refrigerator	13
1.6%	0.5	Water Heating - HP Water Heater <= 55 gal	12
1.8%	0.6	Cooling - Room AC	11
1.8%	0.6	Refrigerator - Remove Second Unit	10
2.5%	0.9	Exterior Lighting - Screw-in LEDs	9
3.3%	1.1	Room AC - Removal of Second Unit	8
3.9%	1.3	Interior Lighting – Specialty LEDs	7
4.4%	1.5	Whole-House Fan - Installation	6
7.9%	2.7	Interior Lighting - Screw-in LEDs	л
10.3%	3.5	Ducting - Repair and Sealing	4
15.3%	5.2	Thermostat - Smart / Interactive	3
17.9%	6.1	Behavioral Programs	2
21.0%	7.2	Cooling - Central AC	1
% of Total	2021 Cumulative Summer Peak Savings (MW)	Residential Measure	Rank


Total All Measures

34.1

100%

Table 5-7 Residential Top Measures in 2021 (Summer Peak Demand, MW)

Figure 5-10 Residential Achievable Savings Forecast (Summer Peak, MW)

Share of Peak Savings by End Use

- Cooling
- Heating
- Water Heating
- Interior Lighting

MW

08

60

40

20

2016

2020

2025

2030

2035

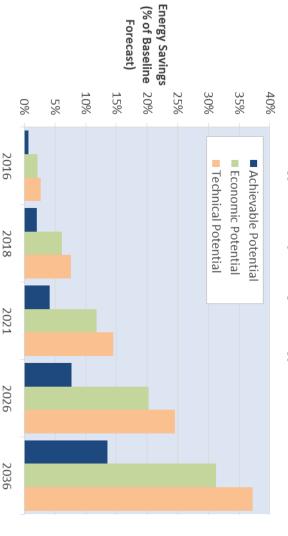
120

100

140

Cumulative Savings (MW)

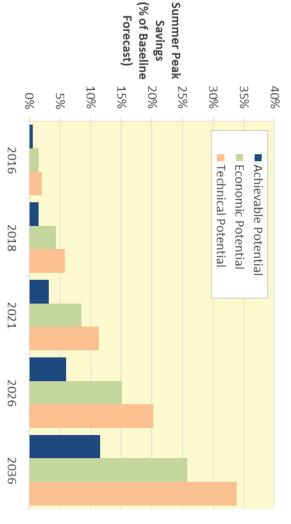
- Exterior Lighting
- Appliances
- Electronics
- Miscellaneous


Commercial Sector DSM Potential

potential represents about 32%-43% of economic potential. are 157 GWh, or 4.1% of the baseline projection. Throughout the forecast horizon, achievable commercial sector from the perspective of annual energy savings. In 2016, the first year of the projection, achievable potential is 26 GWh, or 0.7% of the baseline projection. By 2021, savings Table 5-8 and Figure 5-11 present estimates for the three levels of EE potential for the

Table 3-6 DSM Potential for the Commercial Sector (Energy Savings)	ne commerce	Cial Sector (Energy Savin	(efil	
	2016	2018	2021	2026	2036
Baseline projection (GWh)	3,734	3,766	3,814	3,917	4,127
Cumulative Savings (GWh)					
Achievable Potential	26	77	157	300	560
Economic Potential	80	229	446	791	1,290
Technical Potential	66	286	552	961	1,534
Cumulative Savings as a % of Baseline	ne				
Achievable Potential	0.7%	2.0%	4.1%	7.7%	13.6%
Economic Potential	2.1%	6.1%	11.7%	20.2%	31.3%
Technical Potential	2.7%	7.6%	14.5%	24.5%	37.2%

Table 5-8 DSM Potential for the Commercial Sector (Energy Savings)


Figure 5-11 Commercial Energy Efficiency Savings (Energy)

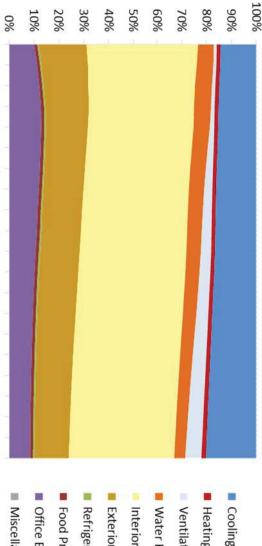
demand. These savings reflect energy-efficiency measures and demand-response programs. In 2016, the first year of the projection, achievable potential is 4 MW, or 0.5% of the baseline summer peak projection. By 2021, savings are 25 MW, or 8.5% of the baseline projection. Table 5-9 and Figure 5-12 present savings estimates from the perspective of summer peak

Table 5-9 DSM Potential for the Commercial Sector (Summer Peak Demand)	e Commerci	al Sector (S	ummer Pea	k Demand)	
	2016	2018	2021	2026	2036
Baseline projection (MW)	765	770	778	795	831
Cumulative Savings (MW)					
Achievable Potential	4	12	25	48	96
Economic Potential	11	33	66	120	215
Technical Potential	15	44	88	161	281
Cumulative Savings as a % of Baseline					
Achievable Potential	0.5%	1.5%	3.2%	6.0%	11.6%
Economic Potential	1.5%	4.3%	8.5%	15.1%	25.8%
Technical Potential	2.0%	5.8%	11.3%	20.2%	33.8%

Figure 5-12 Commercial DSM Potential (Summer Peak)

Below are the top commercial measures from the perspective of annual energy use and summer peak demand.

Table 5-10 identifies the top 20 commercial-sector measures from the perspective of annual energy savings in 2021. The top measure is interior LED replacements for exterior high-intensity displays, with other lighting measures following close behind.


substantial throughout the forecast. substantial portion of the savings throughout the forecast horizon. Cooling savings are also and cumulative savings. Lighting savings from interior and exterior applications account for a Figure 5-13 presents forecasts of energy savings by end use as a percent of total annual savings

	Total	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	л	4	З	2	1	Rank
Total All Measures	Total Top 20 Measures	Advanced New Construction Designs	Cooling - Room AC	Ventilation - Ventilation	RTU - Maintenance	Office Equipment - Printer/Copier/Fax	Cooling - Air-Cooled Chiller	Exterior Lighting - Screw-in LEDs	Cooling - RTU	Cooling - Water-Cooled Chiller	Office Equipment - Server	HVAC - Economizer	Interior Lighting - Screw-in LEDs	Water Heating - Water Heater	Interior Lighting - Daylighting Controls	Retrocommissioning	Office Equipment - Desktop Computer	Interior Lighting - High-Bay Fixtures LEDs	Interior Lighting - Occupancy Sensors	Interior Lighting - Linear LEDs	Exterior Lighting – HID LEDs	Commercial Measure
156.8	144.24	1.41	1.47	1.50	1.82	1.85	1.95	3.00	3.00	3.39	3.96	4.60	7.47	8.21	9.15	10.99	12.74	12.82	15.09	19.54	20.29	2021 Cumulative Energy Savings (GWh)
100%	92.0%	0.9%	0.9%	1.0%	1.2%	1.2%	1.2%	1.9%	1.9%	2.2%	2.5%	2.9%	4.8%	5.2%	5.8%	7.0%	8.1%	8.2%	9.6%	12.5%	12.9%	% of Total

Table 5-10 Commercial Sector Top Measures in 2021 (Annual Energy, GWh)

Figure 5-13 Commercial Achievable Savings Forecast (Annual Energy, GWh)

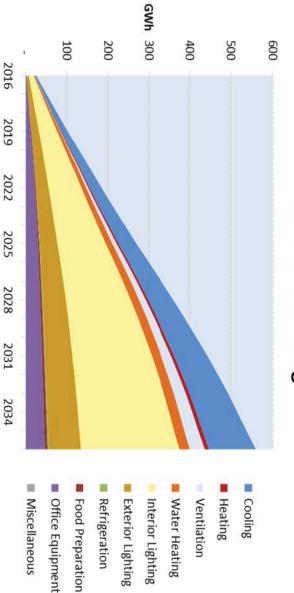
Share of Annual Savings by End Use Heating Cooling Ventilation

- Water Heating
- Interior Lighting
- Exterior Lighting
- Refrigeration
- Food Preparation
- Office Equipment
- Miscellaneous

Cumulative Savings

2016

2019

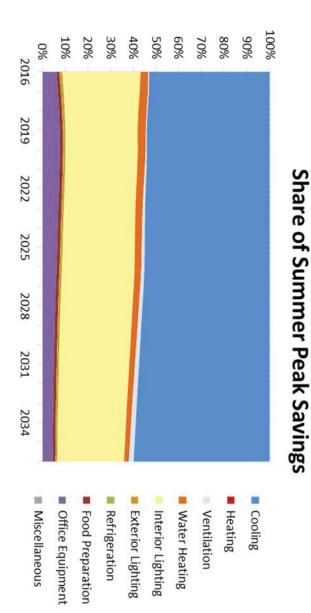

2022

2025

2028

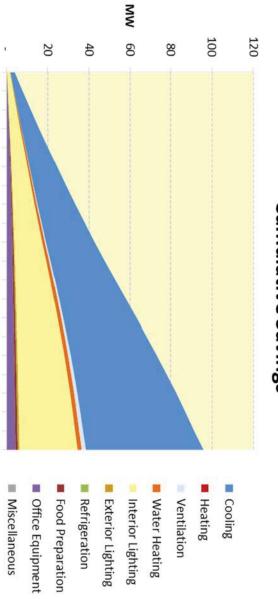
2031

2034



peak savings in 2021. In 2021, the top peak savings come from optimization of the cooling system through Retrocommissioning and HVAC economizers, with the majority of the rest coming from lighting measures, as lighting use is coincident with the peak hour. Table 5-11 identifies the top 20 commercial-sector measures from the perspective of summer

Table 5-11	Table 5-11 Commercial Sector Top Measures in 2021 (Summer Peak, MW) 2021 Cumulative	<i>immer Peak, MW</i> 2021 Cumulative	
Rank	Commercial Measure	Summer Peak Savings (MW)	% of Total
1	Retrocommissioning	3.1	12.6%
2	HVAC - Economizer	2.7	10.9%
3	Interior Lighting - Linear LEDs	2.6	10.6%
4	Cooling - Water-Cooled Chiller	2.0	8.0%
ъ	Cooling - RTU	1.7	7.1%
6	Interior Lighting - High-Bay LEDs	1.7	7.0%
7	Interior Lighting - Daylighting Controls	1.2	5.0%
8	Office Equipment - Desktop Computer	1.2	4.8%
9	Cooling - Air-Cooled Chiller	1.1	4.6%
10	RTU - Maintenance	1.1	4.3%
11	Interior Lighting - Screw-in LEDs	1.0	4.1%
12	Cooling - Room AC	0.9	3.5%
13	Interior Lighting - Occupancy Sensors	0.8	3.3%
14	Water Heating - Water Heater	0.7	2.7%
15	Office Equipment - Server	0.4	1.5%
16	Insulation - Ceiling	0.3	1.3%
17	Chiller - Chilled Water Reset	0.3	1.1%
18	Insulation - Ducting	0.3	1.1%
19	Office Equipment - Printer/Copier/Fax	0.2	0.7%
20	Food Preparation - Griddle	0.2	0.7%
Total	Total Top 20 Measures	23.2	94.7%
	Total All Measures	24.5	100%


Tahlo F 5 sial Se 4 3 202 2 D A NAIAN

throughout the forecast horizon. peak savings and cumulative savings. Savings from cooling-related measures dominate Figure 5-14 presents forecasts of summer peak savings by end use as a percent of total summer

Figure 5-14 Commercial Sector Achievable Savings Forecast (Summer Peak, MW)

Cumulative Savings

2016

2019

2022

2025

2028

2031

2034

Industrial Potential

use. standards and the challenges of identifying additional opportunities to reduce process energy of the baseline projection, industrial savings are the lowest as a result of stringent motor sector, from the perspective of annual energy savings. With the opt-out customers removed, the savings for the industrial customers are closely aligned with the commercial sector. As a percent Table 5-12 and Figure 5-15 present potential estimates at the measure level for the industrial

Savings in the first year, 2016 are 5 GWh, or 0.2% of the baseline projection. In 2021, savings reach 27 GWh, or 1.3% of the baseline projection.

Table 5-12 DSM Potential for the Industrial Sector (Annual Energy, GWh)	al for the Indu	ustrial Sector	. (Annual Ener	gy, GWh)	
	2016	2018	2021	2026	2036
Baseline projection (GWh)	2,094	2,123	2,122	2,114	2,076
Cumulative Savings (GWh)					
Achievable Potential	л	13	27	55	106
Economic Potential	15	41	81	151	262
Technical Potential	24	67	128	228	376
Cumulative Savings as a % of Baseline	f Baseline				
Achievable Potential	0.2%	0.6%	1.3%	2.6%	5.1%
Economic Potential	0.7%	1.9%	3.8%	7.2%	12.6%
Technical Potential	1.1%	3.2%	6.0%	10.8%	18.1%

2 ת 10 SIN D . fielf. ŧ trial S • 2 n (4/1/1)

Energy) Figure 5-15 Industrial DSM Potential as a % of the Baseline Projection (Annual

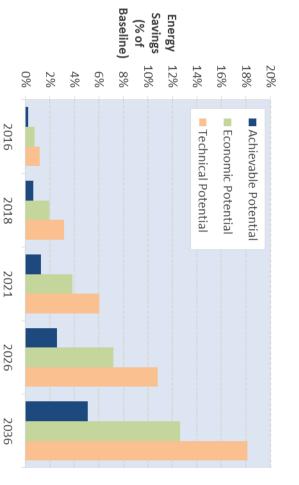
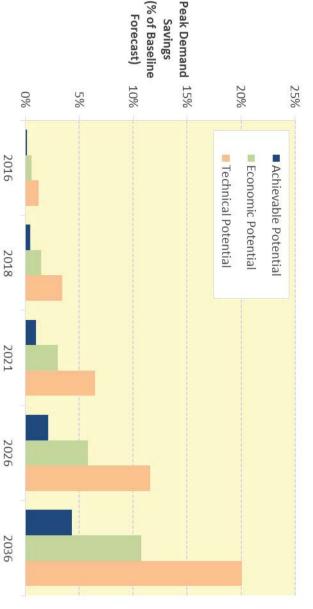



Table 5-13 and Figure 5-16 present potential estimates from the perspective of summer peak savings. In 2016, the first year of the potential forecast, achievable savings are 0.5 MW, or 0.2% of the baseline projection. By 2021, savings have increased to 3 MW, or 1.0% of the baseline summer peak projection.

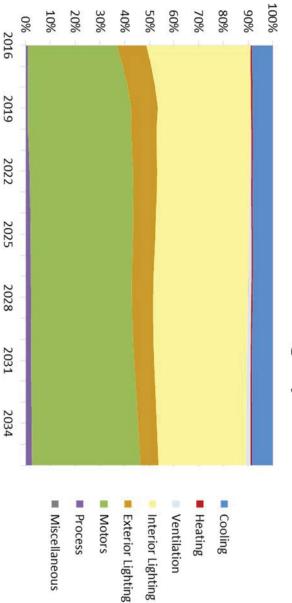
Table 5-13 DSM Potential for the Industrial Sector (Summer Peak, MW)	e Industrial	Sector (Sur	nmer Peak,	MW)	
	2016	2018	2021	2026	2036
Baseline projection (MW)	294	296	293	287	275
Cumulative Savings (MW)					
Achievable Potential	0.5	1	3	6	12
Economic Potential	2	4	9	17	30
Technical Potential	4	10	19	33	55
Cumulative Savings as a % of Baseline					
Achievable Potential	0.2%	0.5%	1.0%	2.1%	4.3%
Economic Potential	0.6%	1.5%	3.0%	5.8%	10.8%
Technical Potential	1.2%	3.4%	6.5%	11.6%	20.1%

Figure 5-16 Industrial Energy Efficiency Savings (Peak Demand)

peak demand. Below are the top industrial measures from the perspective of annual energy use and summer

Table 5-14 identifies the top 20 industrial measures from the perspective of annual energy savings in 2021. The top measure is interior LED replacements for high-bay fixtures. The next two measures in ranking are optimization measures focused on pumping and fan systems.

	2		
96.6%	26.0	Total Top 20 Measures	Total
0.6%	0.2	Pumping System - Maintenance	20
0.6%	0.2	Fan System - Maintenance	19
0.7%	0.2	Interior Lighting - Occupancy Sensors	18
0.9%	0.2	Insulation - Ceiling	17
1.1%	0.3	Cooling - Room AC	16
1.1%	0.3	Exterior Lighting - Linear LEDs	15
1.1%	0.3	Transformer - High Efficiency	14
1.2%	0.3	Cooling - Air-Cooled Chiller	13
1.9%	0.5	Cooling - Water-Cooled Chiller	12
1.9%	0.5	Cooling - RTU	11
2.5%	0.7	Retrocommissioning	10
3.6%	1.0	Interior Lighting - Screw-in LEDs	9
3.6%	1.0	Compressed Air - Compressor Replacement	∞
3.9%	1.1	Interior Lighting - Linear LEDs	7
4.9%	1.3	Motors - Variable Frequency Drive (Pumps)	6
5.2%	1.4	Compressed Air - Air Usage Reduction	л
8.6%	2.3	Exterior Lighting – HID LEDs	4
11.7%	3.2	Fan System - Optimization	ω
12.3%	3.3	Pumping System - Optimization	2
29.2%	7.9	Interior Lighting - High-Bay LEDs	1
% of Total	2021 Cumulative Energy Savings (GWh)	Industrial Measure	Rank
	al Eller UY, GWIIJ	able 5-14 industrial sector rob measures in 2021 (Annual Energy, own)	1 aDIC 2-14


Total All Measures

27.0

100%

Table 5-14 Industrial Sector Top Measures in 2021 (Annual Energy, GWh)

and cumulative savings. Motor-related measures account for a substantial portion of the savings throughout the forecast horizon. Savings associated with lighting measures are also substantial throughout the forecast. Figure 5-17 presents forecasts of energy savings by end use as a percent of total annual savings

Figure 5-17 Industrial Achievable Savings Forecast (Annual Energy, GWh)

Share of Annual Savings by End Use

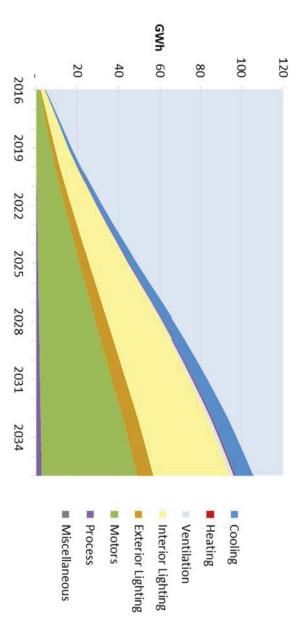
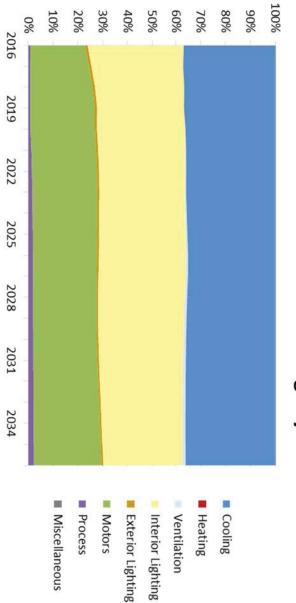



Table 5-15 identifies the top 20 industrial measures from the perspective of summer peak savings in 2021. The top measure, 27% of the summer peak savings, is the same as the highest energy saving measure - LED replacement of high-bay lighting, since use is coincident with the system peak hour.

	Total	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	л	4	З	2	1		Rank		Table 5-15 I
Total All Measures	Total Top 20 Measures	Interior Lighting - Occupancy Sensors	Exterior Lighting – HID LEDs	Motors - Variable Frequency Drive (Pumps)	Cooling - Geothermal Heat Pump	Chiller - Chilled Water Reset	Compressed Air - Compressor Replacement	Transformer - High Efficiency	Chiller - VSD on Fans	Retrocommissioning	Interior Lighting - Screw-in LEDs	Interior Lighting - Linear LEDs	Insulation - Ceiling	Cooling - Room AC	Compressed Air - Air Usage Reduction	Cooling - Air-Cooled Chiller	Fan System - Optimization	Cooling - Water-Cooled Chiller	Cooling - RTU	Pumping System - Optimization	Interior Lighting - High-Bay LEDs		Industrial Measure		Table 5-15 Industrial Top Measures in 2021 (Summer Peak Demand, MW)
2.95	2.86	0.02	0.02	0.03	0.03	0.03	0.03	0.04	0.05	0.07	0.10	0.11	0.12	0.14	0.14	0.15	0.24	0.24	0.25	0.25	0.81	(MW)	Summer Peak Savings	2021 Cumulative	ak Demand, MW,
100%	97.1%	0.6%	0.7%	0.9%	1.0%	1.0%	1.1%	1.5%	1.9%	2.3%	3.3%	3.7%	4.1%	4.7%	4.7%	5.2%	8.0%	8.2%	8.4%	8.4%	27.4%		% of Total)

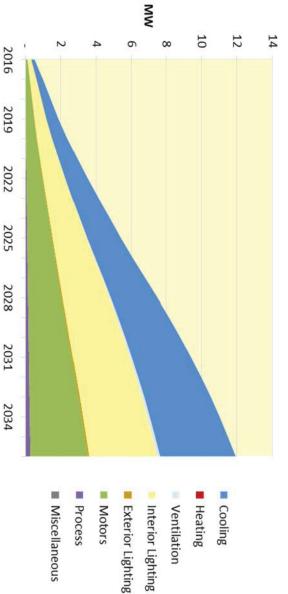

savings throughout the forecast horizon. peak savings and cumulative savings. Cooling, lighting, motors and process all contribute to the Figure 5-18 presents forecasts of summer peak savings by end use as a percent of total summer

Figure 5-18 Industrial Achievable Savings Forecast (Summer Peak, MW)

Share of Summer Peak Savings by End Use

Cumulative Summer Peak Savings

Program Potential

ramp-up time for new initiatives. MMP made these adjustments based on actual historic program accomplished given the realities of the utility operations and program delivery and to reflect the that is aligned with near-term implementation accomplishments and the available budget. To attained given constraints of resources. It consists of the subset of the measure-level potential experience and budgets assumptions in achievable potential and participation rates to a final level that can be marketing approaches, budgets, historic field experience, and staff resources to refine the key develop program potential, MMP used program design, incentive structures, net-to-gross factors. Program potential is defined as the portion of the achievable potential that might be reasonably

NIPSCO. To complete this analysis, the cost effectiveness model DSMore was utilized adjusted participation rates of the program potential, cost-benefit analysis was completed to Using refined, projected costs for incentives and program delivery, net-to-gross factors, plus the determine if the program was cost effective from a Total Resource Cost Test perspective for

years of historic weather variability to get the full weather variances appropriately modeled. In turn, this allows the model to capture the low probability, but high consequence weather events considered for the DSM program, and then correlates both to weather. This tool looks at over 30 incremental measure costs to the participant. model include participation rates, incentives paid, energy and demand savings of the measure, life of the measure, net-to-gross factors, implementation costs, administrative costs, and measure can be captured in comparison to other alternative supply options. Inputs into the and apply appropriate value to them. Thus, a more accurate view of the value of the DSM hourly prices and hourly energy savings from the specific measures/technologies being Integral Analytics, based in Cincinnati Ohio, the DSMore cost-effectiveness modeling tool takes in many states across the country to determine cost-effectiveness. Developed and licensed by The DSMore tool is an award-winning modeling software that is nationally recognized and used

costs. The model also produces specific measure energy savings by hour. These hourly savings rates; escalation rates; discount rates for the utility, society and the participant; and avoided To be consistent with other NIPSCO planning efforts, DSMore utilizes NIPSCO provided utility are then provided to NIPSCO for use within its Integrated Resource Plan models

an effective and balanced portfolio of energy and peak demand savings opportunities across all Table 6-1 below lists the distinct program groupings that emerged from this exercise to deliver customer segments

	Com Ventilation	
	Com Refrigeration	
	Com Office Equipment	Res Interior Lighting
	Com Elec Miscellaneous	Res Exterior Lighting
Ind Heating	Com Interior Lighting	Res Electric Water Heat
Ind Motors	Com Electric Heating	Res Electric Miscellaneous
Ind Interior Lighting	Com Electric Food Prep	Res Electric Heating
Ind Exterior Lighting	Com Exterior Lighting	Res Cooling
Ind Cooling	Com Cooling	Res Appliances
Industrial Program Groupings	Commercial Program Groupings	Residential Program Groupings

Table 6-1 Portfolio of DSM Program Groupings Included in Program Potential

Portfolio Budgets and Impacts

drop in 2020 due to changes in the Federal standards for lighting. by budget category, respectively. The portfolio begins in the near term at about \$20 million per year in annual spending and increases to \$62 million in 2036. Costs and participation/savings Figure 6-1 and Figure 6-2 show the annual portfolio budget allocations by program grouping and

Practice Manual formulas for the TRC test. "Other" also includes some additional implementation costs for some measures with very low incremental costs to cover the cost of including them in are paid by the utility but not classified as an incentive according to the California Standard Table 6-2 details the budgets for each program grouping for every year of the study. Approximately 53% of the total budget is for "Incentives", however, another 16% is in the costs. and evaluation, measurement and verification costs, which represents 8% of the total costs. the portfolio. Administrative costs include NIPSCO staffing costs, planning and consulting costs Implementation costs equal 23% of the total cost. These figures are in line with historic program "Other" category. The "Other" category includes items such as the low income measures which

Figure 6-1 Utility Costs by Program (\$ million) \$10.00 \$70.00 \$20.00 \$30.00 \$40.00 \$50.00 \$60.00 Ŷ Portfolio Total Utility Program Costs (\$million) = Ind Heating Ind Exterior Lighting Res Electric Heating Res Electric Miscellaneous Res Electric Water Heat Res Exterior Lighting Res Interior Lighting Com Cooling Com Exterior Lighting Com Electric Food Prep Com Electric Heating Com Interior Lighting Com Electric Miscellaneous Com Office Equipment Com Refrigeration Com Ventilation ■ Com Electric Water Heat Ind Cooling Ind Interior Lighting Ind Motors

2016

2018

2020

2022

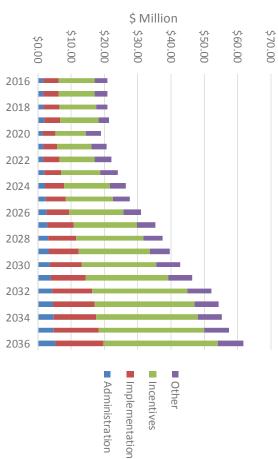
2024

2026

2028

2030

2032


2034

2036

Res Cooling
Res Appliances

Applied Energy Group, Inc.

Figure 6-2 Utility Costs by Budget Category

program. Figure 6-3 shows the net cumulative energy savings in each year of the Program Potential by

Figure 6-3 Net Cumulative Energy Savings by Program (MWh)

Error! Not a valid bookmark self-reference. presents the net cumulative peak demand savings in each year. Please note that all savings are provided at the power plant, which include line losses and given in terms of net savings.

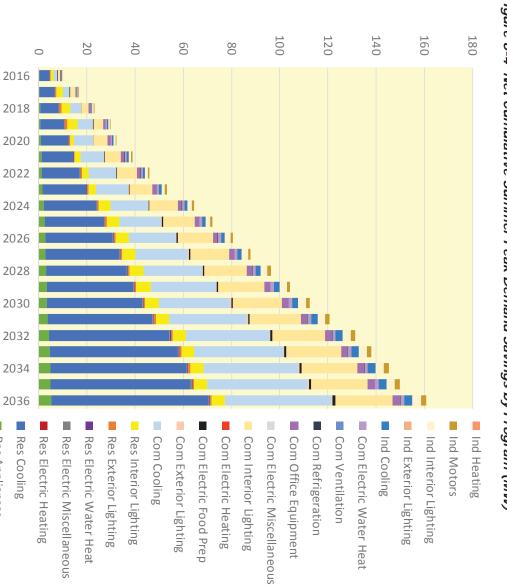


Figure 6-4 Net Cumulative Summer Peak Demand Savings by Program (MW)

energy savings and demand savings by program by year for the study period. Table 6-2 shows the program costs by year for the study period. Table 6-3 and 6-4 shows the

Res Appliances

Table 6-2Utility Costs by Program (\$ million)

Program	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Res Appliances	\$0.7	\$0.7	\$0.7	\$0.8	\$0.8	\$1.0	\$1.1	\$1.1	\$1.2	\$1.3	\$1.4	\$1.4	\$1.5	\$1.5	\$1.6	\$1.6	\$1.8	\$1.8	\$1.8	\$1.8	\$1.9
Res Cooling	\$4.8	\$5.0	\$5.3	\$5.8	\$6.2	\$6.6	\$7.7	\$8.6	\$10.7	\$11.2	\$11.9	\$12.5	\$13.1	\$13.8	\$15.2	\$16.8	\$21.1	\$22.1	\$22.1	\$23.1	\$24.0
Res Electric Heating	\$0.2	\$0.2	\$0.2	\$0.3	\$0.3	\$0.3	\$0.3	\$0.4	\$0.4	\$0.4	\$0.5	\$0.5	\$0.5	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.7	\$0.7	\$0.7
Res Electric Miscellaneous	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.3	\$0.3	\$0.3	\$0.3
Res Electric Water Heat	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.1	\$0.0	\$0.0	\$0.0
Res Exterior Lighting	\$0.6	\$0.6	\$0.5	\$0.4	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3
Res Interior Lighting	\$4.2	\$3.9	\$3.3	\$2.7	\$3.4	\$3.3	\$2.8	\$3.0	\$2.3	\$2.5	\$2.6	\$2.6	\$2.7	\$2.8	\$3.2	\$3.1	\$2.9	\$2.8	\$2.8	\$2.8	\$2.8
Com Cooling	\$2.2	\$2.3	\$2.8	\$3.0	\$3.4	\$4.1	\$4.5	\$4.9	\$5.3	\$5.6	\$7.3	\$10.2	\$11.4	\$12.2	\$12.9	\$14.6	\$15.4	\$16.4	\$16.6	\$17.1	\$19.7
Com Exterior Lighting	\$0.7	\$0.8	\$0.7	\$0.8	\$0.7	\$0.7	\$0.8	\$0.8	\$0.8	\$0.8	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0	\$1.1	\$1.1	\$1.1
Com Electric Food Prep	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1
Com Electric Heating	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Com Interior Lighting	\$5.3	\$5.1	\$5.2	\$5.6	\$2.1	\$2.2	\$2.3	\$2.4	\$2.9	\$3.0	\$3.3	\$3.5	\$3.5	\$4.0	\$4.3	\$4.5	\$5.0	\$5.2	\$5.7	\$6.2	\$6.4
Com Electric Miscellaneous	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Com Office Equipment	\$0.0	\$0.0	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1
Com Refrigeration	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1
Com Ventilation	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Com Electric Water Heat	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.4	\$0.4	\$0.4	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.6	\$0.6	\$0.7	\$0.7	\$0.7	\$0.9
Ind Cooling	\$0.6	\$0.6	\$0.5	\$0.6	\$0.6	\$0.7	\$0.8	\$0.9	\$0.9	\$0.9	\$1.0	\$1.2	\$1.4	\$1.4	\$1.4	\$1.4	\$1.4	\$1.4	\$1.4	\$1.4	\$1.6
Ind Exterior Lighting	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1
Ind Interior Lighting	\$1.0	\$0.9	\$0.9	\$0.9	\$0.5	\$0.5	\$0.5	\$0.6	\$0.6	\$0.6	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.8
Ind Motors	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.2	\$0.2	\$0.2	\$0.2	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.5	\$0.5	\$0.5	\$0.6	\$0.6	\$0.8
Ind Heating	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Residential Total	\$10.5	\$10.5	\$10.2	\$10.0	\$11.2	\$11.6	\$12.4	\$13.5	\$15.1	\$15.9	\$16.8	\$17.6	\$18.3	\$19.2	\$21.1	\$22.7	\$27.0	\$28.0	\$28.0	\$29.1	\$30.1
Commercial Total	\$8.6	\$8.6	\$9.1	\$9.8	\$6.6	\$7.6	\$8.1	\$8.7	\$9.7	\$10.0	\$12.3	\$15.5	\$16.7	\$18.1	\$19.0	\$21.0	\$22.4	\$23.7	\$24.5	\$25.5	\$28.5
Industrial Total	\$1.7	\$1.7	\$1.5	\$1.6	\$1.2	\$1.5	\$1.6	\$1.7	\$1.7	\$1.7	\$2.0	\$2.3	\$2.5	\$2.5	\$2.5	\$2.7	\$2.7	\$2.7	\$2.8	\$2.9	\$3.2
PORTFOLIO TOTAL	\$20.8	\$20.8	\$20.9	\$21.4	\$19.1	\$20.7	\$22.1	\$24.0	\$26.5	\$27.7	\$31.1	\$35.3	\$37.5	\$39.8	\$42.7	\$46.4	\$52.1	\$54.4	\$55.3	\$57.5	\$61.8

Table 6-3 Net Cumulative Energy Savings by Program (MWh)

Program	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Res Appliances	1,396	2,836	4,335	5,892	7,604	9,608	11,700	13,880	20,187	22,058	23,996	25,675	28,030	31,062	32,549	34,000	40,390	41,736	45,220	46,287	48,233
Res Cooling	24,364	29,988	33,046	37,313	40,764	44,295	49,117	53,823	59,740	65,355	77,417	82,219	87,751	92,768	98,702	105,751	114,237	120,221	127,318	131,408	156,084
Res Electric Heating	176	376	597	835	1,089	1,353	1,627	1,911	2,204	2,505	2,830	3,177	3,545	3,933	4,306	4,680	5,058	5,440	5,654	5,853	6,039
Res Electric Miscellaneous	157	325	504	694	893	1,099	1,307	1,520	1,741	1,971	2,344	2,576	2,695	2,814	2,942	3,068	3,191	3,363	3,567	3,734	4,035
Res Electric Water Heat	201	407	617	828	1,041	1,657	1,774	1,886	1,993	2,095	2,683	2,778	2,882	2,990	3,098	4,199	4,278	4,378	4,920	4,940	5,458
Res Exterior Lighting	3,989	7,950	11,231	13,799	4,922	6,019	6,941	7,890	9,436	10,352	10,091	9,819	9,731	9,904	9,802	9,611	9,539	9,375	9,334	9,260	9,139
Res Interior Lighting	18,260	35,314	49,413	60,569	23,990	30,719	36,471	42,387	64,668	71,660	72,197	73,247	75,421	78,818	76,988	75,314	74,534	73,129	73,826	73,870	73,641
Com Cooling	3,554	7,141	10,970	14,844	18,858	23,336	27,665	32,152	36,761	41,170	46,400	51,790	57,880	64,171	69,936	77,315	82,728	88,813	94,903	101,434	108,184
Com Exterior Lighting	4,125	7,574	11,072	14,791	17,017	20,877	24,815	28,888	33,465	37,580	41,986	46,550	50,963	55,277	59,069	59,825	60,218	60,933	61,510	62,009	62,404
Com Electric Food Prep	255	511	789	1,076	1,372	1,676	1,994	2,325	2,672	3,019	3,298	3,564	3,825	4,104	4,362	4,607	4,850	5,106	5,211	5,325	5,423
Com Electric Heating	2	3	5	7	8	10	12	15	17	19	21	23	26	29	31	32	33	35	37	39	40
Com Interior Lighting	9,783	18,682	26,939	36,028	47,901	58,579	69,300	80,239	99,094	110,674	123,155	135,317	147,377	159,747	170,688	176,702	184,671	189,855	195,043	198,491	202,333
Com Elec Miscellaneous	7	13	20	28	35	43	51	58	66	74	75	76	77	80	82	84	86	88	89	91	92
Com Office Equipment	2,151	4,756	7,681	10,832	13,864	16,938	17,990	18,762	19,402	20,322	21,634	22,974	24,290	25,531	26,600	27,412	28,055	28,807	29,623	30,570	31,616
Com Refrigeration	129	257	385	521	663	810	961	1,117	1,439	1,405	1,531	1,640	1,759	1,878	1,984	2,186	2,469	2,443	2,578	2,676	2,773
Com Ventilation	2	7	15	26	39	53	70	88	109	128	158	178	206	237	258	296	322	363	424	461	501
Com Electric Water Heat	1,335	2,830	4,340	5,830	7,093	8,362	9,635	10,914	12,176	13,418	14,700	15,872	17,059	18,327	18,293	18,234	18,041	18,138	18,476	18,704	18,971
Ind Cooling	322	627	897	1,203	1,504	1,869	2,235	2,636	3,021	3,394	3,791	4,253	4,760	5,259	5,744	6,112	6,473	6,840	7,149	7,402	7,765
Ind Exterior Lighting	440	766	1,101	1,434	1,729	2,081	2,443	2,827	3,202	3,563	3,961	4,395	4,815	5,222	5,604	5,608	5,609	5,651	5,696	5,740	5,766
Ind Interior Lighting	1,696	2,897	4,125	5,386	7,895	9,696	11,543	13,506	17,320	19,493	21,801	24,311	26,744	29,104	31,271	31,622	32,026	32,579	33,133	33,496	33,754
Ind Motors	1,123	2,307	3,499	4,691	5,925	7,436	8,947	10,548	11,959	13,334	15,218	16,811	18,372	19,924	21,503	24,015	25,715	27,407	28,808	30,143	32,400
Ind Heating	1	1	2	3	3	4	6	7	8	10	11	12	14	16	18	19	21	22	23	24	26
Residential Total	48,543	77,198	99,744	119,930	80,304	94,750	108,937	123,296	159,970	175,997	191,559	199,490	210,055	222,290	228,387	236,622	251,227	257,643	269,839	275,351	302,630
Commercial Total	21,343	41,774	62,216	83,981	106,849	130,683	152,494	174,560	205,202	227,808	252,956	277,984	303,464	329,380	351,303	366,694	381,474	394,581	407,895	419,800	432,338
Industrial Total	3,581	6,599	9,624	12,717	17,056	21,086	25,174	29,524	35,510	39,793	44,783	49,782	54,706	59,525	64,140	67,376	69,844	72,499	74,809	76,806	79,711
PORTFOLIO TOTAL	73,467	125,571	171,583	216,628	204,209	246,519	286,605	327,380	400,682	443,598	489,297	527,256	568,224	611,195	643,830	670,693	702,545	724,723	752,543	771,957	814,679

Table 6-4 Net Curr Program	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Res Appliances	0.2	0.5	1.0	1.7	2.6	3.7	5.0	6.6	8.9	11.3	14.0	16.9	19.9	23.2	26.6	30.2	34.6	39.0	43.9	48.9	54.0
Res Cooling	4.4	10.7	18.5	28.4	39.9	53.0	68.8	86.9	108.7	133.2	161.3	191.8	225.2	261.2	300.6	344.1	394.0	447.1	503.5	561.6	626.7
Res Electric Heating									-	-	-	-	-			-					
Res Electric Miscellaneous	0.0	0.1	0.1	0.2	0.3	0.4	0.6	0.7	0.9	1.2	1.4	1.7	2.1	2.4	2.7	3.1	3.4	3.8	4.2	4.7	5.1
Res Electric Water Heat	0.0	0.1	0.1	0.2	0.3	0.4	0.6	0.8	0.9	1.1	1.4	1.6	1.9	2.1	2.4	2.8	3.2	3.6	4.0	4.5	5.0
Res Exterior Lighting	0.3	0.9	1.7	2.7	3.1	3.5	4.1	4.6	5.3	6.1	6.9	7.6	8.3	9.0	9.8	10.5	11.2	11.9	12.6	13.3	13.9
Res Interior Lighting	1.4	4.0	7.6	12.1	13.9	16.2	18.9	22.0	26.8	32.1	37.4	42.9	48.4	54.3	60.0	65.6	71.1	76.5	82.0	87.4	92.9
Com Cooling	1.5	4.4	9.0	15.1	23.0	32.7	44.2	57.6	73.0	90.2	109.7	131.5	155.8	182.9	212.4	244.7	279.3	316.2	355.7	397.3	441.6
Com Exterior Lighting	0.0	0.1	0.2	0.3	0.4	0.5	0.7	0.9	1.2	1.4	1.7	2.0	2.4	2.8	3.2	3.6	4.1	4.5	4.9	5.4	5.8
Com Electric Food Prep	0.0	0.1	0.3	0.5	0.7	1.0	1.3	1.7	2.2	2.7	3.3	3.9	4.5	5.2	6.0	6.8	7.6	8.5	9.4	10.3	11.2
Com Electric Heating	-	-	-	-	_	_	_	-	-	-	-	-	-	-	-	-	_	-	-	_	-
Com Interior Lighting	1.1	3.2	6.3	10.4	15.9	22.7	30.8	40.2	51.8	64.9	79.5	95.7	113.3	132.4	152.9	174.1	196.1	218.7	241.9	265.4	289.4
Com Electric Miscellaneous	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Com Office Equipment	0.2	0.6	1.3	2.3	3.6	5.2	6.8	8.6	10.4	12.2	14.2	16.3	18.6	20.9	23.4	25.9	28.5	31.1	33.9	36.7	39.6
Com Refrigeration	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.7	0.9	1.0	1.2	1.3	1.5	1.7	1.9	2.1	2.3	2.5
Com Ventilation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Com Electric Water Heat	0.1	0.3	0.7	1.2	1.7	2.4	3.2	4.0	5.0	6.1	7.3	8.6	9.9	11.4	12.9	14.4	15.8	17.3	18.8	20.3	21.8
Ind Cooling	0.1	0.4	0.8	1.3	1.9	2.8	3.7	4.8	6.2	7.6	9.3	11.1	13.2	15.5	18.0	20.7	23.5	26.5	29.6	32.8	36.2
Ind Exterior Lighting	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7
Ind Interior Lighting	0.2	0.5	0.9	1.4	2.3	3.2	4.4	5.8	7.6	9.6	11.8	14.3	17.1	20.0	23.2	26.5	29.8	33.1	36.5	39.9	43.4
Ind Motors	0.1	0.2	0.5	0.8	1.2	1.7	2.3	3.0	3.8	4.7	5.8	7.0	8.3	9.7	11.2	12.8	14.6	16.5	18.6	20.7	22.9
Ind Heating	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					I		I	I	I	I		I				I				1	L
Residential Total	6.2	9.9	12.9	16.2	14.7	17.3	20.6	23.8	29.9	33.5	37.4	40.1	43.3	46.4	49.9	54.2	61.2	64.6	68.3	70.0	77.3
Commercial Total	3.0	5.9	8.9	12.1	15.6	19.2	22.6	26.1	30.6	34.2	38.2	42.4	46.8	51.3	55.3	58.9	62.1	65.2	68.4	71.1	74.3
Industrial Total	0.4	0.7	1.0	1.4	1.9	2.3	2.8	3.3	3.9	4.4	5.0	5.6	6.1	6.7	7.3	7.6	8.0	8.3	8.6	8.8	9.2
PORTFOLIO TOTAL	9.6	16.5	22.9	29.7	32.2	38.8	46.0	53.2	64.5	72.2	80.6	88.0	96.2	104.4	112.4	120.7	131.2	138.0	145.2	150.0	160.8

Table 6-4 Net Cumulative Coincident Summer Peak Demand Savings by Program (MW)

Cost Effectiveness

With the program budgets and impacts presented above, the industry standard cost-effectiveness tests were performed with the DSMore software tool, as described above, to gauge their costs - using its own unique perspectives and definitions - all defined in terms of net used in DSM program design are described below. present value of future cash flows. The definitions for the four standard tests most commonly the economic merits of the portfolio. Each test compares the benefits of the DSM programs to

- costs and avoided capacity costs. The costs in this test are the incremental measure costs Total Resource Cost test (TRC). The benefits in this test are the lifetime avoided energy plus all administrative costs spent by the program administrator.
- avoided capacity costs, the same as the TRC benefits. The costs in this test are the program Utility Cost Test (UCT). The benefits in this test are the lifetime avoided energy costs and administrator's incentive costs and administrative costs.
- those seen by the participant; in other words: the incremental measure costs minus the savings (which is another way of saying "lost utility revenues"). The costs in this test are Participant Cost Test (PCT). The benefits in this test are the lifetime value of retail rate value of incentives paid out.
- greater extent than per-unit rates are increased — resulting in lower average utility bills point of view of this test, but the assumption is that absolute energy use decreases to a always to raise them on a per unit basis. Thus, costs typically outweigh benefits from the This test attempts to show the effects that EE programs will have on rates, which is almost **Rate Impact Measure test (RIM).** The benefits of the RIM test are the same as the TRC benefits. The RIM costs are the same as the UCT, except for the addition of lost revenue.

The cost-effectiveness results for the NIPSCO program-potential portfolio are shown in Table 6-5 below. Lifetime TRC benefits are \$847 million dollars and costs of \$479 million dollars result in a robust TRC benefit-to-cost ratio of 1.77. The portfolio passes the cost-effectiveness screen with a B/C ratio at 1.0 or higher for all of the standard tests, except RIM.

Table 6-5 DSM Action	DSM Action Plan Cost Effectiveness Summary	eness Summary				
Program	NPV TRC Benefits (Smillion)	NPV TRC Costs (\$ million)	TRC	UCT Ratio	РСТ Ratio	RIM
Res Appliances	\$32.48	\$19.42	1.67	2.35	6.09	0.36
Res Cooling	\$239.81	\$173.48	1.38	1.91	2.80	0.58
Res Electric Heating	\$2.91	\$7.22	0.40	0.61	2.62	0.17
Res Electric Miscellaneous	\$4.58	\$2.64	1.73	2.37	4.67	0.46
Res Electric Water Heat	\$3.37	\$0.53	6.34	9.44	22.67	0.37
Res Exterior Lighting	\$10.81	\$5.17	2.09	2.56	14.79	0.25
Res Interior Lighting	\$86.14	\$46.81	1.84	2.33	9.33	0.30
Com Cooling	\$142.46	\$109.18	1.30	1.67	3.24	0.44
Com Exterior Lighting	\$36.82	\$12.94	2.85	3.58	15.42	0.19
Com Electric Food Prep	\$5.22	\$1.33	3.92	4.98	11.84	0.34
Com Electric Heating	\$0.02	\$0.03	0.73	0.93	4.40	0.16
Com Interior Lighting	\$171.55	\$62.12	2.76	3.53	8.36	0.30
Com Electric	\$0.11	\$0.01	10.08	11.48	53.37	0.39
Miscellaneous						
Com Office Equipment	\$24.46	\$1.10	22.33	26.23	146.10	0.30
Com Refrigeration	\$2.05	\$0.81	2.53	3.37	11.64	0.28
Com Ventilation	\$0.23	\$0.19	1.18	1.50	5.71	0.23
Com Electric Water Heat	\$17.19	\$6.23	2.76	3.51	11.52	0.28
Ind Cooling	\$12.17	\$13.92	0.87	1.11	1.61	0.50
Ind Exterior Lighting	\$4.61	\$1.29	3.57	4.53	10.69	0.35
Ind Interior Lighting	\$28.46	\$10.74	2.65	3.30	6.28	0.40
Ind Motors	\$21.57	\$3.43	6.29	8.00	17.72	0.43
Ind Heating	\$0.01	\$0.05	0.27	0.34	1.47	0.16
Residential Total	\$380.11	\$255.28	1.49	2.02	4.34	0.44
Commercial Total	\$400.11	\$193.93	2.06	2.63	6.98	0.32
Industrial Total	\$66.82	\$29.44	2.27	2.87	5.42	0.42

PORTFOLIO TOTAL

\$847.05

\$478.64

1.77

2.33

5.61

0.37

Supply Curves

it becomes increasingly expensive to achieve additional savings. cost and savings impacts) are plotted on a line chart. The upward slope of the line indicates that the costs required to reach those savings levels. Energy efficiency programs and their associated impacts are rank-ordered according to their cost per unit of savings. The two data points (unit The purpose of supply curves is to better understand the relationship between DSM impacts and

Supply Curves based on Annual Energy Savings

Table 6-6 and Figure 6-5 provide a supply curve of cumulative energy impacts for 2016 through 2021 plotted against the first-year costs of those savings. All energy efficiency programs, except Industrial cooling and heating, come in at a price point lower than \$0.50/first-year kWh.

ProgramNet Incremental MWh S016-2021Utility Cost of S016-2021Com Office Equipment $56,2221$ $56,2221$ Ind Motors $56,2221$ $(5/kWh)$ Res Electric Water Heat $4,752$ $50,011$ Com Frigeration $24,980$ $50,023$ Com Refrigeration $2,764$ $50,03$ Ind Exterior Lighting $7,550$ $50,06$ Com Refrigeration $2,764$ $50,06$ Com Refrigeration $2,764$ $50,06$ Com Refrigeration $2,764$ $50,06$ Com Electric Lighting $75,456$ $50,06$ Com Electric Vater Heat $29,789$ $50,06$ Com Electric Food Prep $5,678$ $50,07$ Res Interior Lighting $31,672$ $50,10$ Com Interior Lighting $31,672$ $50,15$ Ind Interior Lighting $31,672$ $50,17$ Res Electric Miscellaneous $3,672$ $50,17$ Com Electric Heating $3,672$ $50,22$ Com Cooling $4,427$ $50,23$ Res Electric Heating $4,427$ $50,25$ Ind Cooling $6,422$ $50,55$ 1nd Heating 14 $50,75$	inania o orange or	Current de la construction de la construction de la construcción de la	
Program Savings 2016-2021 int 56,222 eat 4,752 aneous 146 aneous 2,764 g 7,550 rep 5,678 g 75,456 g 75,456 g 75,456 g 197,910 rep 5,678 197,912 31,695 31,695 209,770 143 143 neous 3,672 3 4,427 4,427 6,422 14 14		Net Incremental MWh	Utility Cost of
Int2016-2021 $($)eat56,22256,222aneous4,752146aneous1467,550g75,45675,456g75,456197,910g11,57231,672g197,91231,695g31,695209,770g3,672143neous3,6724,427g5,678143141414$	Program	Savings	First-Year Savings
int $56,222$ eat $24,980$ aneous $4,752$ aneous 146 $2,764$ $7,550$ g $7,550$ rep $5,678$ rep $5,678$ g $197,912$ g $31,695$ $31,695$ $31,695$ $31,672$ $34,723$ $34,427$ $6,422$ $4,427$ $4,427$ 14 14		2016-2021	(\$/kWh)
eat24,980aneous $4,752$ aneous 146 $2,764$ $7,550$ g $7,550$ g $75,456$ Heat $29,789$ g $218,266$ g $31,672$ g $31,672$ 143 143 3 $3,672$ 3 $3,672$ $4,427$ $6,422$ 14 14	Com Office Equipment	56,222	\$0.01
eat4,752aneous1461462,7642,7647,5507,5507,550875,456975,4569218,2669197,912931,672931,695931,695931,672931,67293694,4271414	Ind Motors	24,980	\$0.02
aneous 146 2,764 2,764 7,550 7,550 g 7,550 rep 75,456 g 29,789 rep 5,678 g 197,912 g 197,912 g 31,672 s 31,695 g 31,672 g 34,427 g 36 g 36 g 36 g 4,427 g 4,427 g 4,422 g 4,427 g 4,422 g 4,422 g 4,422 g 4,42 g 4,42 g 4,42	Res Electric Water Heat	4,752	\$0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Com Electric Miscellaneous	146	\$0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Com Refrigeration	2,764	\$0.05
$\begin{array}{c c} & 47,910 \\ g & 75,456 \\ Heat & 29,789 \\ rep & 5,678 \\ fep & 218,266 \\ 197,912 \\ 31,672 \\ 31,672 \\ 31,672 \\ 31,695 \\ 209,770 \\ 143 \\ 143 \\ 36 \\ 78,703 \\ 4,427 \\ 6,422 \\ 14 \end{array}$	Ind Exterior Lighting	7,550	\$0.05
g 75,456 Heat 29,789 rep 5,678 g 218,266 g 197,912 a1,672 31,695 a1,695 209,770 neous 3,672 3 3,672 3 3,672 4,427 6,422 14 14	Res Exterior Lighting	47,910	\$0.06
Heat $29,789$ rep $5,678$ g $218,266$ g $197,912$ $31,672$ $31,672$ neous $209,770$ 143 143 $3,672$ $3,672$ $4,427$ $4,427$ $6,422$ 14	Com Exterior Lighting	75,456	\$0.06
rep5,678g218,266g197,912 $31,672$ 31,672 $31,695$ 31,695neous209,770143143 363 3,672 363 3672 $4,427$ 6,4221414	Com Electric Water Heat	29,789	\$0.06
g 218,266 g 197,912 $31,672$ $31,695$ $31,695$ $209,770$ neous $3,672$ 36 $3,672$ 36 $78,703$ $4,427$ $6,422$ 14 14	Com Electric Food Prep	5,678	\$0.07
r Lighting 197,912 ces $31,672$ Lighting $31,672$ Lighting $209,770$ ation 143 Miscellaneous $3,672$ c Heating 3672 g $78,703$ Heating $4,427$ 143 $4,422$ 144 14	Res Interior Lighting	218,266	\$0.10
ces $31,672$ Lighting $31,695$ Lighting $31,695$ $209,770$ 143 ation 143 Miscellaneous $3,672$ c Heating 36 g $78,703$ Heating $4,427$ Heating $6,422$ 14 14	Com Interior Lighting	197,912	\$0.13
Lighting 31,695 ation 209,770 ntion 143 Miscellaneous 3,672 c Heating 36 g 78,703 Heating 6,422 14 14	Res Appliances	31,672	\$0.15
209,770 ation 143 Miscellaneous 3,672 c Heating 36 g 78,703 Heating 4,427 4,422 5,422 14 14	Ind Interior Lighting	31,695	\$0.15
ation 143 Miscellaneous 3,672 c Heating 36 g 78,703 Heating 4,427 143 14	Res Cooling	209,770	\$0.16
Miscellaneous 3,672 c Heating 36 g 78,703 Heating 4,427 6,422 14	Com Ventilation	143	\$0.17
c Heating 36 g 78,703 Heating 4,427 6,422 14	Res Electric Miscellaneous	3,672	\$0.17
g 78,703 Heating 4,427 6,422 14	Com Electric Heating	36	\$0.22
Heating 4,427 6,422 14	Com Cooling	78,703	\$0.23
6,422 14	Res Electric Heating	4,427	\$0.34
14	Ind Cooling	6,422	\$0.55
	Ind Heating	14	\$0.75

Table 6-6 Supply Curve 2016-2021 (MWh Savings vs. \$/kWh)

Figure 6-5 Supply Curve 2016-2021 (MWh Savings vs. \$/kWh)

Supply Curves based on Annual Peak Demand Savings

Net Incremental MWh Savings

peak and therefore is not shown in the list for any of the sectors. Lighting does not have significant impacts that are coincident with the system peak and therefore have a much higher utility cost of first year savings. Heating is not coincident with the programs, provide capacity resources to the system at a competitive price lower than \$1,000/kW. 2021 plotted against the first-year costs of those savings. About half of the energy efficiency Table 6-7 and Figure 6-6 provide a supply curve of cumulative peak savings for 2016 through

Table 6-7 Supply Curve 2016-2021 (Peak MV Savings Vs. \$7KW)	IVV Savings VS. \$/KVV)	
	Net Incremental Peak MW	Utility Cost of
Program	Savings	First Year Savings
	2016-2021	(\$/kW)
Com Office Equipment	5.2	\$61
Com Electric Miscellaneous	0.0	\$233
Res Electric Water Heat	0.4	\$287
Ind Motors	1.7	\$348
Com Electric Food Prep	1.0	\$425
Com Cooling	32.7	\$545
Res Cooling	53.0	\$636
Com Refrigeration	0.2	\$658
Com Electric Water Heat	2.4	\$730
Com Interior Lighting	22.7	\$1,122
Res Appliances	3.7	\$1,257
Ind Cooling	2.8	\$1,285
Res Interior Lighting	16.2	\$1,287
Ind Interior Lighting	3.2	\$1,440
Res Electric Miscellaneous	0.4	\$1,513
Ind Exterior Lighting	0.1	\$5,769
Com Exterior Lighting	0.5	\$8,257

Table 6-7 Supply Curve 2016-2021 (Peak MW Savings vs. \$/kW)

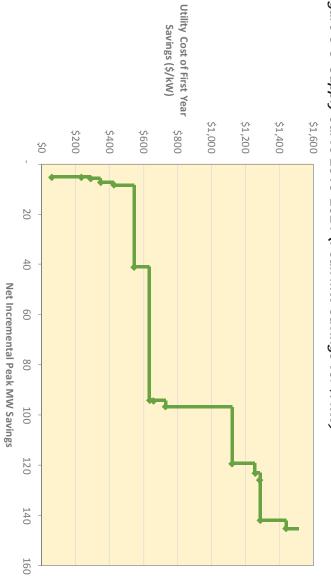


Figure 6-6 Supply Curve 2016-2021 (Peak MW Savings vs. \$/kW)

Demand Response Potential

communicating technology or AMI in the near term. pricing programs, since NIPSCO does not currently, nor do they plan on adding, two-way structures. The DR analysis does not include the analysis of demand-side rates and dynamic analysis focuses only on programs that can be implemented using NIPSCO's existing tariff NIPSCO currently offers direct load control and interruptible demand response programs. As part this analysis, all types of demand response programs were considered, but ultimately the

Analysis Approach

below. The major steps are described in detail throughout the analysis. The major steps used to perform the demand response (DR) potential assessment are listed

- 1. Market Characterization
- 2. Define the relevant DR options by customer class
- ω Outline participation hierarchy for DR options to prevent double-counting of impacts
- 4 program costs Develop DR program assumptions which include participation rates, unit savings, and
- σ Estimate DR potential and develop program budgets and supply curves
- 6. Assess cost-effectiveness of DR options

These steps are described below.

Market Characterization

customers use energy in the peak hour. The analysis begins with segmentation of the NIPSCO customer base and a description of how

Segmentation of Customers for DR Analysis

demand load reduction and are not restricted by regulations. analysis, opt-out customers were included in the analysis, as they offer a large opportunity for customers were excluded from the analysis. Street lighting load typically occurs at night and codes of 611, 612, and 613. The C&I segmentation corresponds with NIPSCO's small, medium, large and industrial rate codes. Net metered, off peak tariff, municipal and street lighting therefore has no potential to impact loads at the system peak hour. Unlike the EE portion of the The residential sector is considered a single group -- designated by NIPSCO's residential rate dimension of customer segmentation is by sector and the second dimension is by customer size The market segmentation scheme for the DR analysis is presented in Table 7-1. The first

Dimension	Segmentation Variable	Description	ption
Dimension 1	Sector	Residential and Nonresidential	
		Residential (Rate Codes 611, 612, 613)	, 613)
		Nonresidential (by Rate Code)	
		Small C&I	620, 621, 622
טווופווטוטוו ב		Medium C&I	623
		Large C&I	624, 625
		Extra Large C&I	625, 632, 633, 634

Table 7-1 Overall DR Market Segmentation Scheme

Baseline Customer and Coincident Peak Projection

characterized by using NIPSCO's 2014 billing data. The baseline projection incorporates NIPSCO's customer count projections were adjusted to correspond to the segmentation scheme defined above Table 7-2 presents customer projections for each segment. forecasts of summer peak demand and customer counts from 2015 through 2037. NIPSCO's total for each customer segment. Consistent with the EE potential analysis, the base year is 2014 and is The next step was to define the baseline projection for the number of customers and peak demand

base is much larger than that used in the EE potential analysis Since C&I opt-out customers are eligible to participate in DR programs, the eligible customer

270,060	τ ca'6ηc	498,770	480, / IS	4/0,114 4/4,2/5 4/6,3/2 4/8,/5/ 481,431 484,120 486,/18 498,//0 509,651 596,8/9	481,431	4/8,/5/	4/0,3/2	4/4,2/5	4/0,114	IOTAI
		000	01170	001 100	7 2 2		C1C J1V			T. L.
26	26	26	26	26	26	26	26	26	26	Extra Large C&I
1,490	1,489	1,488	1,487	1,487	1,487	1,487	1,487	1,486	1,486	Large C&I
4,241	4,232	4,225	4,217	4,216	4,214	4,213	4,211	4,210	4,207	Medium C&I
65,975 67,680 69,784	67,680		64,313	63,337 63,661 63,986	63,661	63,337	63,014	62,694	62,057	Small C&I
445,849	436,224	427,056	416,674	405,859 407,634 409,695 412,043 414,405 416,674 427,056 436,224 445,849	412,043	409,695	407,634	405,859	402,338	Residential
2036	2013	2026	2021	2020	2019	2018	2017	2016	2014	Customers by Class

Table 7-2 DR Baseline Projection of Customer by Segment

demand values¹⁴ Table 7-3 presents the coincident peak forecast by segment. regional load factors by segment and calibrated them to match NIPSCO's actual energy and peak program offered by NIPSCO. The demand distribution was developed using typical Midwest forecast does not include any current or forecasted impacts from existing demand response NIPSCO provided the summer peak demand forecast for all customer classes combined. This

¹⁴ It should be noted that because of differing methodologies, models and segmentation, the system peak demand forecast used in the DR analysis is slightly different than that used in the EE analysis. This does not, however, materially affect the results and outcome of the study.

3,412	3,356	3,289	3,176 3,192 3,207 3,289 3,356 3,412	3,192	3,176	3,160	3,145 3,160	3,145 3,118	3,145	Total
1,286	1,265	1,240	1,209	1,203	1,197	1,191	1,185	1,175	1,186	Extra Large C&I
438	430	422	411	409	407	405	403	400	403	Large C&I
349	343	337	328	327	325	323	322	319	322	Medium C&I
363	357	350	341	339	338	336	334	332	334	Small C&I
976	960	941	918	913	606	904	900	892	900	Residential
2036	2031	2026	2021	2020	2019	2018	2017	2016	2014	Peak MW by Customer Class

Table 7-3 Coincident Peak Projection by Segment (MW)

Identify Demand Response Options

were screened out. Below we describe those options that were ultimately included in the analysis and those that In this study a wide variety of possible demand-response and pricing options were considered.

DR Options Included in the Analysis

The demand response options included in this study are described below

conditioners for residential and small commercial. The program was discontinued in 2015. Events seasons. Eligible customers for the DLC option include residential customers with cooling, winter peak season. Residential participants that have electric water heaters are assumed to be eligible to include their water heater as a curtailable load for both the summer and winter peak and expanded to include medium C&I customers as well. 16.88 MW per event in 2015. The program was included in the analysis for exploratory purposes ran from June through September events. A total of 4 events were called with an average of heating and central air conditioners. NIPSO has offered this program in the past for air heating and water heating equipment as well as small and medium C&I customers with space conditioners and heat pumps) for the summer peak season as well as space heating units for the Direct Load Control (DLC). The program entails control of eligible cooling units (central air

633, and 634. The program has six participants with a total of 174 economic interruptions called The program is aimed at their largest industrial customers, currently available only to Rates 632 uncommon in recent times, and the voluntary participation route is now the default standard for future implementation planning. This is NIPSCO largest and most successful current program. market rate if they do not curtail as a penalty for non-performance. In years past, programs like this have actually interrupted customer load at the utility point of service, but this is very agreement to curtail their load during system contingencies. This program would be implemented Interruptible Load Tariffs. Large commercial customers enroll directly with the utility in an in 2014 with an average of 143 MW per event. respond with load shedding. They would be paid a credit for curtailed load, but charged at by notifying customers of a curtailment event, typically a day in advance, and allowing them to

specific level of load reduction, enrolled load represents a firm resource and can be counted also receive a payment for energy reduction. Because it is a firm, contractual arrangement for a varies with the load commitment. In addition to the fixed capacity payment, participants typically call even though actual load curtailments may not occur. The amount of the capacity payment typically receive a fixed incentive payment from the Aggregator in the form of capacity credits or a specific amount or curtail their consumption to a pre-specified level. In return, they would non-performance. Events may be called on a day-of or day-ahead basis as conditions warrant. toward installed capacity (ICAP) requirements. Penalties are assessed for under-performance or reservation payments (expressed as \$/kW-month or \$/kW-year). Customers are paid to be on Third Party Aggregator Programs. Participating customers agree to reduce their demand by

candidates. NIPSCO currently has a tariff that would accommodate this type of program, obligations to continue providing service (such as schools and hospitals) are often not good with flexible operations. Customers with 24x7 operations/continuous processes or with engaging customers with maximum demand typically greater than 100 kW, particularly those either independently with MISO or contractually with NIPSCO. For the analysis, it is assumed that This option is delivered by third party load aggregators that have streamlined processes for this option will be offered to large and extra large C&I customers. however there are no third party DR aggregators currently operating in the service territory,

DR Options Screened Out

The following were qualitatively screened out:

Critical Peak Pricing (CPP) involves significantly higher prices during relatively short established so that customers can expect events based on hot weather or other factors typically for a limited number of days per year. Over time, event-trigger criteria become well-Events can also be called during times of system contingencies or emergencies TOU rate). Event days are dispatched on relatively short notice (day ahead or day-of) customer incentive is a heavily discounted rate during off-peak hours (relative to a standard critical peak periods on event days to encourage customers to reduce their usage. The

For participation in this rate-based option, it is preferable for customers to have advanced included in the study. future plans to introduce AMI meters into their service territory, therefore this option was not meters, primarily for bill settlement purposes. NIPSCO has no current tariffs and has no

- higher rate. Unlike other DR and rate based options, this option has low to zero operation, maintenance and incentive costs. However, introducing this rate option requires a significant customer's bill. The rate increases as the amount of electricity consumed increases. Typically modeling amount of rate making and regulatory changes that may not be captured within the threshold is charged one rate and the second block above the threshold is charged another the rate is separated into two blocks or tiers by a kWh threshold, the first block below the based on customer usage. This is a volumetric \$ per kWh charge that is applied to a Inclining Block Rate (IBR) is considered a conservation rate that applies differing rates
- the higher-price on-peak hours into the lower cost off-peak hours. Larger price differentials off-peak hours is lower. This provides customers with motivation to move consumption out of revenue-equivalent flat rate, the rate during on-peak hours is higher, while the rate during provide an incentive for customers to shift consumption. electricity is more expensive during a particular block of hours each day. Relative to a Time of Use Tariff (TOU). A TOU rate occurs when the rate for purchasing or using

assumed that the TOU rate is in effect for the summer season. Time-of-use rates are program was qualitatively screened out. NIPSCO does not have future plans to include rate-based tariffs options, and therefore this typically not included as a DR option, per se, because customer response is not event driven year or seasonally. Since the summer peak is the time of most interest in this analysis, it is peak hours to off-peak hours. TOU rates can be established to be in effect every day of the rather a means to achieve predictable, permanent load shifting on a day-to-day basis from Time-of-Use rates are not event-driven like the other DR programs considered here, but are

- Smart Appliance DLC. This program is a relatively unproven and emerging terms of communication and control for enabling reductions from these devices. technology. Existing research on impacts by appliance type show relatively low reductions. Additionally, the technical infrastructure investment costs are likely to be prohibitively high in
- reliability. Therefore, participation is challenging and likely to be low. Overall, the option is entailing high infrastructure costs. They need to be available 24x7 with a high degree of Fast DR. DR resources for providing ancillary services need to be Auto-DR enabled, thereby

amount of renewable sources coming online, the value of flexible resources like Fast DR are unlikely to be cost-effective under current system conditions. However, with increasing likely to gain value

improvements in technology or price and are still not in the mainstream Thermal Energy Storage. These technologies have not experienced significant

Mapping DR Options to NIPSCO Customers

customers. From the utility perspective, each of the different program types can be called with For this study, four DR options were considered, including two options for the interruptible tariff. The objective of these options is to realize demand reductions from eligible customers during the highest many different conditions. different notification time. Having a mix of programs provides load reduction that can be called under using different load reduction and incentive strategies designed to target different types of load hours of the summer as defined by the utility. Each program type provides demand response

NIPSCO has two existing demand response programs-- an Interruptible Load Tariff and a Third Party Curtailment program. The DLC CAC, their AC-Cycling Program, just concluded in 2015.

tariff, briefly indicates the load control mechanism, and the associated reliability. Table 7-4 shows the eligible customer classes for each DR option, the corresponding NIPSCO

DR Drogram Eligible Customer Classes		
	isses Mechanism	Reliability
Central Air Conditioner Cycling Direct Load Control (DLC)	DLC Switch for Central Cooling Equipment	firm
Water Heater Cycling Direct Load Control (DLC) Residential, Small and Medium C&I	DLC Switch for Water Heating Equipment	firm
Interruptible Load Tariffs	Customer enacts their customized, mandatory curtailment plan. Penalties apply for non- performance.	firm
Interruptible Load Tariffs with Third Party Aggregator	Customer enacts their customized, mandatory curtailment plan. Penalties apply for non- performance. Typically managed as a portfolio by third party contractor.	firm

Table 7-4 List of DR Options

Table 7-5 shows notification times typically associated with the DR options

Table 7-5 Typical Notification Times for DR Options

		Notificati	Notification Timing	
DR Option	Day-ahead	Two to four hours	30 minutes to one hour	Instantaneous to 10 min
Direct Load Control				×
Firm Curtailment Agreement & Interruptible Load Tariffs	×	×	X	

Program Participation Hierarchy

curtailment program run by aggregators, both of which could target the same load for curtailment on the same days. ensure that customers do not participate in mutually exclusive programs at the same time. For example, large C&I customers cannot participate in the load curtailment program and a To avoid double counting of load reduction impacts, program-eligibility criteria were defined to

Table 7-6 shows the participation hierarchy by customer class for applicable DR options

Customer Class Priori	Priority / Loading	DR Programs	Eligible Customers
Residential, Small C&I, Medium C&I option	First and only option	Direct Load Control	Residential customers with eligible equipment Small and Medium C&I customers with eligible equipment
First	t	Interruptible Load Tariffs	All Large C&I Customers
Extra Large C&I Sec	Second	Third Party Aggregator	All Large C&I Customers not enrolled in Interruptible Load Tariffs

Table 7-6 Participation Hierarchy in DR options by Customer Segment

DR Program Key Assumptions

participation levels, per-customer load reduction, and program costs The next step is to develop the key data elements for the potential calculations: customer

Program Participation Rates

states within the region. was developed by taking the 50th percentile of existing program performance of programs in also developed by calibrating to 2014 program performance. Participation for other programs overall impacts were calibrated to 2014 actual program performance. Residential DLC A/C was demographically comparable to northern Indiana. Interruptible Load Tariff participation and programs and the performance of similar programs within states geographically and Program participation were developed based on a combination of existing or past NIPSCO DR

education, marketing and recruitment, in addition to the physical implementation and installation is assumed that programs ramp up over to five years, typical of industry experience New DR programs need time to ramp up and reach a steady state. During ramp up, customer of any hardware, software, telemetry, or other equipment required, takes place. For NIPSCO, it

performance for the tariff. customer class. All programs, except the Interruptible Load Tariff for the extra large C&I segment, are to begin 2017. The Interruptible Load Tariff begins in 2016 to capture the existing Table 7-7 shows the participation assumptions for the potential scenarios in DR options by

(percent of eli	(percent of eligible customers)						
Customer Class	Option	Start Year	Yr 1	Yr 2	Yr 3	Yr 4	Yrs 5-19
Residential	DLC Central AC	2017	11.9%	13.9%	15.9%	18.0%	20.0%
Small C&I	DLC Central AC	2017	1.30%	2.20%	3.10%	4.10%	5.00%
Medium C&I	DLC Central AC	2017	1.30%	2.20%	3.10%	4.10%	5.00%
Residential	DLC Water Heating	2017	2.10%	3.70%	5.30%	6.90%	8.50%
Small C&I	DLC Water Heating	2017	0.80%	1.40%	2.00%	2.60%	3.20%
Medium C&I	DLC Water Heating	2017	0.80%	1.40%	2.00%	2.60%	3.20%
Large C&I	Interruptible Load Tariffs	2017	4.20%	7.30%	10.40%	13.50%	16.60%
Extra Large C&I	Interruptible Load Tariffs	2016	48.50%	49.10%	49.70%	50.40%	51.00%
Large C&I	Third Party Aggregator	2017	4.20%	7.30%	10.40%	13.50%	16.60%
Extra Large C&I	Third Party Aggregator	2017	4.20%	7.30%	10.40%	13.50%	16.60%

Table 7-7 Achievable Potential Participation Rates by Option and Customer Class

Load Reduction Impacts

the per-customer load reductions used for estimating the potential existing/past program performance from programs in states within the region. Table 7-8 presents An average of the curtailed load was compared to the extra large segment's peak contribution. new programs. Interruptible Load Tariff impact was sourced from actual program performance. on program performance for current or past NIPSCO programs and on secondary research for performance. The remaining program impacts were developed by taking an average of A/C, participation was sourced from NIPSCO, and adjusted to match previous program The percentage was scaled to match current program performance. For Residential DLC Central provides the potential demand savings estimate. Load reduction impact assumptions are based The per-customer load reduction, multiplied by the total number of participating customers,

Customer Class	Option	Data Element	Unit	Value
Large C&I	Interruptible Load Tariffs	Interruptible Load Tariffs Per Customer Peak Reduction (%)	% of Peak	18%
Extra Large C&I	Interruptible Load Tariffs	Per Customer Peak Reduction (%)	% of Peak	56%
Large C&I	Third Party Aggregator	Per Customer Peak Reduction (%)	% of Peak	18%
Extra Large C&I	Third Party Aggregator	Per Customer Peak Reduction (%)	% of Peak	18%
Residential	DLC Central AC	Per Customer Peak Reduction (kW)	kW	0.62
Small C&I	DLC Central AC	Per Customer Peak Reduction (kW)	kW	3.1
Medium C&I	DLC Central AC	Per Customer Peak Reduction (kW)	kW	3.1
Residential	DLC Water Heating	Per Customer Peak Reduction (kW)	kW	0.9
Small C&I	DLC Water Heating	Per Customer Peak Reduction (kW)	kW	2.7
Medium C&I	DLC Water Heating	Per Customer Peak Reduction (kW)	kW	2.7

Table 7-8 Per-Unit Load Reduction by Option and Customer Class

Program Costs

based on actual AEG program implementation experience, experience in developing program based on actual program costs from existing or past NIPSCO programs and, for new programs, purchase and installation, annual O&M costs, and participant incentives. These assumptions are program administration costs, marketing and recruitment costs, enabling technology costs for Program costs include fixed and variable cost elements: program development costs, annual

costs for other similar studies, and secondary research. The assumptions are detailed in the following tables.

Table 1-7 Nesidelilla	ו שוופרו בטמו		Table 7-7 Residential bilect Load control (A/C and Water nearing) Frogram cost Assumptions
ltem	Unit	Value	Basis for Assumption
Program Development Cost	\$/program	80,000	Assumed 2 FTEs to develop the program at an annual FTE cost of \$80,000. That number is divided among the A\C and Water Heating DLC programs for the Residential sector.
Program Administration Cost	\$/MW	5,000	Assumed an annual program administration cost of \$5/kW-yr, based on program implementation experience.
Annual Marketing and Recruitment Costs	\$/new participant	45	Initially assumed a one-time \$40 payment to the customer for enrolling in the program, plus \$50 per customer for marketing costs. Reduced in half, to reflect current NIPSCO spending (Ref: Review of utility program incentives, TVA Potential Study; Global Energy Partners, 2011)
Cost of Equip + Install for CAC	\$/new participant	140	Assumes \$60 capital cost for switch, plus \$80 installation cost (Ref: PacifiCorp DSM Potential Study, 2013)
Cost of Equip + Install for Space Heating & Water Heating Control	\$/new participant	100	Assumes \$60 capital cost for switch, plus \$40 installation cost (Ref: PacifiCorp DSM Potential Study, 2013)
Annual O&M cost	\$/MW	5.00	Assumed the annual O&M cost to be 3.5% of the control equipment cost.
Per participant annual incentive for CAC	\$/participan t/yr.	40	NIPSCO's AC Cycling - \$10/month incentive for AC, for 4 summer months (June-September)
Per participant annual incentive for Space Heating & Water Heating t/yr. control	\$/participan t/yr.	40	Assumed to be the same as Central A/C incentive

Table 7-9 Residential Direct Load Control (A/C and Water Heating) Program Cost Assumptions

CAC Cost Cost Per participant annual Per participant annual Space Heating & Water Recruitment Costs Annual Marketing and **Program Administration** Program Development incentive for Space & incentive for CAC Annual O&M cost Heating Control Cost of Equip + Install for Cost of Equip + Install for Item \$/technology \$/new \$/participant/yr. \$/participant/yr. \$/technology participant \$/MW-yr \$/program \$/participant/yr. Unit 10,000 Value ъ 140 155 100 ,000 40 40 15 which is split equally across the four customer classes and Assumed to be the same as Residential Assumed to be the same equipment cost. Assumed the annual O&M cost to be about 10% of the control (Ref: PacifiCorp DSM Potential Study, 2013) Assumed \$60 capital cost for switch, plus \$40 installation cost (Ref: PacifiCorp DSM Potential Study, 2013) Assumed \$60 capital cost for switch, plus \$80 installation cost double the amount paid to residential customers. residential customers. Also, at sign-up, customers are paid customers is assumed to be 50% higher compared to costs. Per customer marketing costs for small commercial enrolling in the program, plus \$75 per customer marketing Assumed a one-time \$80 payment to the customer for based on program implementation experience Assumed an annual program administration cost of \$5/kW-yr, programs, which assumes most of the development costs. programs. This cost is in addition to the Residential DLC Assumed an additional \$40,000 to run the C&I DLC programs, **Basis for Assumption** as Residential.

Water Heating control

Table 7-10 C&I Direct Load Control Program Cost Assumptions

Table 7-11 C&I Interruptible Load Tariff Cost Assumptions

ltem	Unit	Value	Basis for Assumption
Program Development Cost	\$/program	50,000	Assumed that 1 FTE (@\$100,000 annual cost) is required to develop interruptible tariffs. Assumed that this cost is equally split between the two customer classes.
Program Administration Cost	\$/MW-yr	15,000	Assumed an annual program administration cost of \$15/kW- yr. (Ref-TVA Potential Study, 2011; KCPL Potential Study, 2013). The administrative costs for Interruptible Load Tariffs are likely to be higher as compared to that for DLC option, due to paperwork associated with customer contracts and participation agreements, settlement, etc.
Annual Marketing and Recruitment Costs	\$/new participant/ year	L: 200 XL: 250	Scaled up from initial assumption of \$50 per participant, to reflect current NIPSCO spending.
Per kW Annual Incentive (Curtailment Agreement)	\$/kW/year	102	Average of the two options provided in the current Interruptible Load Tariff. \$8 and \$9 per month incentive.
Per kWh Annual Incentive (Curtailment Agreement) \$/kWh/year	\$/kWh/year	.005	Average of each incentive offered to the different rate codes within the tariff.

Table 7-12 C&I Third Party Aggregator Program Cost Assumptions

rapie /-12 cort tillio Faity Aggregator Frogram cost Assumptions	ai ty Ayyi e	galor Flog	Tani Cust Assuniptions
Item	Unit	Value	Basis for Assumption
Program Development Cost	\$/program	50,000	Assumed that 1 FTE (@\$100,000 annual cost) is required to develop interruptible tariffs. Assumed that this cost is equally split between the two customer classes (Med/Large C&I and Large C&I)
Program Administration Cost	\$/MW-yr	15,000	Assumed an annual program administration cost of \$15/kW- yr. (Ref-TVA Potential Study, 2011; KCPL Potential Study, 2013). The administrative costs for Interruptible Load Tariffs are likely to be higher as compared to that for DLC option, due to paperwork associated with customer contracts and participation agreements, settlement, etc.
Annual Marketing and Recruitment Costs	\$/new participant/ year	L: 200 XL: 250	Reflects current NIPSCO spending.
Per kW Annual Incentive (Curtailment Agreement) \$/kW/year	\$/kW/year	50	KCP&L Demand Side Resource Potential Study, 2013; TVA Potential Study, 2011
Per kWh Annual Incentive (Curtailment Agreement)	\$/kWh/year	.03	Based on Locational Marginal Pricing data for MISO.

Cost Effectiveness Assessment

marketing and recruitment costs, enabling technology costs for purchase and installation, annual costs are made up of program development costs, annual program administration costs, events, the analysis does not consider any energy impacts or benefits. As mentioned above, the as customer pre-cooling or "snapback" that commonly increases energy usage before or after DR discount rate and line losses. Given the small number of hours impacted by DR programs, as well O&M costs, and participant incentives. The DR options are assessed based upon the TRC test utilizing NIPSCO-specific avoided costs,

until the first cost-effective year is identified. Demand savings for a particular option are The cost-effectiveness of individual DR options are assessed with different program-start years

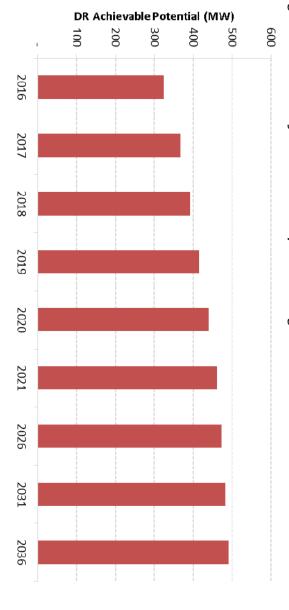
study time period. to-cost ratios were estimated for each contiguous program cycle independently throughout the therefore realized only in years the option is cost-effective. Once an option is deployed, benefit-

are shown in the Cost Benefit Analysis section at the end of the chapter A more detailed cost effectiveness for program design was performed in DSMore by MMP, but initial estimates in AEG models indicate all benefit/cost ratios are above 1.00. The DSMore results

Program Lifetime

contract term of three to five years. presents lifetime assumptions by DR option. Third Party Aggregator options often have a Calculation of cost effectiveness requires an assumption about DR program lifetimes. Table 7-13

Table 7-13 DR Program Life Assumptions


10	Third Party Aggregator
ω	Interruptible Load Tariffs
10	Direct Load Control
Lifetime (Years)	DR Option

Demand Response Potential Results

case is broken down by DR option and customer class are cost-effective during the time horizon of the study for the achievable scenario. The potential programs, which drives the large amount of cumulative potential. All impacts are presented at the generator with residential line losses at 2.41% and C&I line losses at 4.11%. All programs important to note that the potential savings include savings from existing or past NIPSCO In this section, the potential savings are presented for cost-effective DR programs only. It is

Summary of Potential Savings

effective DR options for all levels of potential and all scenarios for the summer season. Demand response peak savings range from 323.5 MW in 2016 to 526.6 MW in 2036 within the Achievable Figure 7-1, and Table 7-14 present the aggregate demand response potential from all costrespectively. Potential case, which translates into 10.4% to 15.4% of NIPSCO's system peak reduction,

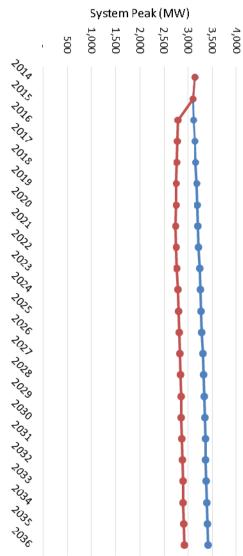


Table 7-14 Summary of Demand Response Savings	nana k	espons	e savir	igs					
	2016	2017	2018	2019	2020	2021	2026	2031	2036
System Peak Projection (MW)	3,118	3,145	3,118 3,145 3,160 3,176 3,192 3,207 3,289 3,356 3,412	3,176	3,192	3,207	3,289	3,356	3,412
lncremental Achievable Potential (MW)	-	44	24	24	25	20	12	10	8
Cumulative Achievable Potential (MW)	323.5*	367	392	416	441	461	473	483	491
Cumulative Potential(% of System Peak)	10.4%	11.7%	10.4% 11.7% 12.4% 13.1% 13.8% 14.4% 14.4% 14.4% 14.4%	13.1%	13.8%	14.4%	14.4%	14.4%	14.4%

Table 7-14 Summary of Demand Response Savin

* Initial DR impacts of 323.5 MW are due to continuation of existing curtailment agreement programs with large C&I customers. These are not considered new savings, so incremental potential in 2016 is zero.

2017. Figure 7-2 presents a comparison between the baseline projection and the achievable potential scenario. The large jump between 2015 and 2016 is due to the program start year. Interruptible Load Tariffs in 2016 are a continuation of the existing program, while new programs begin in

Figure 7-2 Achievable Potential vs. Baseline Projection

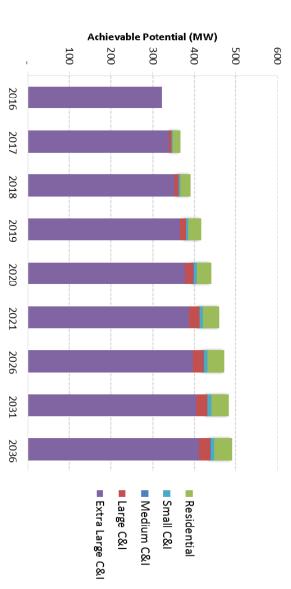

Potential Estimates by Option

Achievable potential reaches 527 MW in 2036, equal to reducing NIPSCO's forecast by 14.4%

- Top contributors are Interruptible Load Tariffs, and the DLC programs
- customers on the existing tariff Interruptible Load Tariffs have the largest impacts, driven by large, unique industrial

•

Figure 7-3 and Table 7-15 show savings by DR option for Achievable Potential.


Table 7-15 Achievable Potential by DR Option

14.4%	14.4%	14.4%	14.4%	13.8%	13.1%	12.4%	11.7%	10.4%	Total Potential
1.5%	1.5%	1.5%	1.5%	1.2%	1.0%	0.7%	0.4%	0.0%	Third Party Aggregator
11.3%	11.3%	11.3%	11.3%	11.2%	11.0%	10.8%	10.6%	10.4%	Interruptible Load Tariffs
0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.2%	0.1%	0.0%	DLC Water Heating
1.1%	1.1%	1.1%	1.1%	1.0%	0.8%	0.7%	0.6%	0.0%	DLC Central AC
								[:] Peak)	Achievable Potential (% of Peak)
490.9	482.7	473.0	461.3	440.8	416.1	391.7	367.5	323.5	Total Potential
52.3	51.5	50.4	49.2	39.8	30.4	21.2	12.1	1	Third Party Aggregator
385.9	379.6	372.0	362.8	358.7	350.2	341.9	333.6	323.5	Interruptible Load Tariffs
14.9	14.7	14.3	14.0	11.3	8.7	6.0	3.4	I	DLC Water Heating
37.7	37.0	36.2	35.3	31.0	26.7	22.5	18.4	1	DLC Central AC
)	Achievable Potential (MW)
3,412	3,356	3,289	3,207	3,192	3,176	3,160	3,145	3,118	Weather Sensitive Peak (MW)
2036	2031	2026	2021	2020	2019	2018	2017	2016	

Potential Estimates by Class

DR potential by customer class is shown in Figure 7-4 and Table 7-16 for Achievable Potential. Key observations are:

- Extra Large C&I dominate the potential savings through the existing Interruptible Load Tariff.
- online. Residential begins to contribute to the peak reduction in 2017 when the DLC programs come

Figure 7-4 Achievable Potential by Class

Table 7-16 Achievable Potential by DR Class

2017	2018	2019	2020	2021	2026	2031	2036
3,118 3,145	3,160	3,176	3,192	3,207	3,289	3,356	3,412
19.6	24.7	29.9	35.2	40.5	41.5	42.4	43.1
- 2.0	3.6	5.1	6.7	8.3	8.5	8.7	9.0
- 0.1	0.2	0.3	0.4	0.5	0.5	0.5	0.5
6.1	10.8	15.5	20.2	25.0	25.6	26.1	26.6
339.6	352.3	365.2	378.3	387.0	396.8	404.9	411.7
367.5	391.7	416.1	440.8	461.3	473.0	482.7	490.9
Achievable Potential (% of Peak)							
0.0% 0.62%	0.78%	0.94%	1.10%	1.26%	1.26%	1.26%	1.26%
0.0% 0.06%	0.11%	0.16%	0.21%	0.26%	0.26%	0.26%	0.26%
0.0% 0.00%	0.01%	0.01%	0.01%	0.02%	0.02%	0.02%	0.02%
0.0% 0.19%	0.34%	0.49%	0.63%	0.78%	0.78%	0.78%	0.78%
10.4% 10.8%	11.2%	11.5%	11.9%	12.1%	12.1%	12.1%	12.1%
	0.19% 10.8%		0.34% 11.2%	0.34% 0.49% 11.2% 11.5%	0.34% 0.49% 0.63% 11.2% 11.5% 11.9%	0.34% 0.49% 0.63% 0.78% 11.2% 11.5% 11.9% 12.1%	0.34% 0.49% 0.63% 0.78% 0.78% 11.2% 11.5% 11.9% 12.1% 12.1%

Potential DR Program Costs

Total Potential

10.4%

11.7%

12.4%

13.1%

13.8%

14.4%

14.4%

14.4%

14.4%

potential scenario along with 2036 DR potential for reference: Table 7-17 and Figure 7-5present program cost estimates from several perspectives for both

- million over 2016-2036, delivering 491 MW savings in 2036. Cumulative program costs for the achievable portfolio of DR options is approximately \$1,372
- Average program costs for 2016-2036 for NIPSCO to achieve this level of savings are estimated to be \$68 million per year.
- from \$84/kW-year to \$112/kW-year. Levelized costs over the 2016-2036 timeframe for the entire portfolio are estimated to range

year. Largest contributor to peak reduction, Interruptible Load Tariffs, costs are around \$122 /kW-

•

- throughout the year such that it produces greater system benefits. The analysis assumed 120 hours based on the current program events. The Interruptible program is more costly per kW, but is called for more hours
- 2. All other programs assumed 60 event hours.

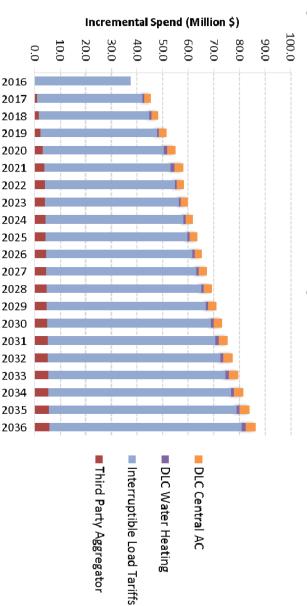

I	68.6	1,372.5	490.9	Total
74.8	4.2	84.5	52.3	Curtailment Agreements
121.8	60.0	1,199.5	385.9	Interruptible Load Tariffs
84.4	1.0	20.4	14.9	DLC Water Heating
112.1	3.4	68.1	37.7	DLC Central AC
(\$/Kw-year)	(Million \$)			
Levelized Cost	Average Spend per Year	Cumulative Utility	2036 MW Potential	DR Option
2016 - 2036	2016 – 2036			

Table 7-17 Achievable Potential Program Costs

re-engage customers and their already-installed switches that had been on NIPSCO's previous AC incorporated into the program. The majority of costs are driven by the interruptible load tariff scenario. The high costs in the beginning of the projection are due to the start-up costs of incremental, new participants are recruited and have switches installed by the program. Cycling program. After 2017, the costs are high for several years in the near term as due to the high incentive. The DLC program's first year of activity in 2017 is assumed to simply launching the programs, these eventually level out and rise slightly as most participants are Table 7-18 and Figure 7-5 show the annual program costs by DR option for the potential

Table 7-10 Achievable Potential Inci entental Program costs	rolein	uai iiic	יכווכוו	airiugi	an cos	51			
	2016	2017	2018	2019	2020	2021	2026	2031	2036
Incremental Spend (Million \$)	e.								
DLC Central AC	I	\$2.6	\$2.6	\$2.9	\$3.3	\$3.7	\$3.0	\$3.5	\$4.0
DLC Water Heating	I	\$0.7	\$0.7	\$0.9	\$1.1	\$1.3	\$1.0	\$1.1	\$1.3
Interruptible Load Tariffs	\$37.4	\$41.2	\$43.2	\$45.4	\$47.6	\$49.3	\$57.0	\$65.6	\$75.1
Curtailment Agreements	I	\$0.9	\$1.6	\$2.3	\$3.0	\$3.8	\$4.4	\$5.1	\$5.8
Total	\$37.4	\$45. 4	\$48.1	\$51. 5	\$5 5 .0	\$58.1	\$65. 4	\$75. 2	\$86.2
Cumulative Spend (Million \$)	•								
DLC Central AC	1	\$2.6	\$5.2	\$8.1	\$11.4	\$15.1	\$29.3	\$45.7	\$64.5
DLC Water Heating	1	\$0.7	\$1.4	\$2.3	\$3.4	\$4.7	\$9.2	\$14.4	\$20.4
Interruptible Load Tariffs	\$37.4	\$78.6	\$121.8	\$167.1	\$214.7	\$264.0	\$533. 1	\$843.5	\$1,199.5
Curtailment Agreements	1	\$0.9	\$2.5	\$4.8	\$7.8	\$11.7	\$32.6	\$56.8	\$84.5
Total	\$37.4	\$82.8	\$130.9	\$182.4	\$237.4	\$295.5	\$604.3	\$960.4	\$1,368.9

Table 7-18 Achievable Potential Incremental Program Costs

Figure 7-5 Annual Achievable Potential Program Costs

Cost Benefit Analysis

appropriate load shapes and rates were applied. Medium C&I, so that appropriate load shapes and rates could be applied. The Interruptible Load efficiency analysis to assure consistency. As described above the inputs for the DR programs basic financial assumptions such as avoided costs and discount rates are the same as the energy Tariffs and Curtailment Agreements were divided into two sizes; Large and Extra Large. Again Water Heating programs were divided into three sizes of customers; Residential, Small C&I, and include the participation, implementation costs, incentives and demand savings. The DLC AC and To complete the cost benefit analysis of the DR programs, DSMore was used for modeling. The

occur during the time of day/year when the avoided cost values are at their highest. are equal to or greater than one meaning they are cost effective. The TRC scores specifically are from 1.24 to 5.1. It is not unusual for these programs to be cost effective as the interruptions Table 1-19 shows the cost benefit scores for the TRC, UCT, Participant and RIM tests. All tests

Table 7-19 Cost Effectiveness Scores for DR Programs	res for DR Pro	grams		
DR Program	TRC Ratio	UCT Ratio	PCT Ratio	RIM Ratio
Residential DLC Central AC	1.77	1.77	1.00	1.77
Small C&I DLC Central AC	5.06	5.06	1.00	5.06
Medium C&IDLC Central AC	4.72	4.72	1.69	3.72
Residential DLC Water Heating	2.23	2.23	1.00	2.23
Small C&IDLC Water Heating	5.10	5.10	1.00	5.10
Medium C&IDLC Water Heating	4.18	4.18	1.61	3.37
Large C&I Interruptible Load Tariffs	1.25	1.25	1.04	1.21
Extra Large C&I Interruptible Load Tariffs	1.24	1.24	1.00	1.24
Large C&I Curtailment Agreements	2.17	2.17	1.08	2.06
Extra Large C&I Curtailment Agreements	2.22	2.22	1.00	2.22

Table 7-19 Cost Effectiveness Scores for DR Programs

TRC and RIM will be equal. for the energy portion of the bill. For smaller customers with no demand charges, this means the being equivalent to the period without interruption. Thus there is no lost revenue to the utility costs to participate by the customer. This is the more conservative assumption on incentives for It should be noted that the TRC and UCT values are the same since incentives are considered a utility cost and not a transfer payment. This is due to the unknown nature of the incremental "rebound" or recovery period before or after the interruption resulting in the total kWh sales the TRC and UCT tests. Also it is assumed that the measures interrupted will have a complete

NIPSCO 2018 IRP AttachApptdax Page 105 Miscellaneous

Miscellaneous Miscellaneous

Total

Miscellaneous

100.0%

9,747 416 213

2,002.8

85.4 43.8

34.4% 11.9%75.7% 5.3%

619 416

561 740

Dehumidifiers Well pump Furnace Fan Hot Tub / Spa Pool Heater Pool Pump

Miscellaneous

Miscellaneous Miscellaneous Electronics Electronics Electronics

Set-top Boxes/DVR

318.8%

103.1%

61

12.5

100.0%

107 11159

107 354

72.8 21.9

 3

4

0.8 6.4

2.3% 0.3%

2,034 1,370 1,363

560 108

115.1

22.1

67

13.8

Printer/Fax/Copier

Devices and Gadgets

Miscellaneous

Applied Energy Group, Inc.

This appendix presen <i>Table A-1 Residen</i>	This appendix presents the market profiles for each sector and segment. Table A-1 Residential Single Family Electric Market Profile Average Market Profiles - Electricity	each sector ar Sie Market Pro Profiles - Electi	nd segment o <i>file</i>		
End Use	Technology	Saturation	UEC (kWh)	Intensity (kWh/HH)	Usage (GWh)
Cooling	Central AC	62.5%	2,493	1,557	319.9
Cooling	Room AC	33.0%	651	215	44.1
Cooling	Air-Source Heat Pump	1.1%	2,381	25	5.2
Cooling	Geothermal Heat Pump	0.3%	2,329	7	1.5
Space Heating	Electric Zonal Room Heat	1.4%	8,896	123	25.2
Space Heating	Electric Furnace	1.9%	15,124	291	59.7
Space Heating	Air-Source Heat Pump	1.1%	8,420	68	18.3
Space Heating	Geothermal Heat Pump	0.3%	6,516	21	4.2
Water Heating	Water Heater <= 55 Gal	9.4%	3,134	294	60.3
Water Heating	Water Heater > 55 Gal	4.2%	3,313	139	28.5
Interior Lighting	Screw-in	100.0%	847	847	174.1
Interior Lighting	Linear Fluorescent	100.0%	159	159	32.7
Interior Lighting	Specialty	100.0%	297	297	61.1
Exterior Lighting	Screw-in	100.0%	369	369	75.8
Appliances	Clothes Washer	96.4%	87	84	17.2
Appliances	Clothes Dryer	62.8%	785	493	101.3
Appliances	Dishwasher	62.7%	391	245	50.3
Appliances	Refrigerator	100.0%	735	735	150.9
Appliances	Freezer	49.3%	583	288	59.1
Appliances	Second Refrigerator	39.8%	1,036	412	84.6
Appliances	Stove	53.0%	472	250	51.4
Appliances	Microwave	100.0%	128	128	26.2
Electronics	Personal Computers	68.6%	182	125	25.6
Electronics	Monitor	82.5%	77	63	13.0
Electronics	Laptops	154.2%	48	74	15.3
Electronics	TVs	305.0%	163	499	102.4
<u>1</u>			1		

Market Profiles

Table A-

97

Attachingpendix A

Page 106

Table A-2 Residential Multifamily Electric Market Profile Auguran Market Drofiles - Electricit

338.2	5,573			Total	
16.5	271	271	100.0%	Miscellaneous	Miscellaneous
2.5	41	619	6.7%	Dehumidifiers	Miscellaneous
0.0	0	556	0.0%	Well pump	Miscellaneous
16.5	272	405	67.1%	Furnace Fan	Miscellaneous
0.0	0	2,034	0.0%	Hot Tub / Spa	Miscellaneous
0.0	0	1,370	0.0%	Pool Heater	Miscellaneous
0.0	0	1,363	0.0%	Pool Pump	Miscellaneous
6.5	107	107	100.0%	Devices and Gadgets	Electronics
13.0	214	111	192.4%	Set-top Boxes/DVR	Electronics
1.3	22	59	37.5%	Printer/Fax/Copier	Electronics
19.0	313	163	191.3%	TVs	Electronics
3.3	54	48	112.4%	Laptops	Electronics
2.2	37	77	48.0%	Monitor	Electronics
4.4	73	182	39.9%	Personal Computers	Electronics
7.7	127	128	99.3%	Microwave	Appliances
10.0	164	287	57.2%	Stove	Appliances
2.5	42	1,032	4.1%	Second Refrigerator	Appliances
4.1	89	583	11.7%	Freezer	Appliances
44.4	732	732	100.0%	Refrigerator	Appliances
8.6	141	390	36.2%	Dishwasher	Appliances
9.4	154	869	22.1%	Clothes Dryer	Appliances
1.9	31	87	35.9%	Clothes Washer	Appliances
10.6	175	175	100.0%	Screw-in	Exterior Lighting
2.1	34	34	100.0%	Specialty	Interior Lighting
3.0	49	49	100.0%	Linear Fluorescent	Interior Lighting
35.4	584	584	100.0%	Screw-in	Interior Lighting
10.7	177	2,760	6.4%	Water Heater > 55 Gal	Water Heating
13.9	228	2,610	8.8%	Water Heater <= 55 Gal	Water Heating
0.0	0	2,102	0.0%	Geothermal Heat Pump	Space Heating
0.6	10	2,717	0.3%	Air-Source Heat Pump	Space Heating
20.2	333	4,987	6.7%	Electric Furnace	Space Heating
14.6	241	3,422	7.0%	Electric Zonal Room Heat	Space Heating
0.0	0	882	0.0%	Geothermal Heat Pump	Cooling
0.2	ω	902	0.3%	Air-Source Heat Pump	Cooling
29.5	486	987	49.2%	Room AC	Cooling
23.7	391	902	43.3%	Central AC	Cooling
(GWh)	(kWh/HH)	(kWh)	Saturation	Technology	End Use
		ricity	Profiles - Electi	Average Market Profiles - Electricity	

Table A-3 Residential Mobile Home Electric Market Profile **Average Market Profiles - Electricity**

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155 56 106 1,295 1,301 1,932 692 428 588 219	0.0% 8.7% 100.0%	Miscellaneous	Miscellaneous
	155 56 106 1,295 1,301 1,932 692 428 588	0.0% 8.7%	Denuminiers	
	155 56 106 1,295 1,301 1,932 692 428	0.0%		Miscellaneous
	155 56 106 1,295 1,301 1,932 692		Well pump	Miscellaneous
	155 56 106 1,295 1,301 1,932	63.0%	Furnace Fan	Miscellaneous
	155 56 106 1,295 1,301	4.3%	Hot Tub / Spa	Miscellaneous
	155 56 106 101 1,295	0.0%	Pool Heater	Miscellaneous
	155 56 106 101	0.0%	Pool Pump	Miscellaneous
	155 56 106	100.0%	Devices and Gadgets	Electronics
	155 56	245.9%	Set-top Boxes/DVR	Electronics
	5 CT	27.1%	Printer/Fax/Copier	Electronics
	1	234.2%	TVs	Electronics
	46	72.0%	Laptops	Electronics
	73	41.9%	Monitor	Electronics
	173	34.8%	Personal Computers	Electronics
	121	100.0%	Microwave	Appliances
	509	24.8%	Stove	Appliances
	979	17.3%	Second Refrigerator	Appliances
	553	45.7%	Freezer	Appliances
694 4.8	694	100.0%	Refrigerator	Appliances
88 0.6	362	24.3%	Dishwasher	Appliances
499 3.4	626	79.7%	Clothes Dryer	Appliances
82 0.6	82	100.0%	Clothes Washer	Appliances
235 1.6	235	100.0%	Screw-in	Exterior Lighting
117 0.8	117	100.0%	Specialty	Interior Lighting
101 0.7	101	100.0%	Linear Fluorescent	Interior Lighting
617 4.3	617	100.0%	Screw-in	Interior Lighting
164 1.1	2,203	7.4%	Water Heater > 55 Gal	Water Heating
346 2.4	2,084	16.6%	Water Heater <= 55 Gal	Water Heating
0 0.0	3,804	0.0%	Geothermal Heat Pump	Space Heating
0 0.0	5,755	0.0%	Air-Source Heat Pump	Space Heating
527 3.6	10,603	5.0%	Electric Furnace	Space Heating
155 1.1	6,237	2.5%	Electric Zonal Room Heat	Space Heating
0 0.0	1,689	0.0%	Geothermal Heat Pump	Cooling
0 0.0	1,919	0.0%	Air-Source Heat Pump	Cooling
104 0.7	532	19.6%	Room AC	Cooling
609 4.2	1,919	31.8%	Central AC	Cooling
Intensity Usage (kWh/HH) (GWh)	UEC Inte (kWh) (kW	Saturation	Technology	End Use

Table A-4 Residential Low Income Electric Market Profile

	C 1 L			Total	
39.2	303	303	100.0%	Miscellaneous	Miscellaneous
12.8	66	650	15.3%	Dehumidifiers	Miscellaneous
4.3	33	575	5.8%	Well pump	Miscellaneous
57.8	447	630	70.9%	Furnace Fan	Miscellaneous
6.2	48	2,136	2.3%	Hot Tub / Spa	Miscellaneous
0.0	0	1,438	0.0%	Pool Heater	Miscellaneous
0.0	0	1,431	0.0%	Pool Pump	Miscellaneous
14.5	112	112	100.0%	Devices and Gadgets	Electronics
29.3	227	117	194.4%	Set-top Boxes/DVR	Electronics
4.1	32	62	51.3%	Printer/Fax/Copier	Electronics
41.8	323	172	188.2%	TVs	Electronics
6.3	49	51	96.5%	Laptops	Electronics
5.0	39	81	48.1%	Monitor	Electronics
9.9	76	191	40.0%	Personal Computers	Electronics
17.3	134	134	99.7%	Microwave	Appliances
28.3	219	422	51.9%	Stove	Appliances
23.9	185	1,085	17.1%	Second Refrigerator	Appliances
19.8	153	612	25.1%	Freezer	Appliances
99.5	770	770	100.0%	Refrigerator	Appliances
19.0	147	409	35.9%	Dishwasher	Appliances
35.8	277	774	35.7%	Clothes Dryer	Appliances
6.4	49	91	53.8%	Clothes Washer	Appliances
35.6	275	275	100.0%	Screw-in	Exterior Lighting
29.6	229	229	100.0%	Specialty	Interior Lighting
13.9	108	108	100.0%	Linear Fluorescent	Interior Lighting
84.5	653	653	100.0%	Screw-in	Interior Lighting
28.7	222	3,134	7.1%	Water Heater > 55 Gal	Water Heating
59.6	461	2,965	15.5%	Water Heater <= 55 Gal	Water Heating
0.0	0	4,741	0.0%	Geothermal Heat Pump	Space Heating
23.8	184	6,236	3.0%	Air-Source Heat Pump	Space Heating
61.2	474	11,283	4.2%	Electric Furnace	Space Heating
33.9	262	6,849	3.8%	Electric Zonal Room Heat	Space Heating
0.0	0	2,017	0.0%	Geothermal Heat Pump	Cooling
8.0	62	2,091	3.0%	Air-Source Heat Pump	Cooling
65.4	506	879	57.6%	Room AC	Cooling
71.8	556	2,158	25.7%	Central AC	Cooling
Usage (GWh)	Intensity (kWh/HH)	(kWh)	Saturation	Technology	End Use
		icity	Profiles - Electr	Average Market Profiles - Electricity	

Table A-5 Small Commercial Electric Market Profile

3696.8	11.67				Total
288.03	0.91	0.91	100.0%	Other	Miscellaneous
0.2	0.00	0.03	1.7%	Pool Heater	Miscellaneous
0.3	0.00	0.02	3.8%	Pool Pump	Miscellaneous
10.5	0.03	0.15	22.0%	Non-HVAC Motors	Miscellaneous
12.0	0.04	0.05	81.9%	POS Terminal	Office Equipment
25.6	0.08	0.08	100.0%	Printer/Copier/Fax	Office Equipment
33.0	0.10	0.10	100.0%	Monitor	Office Equipment
55.0	0.17	0.17	100.0%	Server	Office Equipment
28.9	0.09	0.09	100.0%	Laptop	Office Equipment
187.0	0.59	0.59	100.0%	Desktop Computer	Office Equipment
0.8	0.00	0.02	14.6%	Hot Food Container	Food Preparation
4.1	0.01	0.09	14.6%	Steamer	Food Preparation
5.6	0.02	0.12	14.6%	Dishwasher	Food Preparation
10.0	0.03	0.08	39.0%	Griddle	Food Preparation
12.3	0.04	0.09	43.9%	Fryer	Food Preparation
7.4	0.02	0.06	37.9%	Oven	Food Preparation
5.5	0.02	0.05	35.5%	Vending Machine	Refrigeration
11.8	0.04	0.11	35.5%	Icemaker	Refrigeration
42.8	0.13	0.38	35.5%	Open Display Case	Refrigeration
7.2	0.02	0.06	35.5%	Glass Door Display	Refrigeration
8.9	0.03	0.06	44.9%	Reach-in Refrigerator	Refrigeration
10.1	0.03	0.28	11.5%	Walk-in Refrigerator	Refrigeration
36.6	0.12	0.12	100.0%	Linear Fluorescent	Exterior Lighting
334.5	1.06	1.06	100.0%	HID	Exterior Lighting
56.4	0.18	0.18	100.0%	Screw-in	Exterior Lighting
613.0	1.93	1.93	100.0%	Linear Fluorescent	Interior Lighting
271.4	0.86	0.86	100.0%	High-Bay Fixtures	Interior Lighting
160.2	0.51	0.51	100.0%	Screw-in	Interior Lighting
91.9	0.29	0.69	42.3%	Water Heater	Water Heating
278.6	0.88	0.88	100.0%	Ventilation	Ventilation
6.2	0.02	2.42	0.8%	Geothermal Heat Pump	Heating
11.3	0.04	3.84	0.9%	Air-Source Heat Pump	Heating
49.1	0.16	4.47	3.5%	Electric Room Heat	Heating
153.5	0.48	4.69	10.3%	Electric Furnace	Heating
6.2	0.02	2.42	0.8%	Geothermal Heat Pump	Cooling
11.7	0.04	3.97	0.9%	Air-Source Heat Pump	Cooling
47.6	0.15	4.05	3.7%	Room AC	Cooling
690.8	2.18	3.97	55.0%	RTU	Cooling
65.2	0.21	3.51	5.9%	Water-Cooled Chiller	Cooling
45.4	0.14	3.22	4.4%	Air-Cooled Chiller	Cooling
(GWh)	(kWh/Sqft)	(kWh)	Saturation	Technology	End Use
	Intensity	Ξ			

Table A-6 Large Commercial Electric Market Profile

	AVEI ABE	Average Ividi Net Florines			
End Use	Technology	Saturation	EUI (kWh)	Intensity (kWh/Saft)	Usage (GWh)
Cooling	Air-Cooled Chiller	9.1%	4.92	0.45	
Cooling	Water-Cooled Chiller	48.4%	5.36	2.59	1.1
Cooling	RTU	23.6%	6.06	1.43	0.6
Cooling	Room AC	0.0%	6.19	0.00	0.0
Cooling	Air-Source Heat Pump	3.4%	6.06	0.20	0.1
Cooling	Geothermal Heat Pump	0.0%	3.69	0.00	0.0
Heating	Electric Furnace	3.2%	5.84	0.19	0.1
Heating	Electric Room Heat	6.7%	5.56	0.37	0.2
Heating	Air-Source Heat Pump	3.4%	5.36	0.18	0.1
Heating	Geothermal Heat Pump	0.0%	4.40	0.00	0.0
Ventilation	Ventilation	100.0%	3.24	3.24	1.4
Water Heating	Water Heater	46.9%	1.08	0.51	0.2
Interior Lighting	Screw-in	100.0%	0.48	0.48	0.2
Interior Lighting	High-Bay Fixtures	100.0%	0.79	0.79	0.3
Interior Lighting	Linear Fluorescent	100.0%	2.14	2.14	0.9
Exterior Lighting	Screw-in	100.0%	0.16	0.16	0.1
Exterior Lighting	HID	100.0%	1.01	1.01	0.4
Exterior Lighting	Linear Fluorescent	100.0%	0.12	0.12	0.1
Refrigeration	Walk-in Refrigerator	52.0%	0.27	0.14	0.1
Refrigeration	Reach-in Refrigerator	99.7%	0.06	0.06	0.0
Refrigeration	Glass Door Display	77.4%	0.06	0.05	0.0
Refrigeration	Open Display Case	77.4%	0.37	0.29	0.1
Refrigeration	Icemaker	44.9%	0.10	0.05	0.0
Refrigeration	Vending Machine	44.9%	0.10	0.04	0.0
Food Preparation	Oven	66.0%	0.08	0.05	0.0
Food Preparation	Fryer	76.4%	0.11	0.09	0.0
Food Preparation	Griddle	67.9%	0.10	0.07	0.0
Food Preparation	Dishwasher	25.4%	0.15	0.04	0.0
Food Preparation	Steamer	25.4%	0.11	0.03	0.0
Food Preparation	Hot Food Container	25.4%	0.02	0.01	0.0
Office Equipment	Desktop Computer	100.0%	1.64	1.64	0.7
Office Equipment	Laptop	100.0%	0.25	0.25	0.1
Office Equipment	Server	100.0%	0.16	0.16	0.1
Office Equipment	Monitor	100.0%	0.29	0.29	0.1
Office Equipment	Printer/Copier/Fax	100.0%	0.15	0.15	0.1
Office Equipment	POS Terminal	35.5%	0.02	0.01	0.0
Miscellaneous	Non-HVAC Motors	89.6%	0.36	0.32	0.1
Miscellaneous	Pool Pump	24.0%	0.05	0.01	0.0
Miscellaneous	Pool Heater	1.9%	0.07	0.00	0.0
Miscellaneous	Other	100.0%	2.08	2.08	0.90

Table A-7 Small Industrial Electric Market Profile

1,779.2	26,377			Total	
101.3	1,501	1,501	100.0%	Miscellaneous	Miscellaneous
4.2	63	63	100.0%	Other Motors	Motors
252.6	3,745	3,745	100.0%	Conveyors	Motors
119.4	1,770	1,770	100.0%	Compressed Air	Motors
147.7	2,190	2,190	100.0%	Fans & Blowers	Motors
123.0	1,823	1,823	100.0%	Pumps	Motors
13.1	194	194	100.0%	Process Other	Process
5.0	73	73	100.0%	Process Electro-Chemical	Process
52.0	771	771	100.0%	Process Refrigeration	Process
52.0	771	771	100.0%	Process Cooling	Process
198.6	2,945	2,945	100.0%	Process Heating	Process
8.9	133	133	100.0%	Linear Fluorescent	Exterior Lighting
43.7	647	647	100.0%	HID	Exterior Lighting
2.3	34	34	100.0%	Screw-in	Exterior Lighting
33.7	500	500	100.0%	Linear Fluorescent	Interior Lighting
207.0	3,068	3,068	100.0%	High-Bay Fixtures	Interior Lighting
11.6	172	172	100.0%	Screw-in	Interior Lighting
82.2	1,219	1,219	100.0%	Ventilation	Ventilation
1.8	27	3,361	0.8%	Geothermal Heat Pump	Heating
3. 3	49	5,319	0.9%	Air-Source Heat Pump	Heating
14.5	215	6,198	3.5%	Electric Room Heat	Heating
45.3	672	6,508	10.3%	Electric Furnace	Heating
1.8	27	3,350	0.8%	Geothermal Heat Pump	Cooling
3.4	51	5,497	0.9%	Air-Source Heat Pump	Cooling
14.1	208	5,617	3.7%	Room AC	Cooling
203.9	3,022	5,497	55.0%	RTU	Cooling
19.2	285	4,866	5.9%	Water-Cooled Chiller	Cooling
13.4	199	4,466	4.4%	Air-Cooled Chiller	Cooling
Usage (GWh)	Intensity (kWh/Employee)	EUI (kWh)	Saturation	Technology	End Use
		iles	Average Market Profiles	Aver	

Table A-8 Large Industrial Electric Market Profile

				•	
3.7	3,684	3,684	100.0%	Miscellaneous	Miscellaneous
6.3	6,228	6,228	100.0%	Other Motors	Motors
78.1	77,020	77,020	100.0%	Conveyors	Motors
10.2	10,088	10,088	100.0%	Compressed Air	Motors
12.2	12,070	12,070	100.0%	Fans & Blowers	Motors
8.4	8,308	8,308	100.0%	Pumps	Motors
2.1	2,085	2,085	100.0%	Process Other	Process
33.9	33,443	33,443	100.0%	Process Electro-Chemical	Process
3.2	3,156	3,156	100.0%	Process Refrigeration	Process
3.2	3,156	3,156	100.0%	Process Cooling	Process
68.8	67,873	67,873	100.0%	Process Heating	Process
0.3	308	308	100.0%	Linear Fluorescent	Exterior Lighting
1.5	1,502	1,502	100.0%	HID	Exterior Lighting
0.1	79	79	100.0%	Screw-in	Exterior Lighting
1.2	1,160	1,160	100.0%	Linear Fluorescent	Interior Lighting
7.2	7,121	7,121	100.0%	High-Bay Fixtures	Interior Lighting
0.4	399	399	100.0%	Screw-in	Interior Lighting
3.9	3,851	3,851	100.0%	Ventilation	Ventilation
0.0	0	4,248	0.0%	Geothermal Heat Pump	Heating
0.2	214	6,369	3.4%	Air-Source Heat Pump	Heating
0.4	440	6,610	6.7%	Electric Room Heat	Heating
0.2	223	6,941	3.2%	Electric Furnace	Heating
0.0	0	4,802	0.0%	Geothermal Heat Pump	Cooling
0.2	242	7,199	3.4%	Air-Source Heat Pump	Cooling
0.0	0	3,684	0.0%	Room AC	Cooling
1.7	1,701	7,199	23.6%	RTU	Cooling
3.1	3,082	6,372	48.4%	Water-Cooled Chiller	Cooling
0.5	530	5,849	9.1%	Air-Cooled Chiller	Cooling
Usage (GWh)	Intensity (kWh/Employee)	EUI (kWh)	Saturation	Technology	End Use

Market Adoption Rates

This embedded spreadsheet file presents the market adoption rates that were applied to economic potential to estimate achievable potential.

NIPSCO Appendix B Tables 2015.xlsx

Measure Data

Please see measure-level assumptions and details in the file "*NIPSCO Electric Measure Summary* - *All Sectors.xlsx.*"

NIPSCO 2018 IRP AttachApptdax Page 116 Applied Energy Group, Inc. 500 Ygnacio Valley Road, Suite 250 Walnut Creek, CA 94596

> *P:* 510.982.3525 *F:* 925.284.3147

> > AttachApptdaxA Page 117

NIPSCO 2018 IRP Attachment 27 Page 118

Table B-1 Residential Equipment Measures (Achievable Potential Factor)

End Use	Fuel	Technology	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Cooling	Electric	Central AC	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%
Cooling	Electric	Room AC	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45
Cooling	Electric	Air-Source Heat Pump	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45
Cooling	Electric	Geothermal Heat Pump	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45
Heating	Electric	Electric Zonal Heat	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46
Heating	Electric	Electric Furnace	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	469
Heating	Electric	Air-Source Heat Pump	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46
Heating	Electric	Geothermal Heat Pump	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46
Water Heating	Electric	Water Heater <= 55 gal	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	479
Water Heating	Electric	Water Heater > 55 gal	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	479
nterior Lighting	Electric	Screw-in	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	469
nterior Lighting	Electric	Linear Fluorescent	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	469
nterior Lighting	Electric	Specialty	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46
Exterior Lighting	Electric	Screw-in	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	469
Appliances	Electric	Clothes Washer	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	479
Appliances	Electric	Clothes Dryer	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	479
Appliances	Electric	Dishwasher	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	489
Appliances	Electric	Refrigerator	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	489
Appliances	Electric	Freezer	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	489
Appliances	Electric	Second Refrigerator	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	489
Appliances	Electric	Stove / Oven	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	449
Appliances	Electric	Microwave	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	449
Electronics	Electric	Personal Computers	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%
Electronics	Electric	Monitor	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%
Electronics	Electric	Laptops	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	409
Electronics	Electric	TVs	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%
Electronics	Electric	Printer/Fax/Copier	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	409
Electronics	Electric	Set-top Boxes/DVR	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	379
Electronics	Electric	Devices and Gadgets	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	419
Miscellaneous	Electric	Pool Heater	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	38
Miscellaneous	Electric	Pool Pump	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	389
Miscellaneous	Electric	Hot Tub / Spa	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	389
Miscellaneous	Electric	Furnace Fan	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	469
Miscellaneous	Electric	Well Pump	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	389
Miscellaneous	Electric	Dehumidifier	27%	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	369
Miscellaneous	Electric	Miscellaneous	23%	23%	24%	24%	24%	25%	25%	25%	26%	26%	26%	26%	27%	27%	27%	28%	28%	28%	29%	29%	29%

Table B-2 Residential Non-Equipment Measures (Achievable Potential Factor)

Measure	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Insulation - Ceiling	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Insulation - Ducting	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Insulation - Foundation	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Insulation - Infiltration Control	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Insulation - Radiant Barrier	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Insulation - Wall Cavity	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Insulation - Wall Sheathing	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Ducting - Repair and Sealing	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%	40%
Windows - High Efficiency/ENERGY STAR	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%
Windows - Install Reflective Film	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%
Doors - Storm and Thermal	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%
Roofs - High Reflectivity	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%	40%
Attic Fan - Installation	25%	25%	26%	26%	27%	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	33%	33%	33%
Attic Fan - Photovoltaic - Installation	25%	25%	26%	26%	27%	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	33%	33%	33%

NIPSCO 2018 IRP Attachment 27 Page 119

Whole-House Fan - Installation	25%	25%	26%	26%	27%	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	33%	33%	33%
Ceiling Fan - Installation	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Thermostat - Clock/Programmable	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	42%	42%	42%
Home Energy Management System	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	38%	38%
Central AC - Early Replacement	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%
Central AC - Maintenance and Tune-Up	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	43%	43%	43%
Central Heat Pump - Maintenance	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	43%	43%
Room AC - Removal of Second Unit	18%	18%	19%	19%	19%	19%	20%	20%	20%	20%	21%	21%	21%	21%	22%	22%	22%	22%	22%	22%	22%
Water Heater - Drainwater Heat Recovery	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Water Heater - Faucet Aerators	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Water Heater - Low-Flow Showerheads	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Water Heater - Pipe Insulation	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Water Heating - Solar System	20%	21%	21%	22%	22%	23%	23%	24%	24%	25%	25%	26%	26%	27%	27%	28%	28%	29%	29%	29%	29%
Water Heater - Desuperheater	24%	24%	25%	25%	26%	26%	27%	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	33%
Interior Lighting - Occupancy Sensors	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%	37%
Exterior Lighting - Photosensor Control	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%	37%
Exterior Lighting - Photovoltaic Installation	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%	37%
Exterior Lighting - Timeclock Installation	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%	37%
Refrigerator - Early Replacement	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%
Refrigerator - Remove Second Unit	20%	20%	20%	20%	21%	21%	21%	21%	22%	22%	22%	22%	23%	23%	23%	23%	24%	24%	24%	24%	24%
Freezer - Remove Second Unit	20%	20%	20%	20%	21%	21%	21%	21%	22%	22%	22%	22%	23%	23%	23%	23%	24%	24%	24%	24%	24%
Freezer - Early Replacement	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%
Electronics - Smart Power Strips	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%
Pool Pump - Timer	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	38%	38%	38%
Pool Heater - Solar System	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	38%	38%	38%
ENERGY STAR Home Design	18%	18%	19%	19%	20%	20%	21%	21%	22%	22%	23%	23%	24%	24%	25%	25%	26%	26%	27%	27%	27%
Room AC - Early Replacement	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%
Central Heat Pump - Early Replacement	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%
Water Heater - Tank Wrap	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Behavioral Programs	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%	65%

Table B-3 Commercial Equipment Measures (Achievable Potential Factor)

End Use	Fuel	Technology	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Cooling	Electric	Air-Cooled Chiller	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Cooling	Electric	Water-Cooled Chiller	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Cooling	Electric	RTU	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Cooling	Electric	Room AC	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Cooling	Electric	Air-Source Heat Pump	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Cooling	Electric	Geothermal Heat Pump	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Heating	Electric	Electric Furnace	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%
Heating	Electric	Electric Room Heat	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%
Heating	Electric	Air-Source Heat Pump	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Heating	Electric	Geothermal Heat Pump	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%
Ventilation	Electric	Ventilation	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%
Water Heating	Electric	Water Heater	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%
Interior Lighting	Electric	Screw-in	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%
Interior Lighting	Electric	High-Bay Fixtures	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%
Interior Lighting	Electric	Linear Fluorescent	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%
Exterior Lighting	Electric	Screw-in	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%
Exterior Lighting	Electric	HID	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%
Exterior Lighting	Electric	Linear Fluorescent	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%
Refrigeration	Electric	Walk-in Refrigerator	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%
Refrigeration	Electric	Reach-in Refrigerator	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%
Refrigeration	Electric	Glass Door Display	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%
Refrigeration	Electric	Open Display Case	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%

NIPSCO 2018 IRP Attach Appendix B Page 120

Refrigeration	Electric	Icemaker	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%
Refrigeration	Electric	Vending Machine	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%
Food Preparation	Electric	Oven	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%
Food Preparation	Electric	Fryer	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%
Food Preparation	Electric	Griddle	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%
Food Preparation	Electric	Dishwasher	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%
Food Preparation	Electric	Steamer	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%
Food Preparation	Electric	Hot Food Container	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%
Office Equipment	Electric	Desktop Computer	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	47%
Office Equipment	Electric	Laptop	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	47%
Office Equipment	Electric	Server	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%
Office Equipment	Electric	Monitor	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%
Office Equipment	Electric	Printer/Copier/Fax	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	40%
Office Equipment	Electric	POS Terminal	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%
Miscellaneous	Electric	Non-HVAC Motors	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%
Miscellaneous	Electric	Pool Pump	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%
Miscellaneous	Electric	Pool Heater	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%
Miscellaneous	Electric	Miscellaneous	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%

Table B-4 Commercial Non-Equipment Measures (Achievable Potential Factor)

Measure	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Insulation - Ceiling	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Insulation - Ducting	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Insulation - Wall Cavity	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
HVAC - Duct Repair and Sealing	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Windows - High Efficiency	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Windows - Install Reflective Film	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	51%	51%	51%
Cool Roof	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Chiller - Thermal Energy Storage	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - VSD on Fans	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - Chilled Water Reset	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - Chilled Water Variable-Flow System	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - Maintenance	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%
Chiller - Heat Recovery	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
HVAC - Economizer	52%	53%	53%	54%	54%	55%	55%	56%	56%	57%	57%	58%	58%	59%	59%	60%	60%	61%	61%	61%	61%
RTU - Evaporative Precooler	52%	53%	53%	54%	54%	55%	55%	56%	56%	57%	57%	58%	58%	59%	59%	60%	60%	61%	61%	61%	61%
RTU - Maintenance	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%
Space Heating - Heat Recovery Ventilator	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Ventilation - ECM on VAV Boxes	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%	41%
Ventilation - Variable Speed Control	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%	41%
Water Heater - Drainwater Heat Recovery	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	52%	52%	52%
Water Heater - Faucet Aerators/Low Flow Nozzles	46%	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	54%	54%	54%
Water Heater - Desuperheater	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	52%	52%	52%
Water Heater - Solar System	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	36%	36%
Water Heater - Pipe Insulation	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Interior Lighting - Daylighting Controls	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Interior Fluorescent - Delamp and Install Reflectors	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Interior Lighting - LED Exit Lighting	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Interior Lighting - Occupancy Sensors	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Interior Lighting - Timeclocks and Timers	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Exterior Lighting - Bi-Level Fixture	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%	48%
Exterior Lighting - Daylighting Controls	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%	48%
Exterior Lighting - Photovoltaic Installation	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%	48%
Refrigerator - Anti-Sweat Heater	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Refrigerator - Door Gasket Replacement	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%

NIPSCO 2018 IRP Attachment 2-A Page 121

Refrigerator - Evaporator Fan Controls	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Refrigerator - Floating Head Pressure	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Refrigerator - Strip Curtain	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Refrigerator - High Efficiency Compressor	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Refrigerator - Variable Speed Compressor	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Vending Machine - Occupancy Sensor	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%
Grocery - Display Case - LED Lighting	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%
Grocery - Display Case Motion Sensors	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%
Grocery - ECMs for Display Cases	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Grocery - Open Display Case - Night Covers	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%
Office Equipment - Plug Load Occupancy Sensors	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%
Office Equipment - Smart Plug Load Sensors	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%
Pool Pump - Timer	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	43%	43%
Ventilation - CO2 Controlled	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%	41%
Thermostat - Clock/Programmable	67%	68%	68%	69%	69%	70%	70%	71%	71%	72%	72%	73%	73%	74%	74%	75%	75%	76%	76%	76%	76%
Lodging - Guest Room Controls	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	42%	42%
HVAC - Occupancy Sensors	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%
Commissioning	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Retrocommissioning	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Advanced New Construction Designs	27%	28%	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	36%	36%
HVAC Chiller Tune Up	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%
Light Tube Commercial Skylight	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Pre-rinse Spray Valves	46%	47%	47%	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	55%	55%

Table B-5 Industrial Equipment Measures (Achievable Potential Factor)

End Use	Fuel	Technology	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Cooling	Electric	Air-Cooled Chiller	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Cooling	Electric	Water-Cooled Chiller	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Cooling	Electric	RTU	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Cooling	Electric	Room AC	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Cooling	Electric	Air Source Heat Pump	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Cooling	Electric	Geothermal Heat Pump	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Heating	Electric	Electric Furnace	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Heating	Electric	Electric Room Heat	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Heating	Electric	Air Source Heat Pump	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Heating	Electric	Geothermal Heat Pump	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%
Ventilation	Electric	Ventilation	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%	41%
Interior Lighting	Electric	Screw-in	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Interior Lighting	Electric	High-Bay Fixtures	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Interior Lighting	Electric	Linear Fluorescent	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Exterior Lighting	Electric	Screw-in	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Exterior Lighting	Electric	HID	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Exterior Lighting	Electric	Linear Fluorescent	28%	29%	29%	30%	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	37%	37%
Process	Electric	Process Cooling	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Process	Electric	Process Heating	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Process	Electric	Process Refrigeration	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Process	Electric	Process Electrochemical	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Process	Electric	Process Other	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Motors	Electric	Pumps	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Motors	Electric	Fans & Blowers	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Motors	Electric	Compressed Air	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Motors	Electric	Conveyors	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Motors	Electric	Other Motors	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Miscellaneous	Electric	Miscellaneous	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%

NIPSCO 2018 IRP Attach Appendix B Page 122

Table B-6 Industrial Non-Equipment Measures (Achievable Potential Factor)

Measure	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Insulation - Ceiling	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Insulation - Ducting	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Insulation - Wall Cavity	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
HVAC - Duct Repair and Sealing	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Cool Roof	30%	31%	31%	32%	32%	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	39%	39%
Chiller - Thermal Energy Storage	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - VSD on Fans	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - Chilled Water Reset	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - Chilled Water Variable-Flow System	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Chiller - Maintenance	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%
HVAC - Economizer	52%	53%	53%	54%	54%	55%	55%	56%	56%	57%	57%	58%	58%	59%	59%	60%	60%	61%	61%	61%	61%
RTU - Evaporative Precooler	52%	53%	53%	54%	54%	55%	55%	56%	56%	57%	57%	58%	58%	59%	59%	60%	60%	61%	61%	61%	61%
RTU - Maintenance	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%
Thermostat - Clock/Programmable	67%	68%	68%	69%	69%	70%	70%	71%	71%	72%	72%	73%	73%	74%	74%	75%	75%	76%	76%	76%	76%
Interior Lighting - Occupancy Sensors	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Light Tube Commercial Skylight	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Interior Lighting - Timeclocks and Timers	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Interior Lighting - LED Exit Lighting	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Interior Lighting - Daylighting Controls	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Exterior Lighting - Bi-Level Fixture	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%	48%
Exterior Lighting - Daylighting Controls	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%	489
Interior Fluorescent - Delamp and Install Reflectors	48%	48%	49%	49%	50%	50%	51%	51%	52%	52%	53%	53%	54%	54%	55%	55%	56%	56%	56%	56%	56%
Exterior Lighting - Photovoltaic Installation	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	47%	47%	48%	48%	48%	48%	489
Refrigeration - System Maintenance	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Refrigeration - System Optimization	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Refrigeration - Floating Head Pressure	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	44%
Compressed Air - Compressor Replacement	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Compressed Air - Air Usage Reduction	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Compressed Air - System Maintenance	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Compressed Air - System Optimization and Improv	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Pumping System - Maintenance	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Pumping System - Optimization	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Fan System - Maintenance	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Fan System - Optimization	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Motors - Efficient Rewind	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Motors - Variable Frequency Drive (Fans & Blower:	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Motors - Variable Frequency Drive (Pumps)	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Motors - Variable Frequency Drive (Compressed Ai	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Motors - Variable Frequency Drive (Other)	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	44%	44%	449
Commissioning	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Retrocommissioning	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	45%	45%	45%
Ventilation - CO2 Controlled	33%	33%	34%	34%	35%	35%	36%	36%	37%	37%	38%	38%	39%	39%	40%	40%	41%	41%	41%	41%	419
Destratification Fans (HVLS)	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%
Transformer - High Efficiency	37%	38%	38%	39%	39%	40%	40%	41%	41%	42%	42%	43%	43%	44%	44%	45%	45%	46%	46%	46%	46%

hibit 2

App en **Q1**

NIPSCO 2018 IRP AttachAppatara Page 123

prepared by

Northern Indiana Public Service Company prepared for

FINAL September 18, 2018

NIPSCO DSM Savings Update Report

AttachAppatarA Page 124

ACKNOWLEDGEMENTS

addressed or considered for this report. GDS also appreciates input provided by the NIPSCO Oversight weekly teleconferences with NIPSCO staff to discuss technical and regulatory issues that needed to be pertaining to the design and implementation of NIPSCO's energy efficiency programs. GDS also held biadditional energy efficiency measures that should be considered for this Demand Side Management Mack. During March to August 2018 they provided responses to GDS data requests, provided guidance on Service Company (NIPSCO) staff, including Alison Becker, Victoria Vrab, Jennifer Staciwa and Jonathan GDS Associates, Inc. (GDS) appreciates the guidance and assistance provided by Northern Indiana Public Board, and other Integrated Resource Plan stakeholders. (DSM) Savings Update, and provided explanations of Indiana Utility Regulatory Commission regulations

NIPSCO 2018 IRP AttachApptdax Page 126

	Executive Summary	
	1.2 Summary of Savings Update Plan Results	
	1.3 Cost-Effectiveness Findings	-
		_
	1.6 Report Organization	-
	of Terms	
$\left(\cdot \right)$		
	the Planning Process for This Report	
	3.2 Description of Data Sources	
	3.3 The NIPSCO Situation	-
	Characterization of Electricity Consumption in the NIPSCO Service Area	
	4.1 Analysis of Forecast of kWh Sales and Customers by Sector	
	4.2 Breakdown of NIPSCO Annual MWH Sales by Sector	
	4.3 Breakdown of Electricity Consumption by Building Type and End-Use	
Cη	Savings Update Methodology	
	5.1 DSM Savings Potential in the DSM Savings Update Report25	
	5.2 Modeling Framework	
	vH and MW Savings	-
5	20 Residential Sector Energy Efficiency Savings Plan	
	ngs	_
	6.2 Best Practices for Residential Programs	-
	6.3 Key Best Practices Studies Reviewed	-
	6.4 Recommended Residential programs43	
	C&I Sector Energy Efficiency Savings Plan47	
	7.1 Overview of C&I Sector Electric Energy Efficiency Savings47	
	7.2 Best Practices for C&I programs	
	7.3 Recommended Programs and Budgets	
	7.4 Benefit/Cost Analysis	-
	Demand Response Potential	
	8.1 Methodology	
	8.2 Overview of Sector Demand Response Potential70	
	8.3 Recommended Programs & Budgets	,
	8.4 Benefit/Cost Analysis	-
Θ	Scenario Analysis Results	
	9.1 Residential Energy Efficiency	
	9.2 C&I Sector Energy Efficiency	
	9.3 Demand Response	-
) Energy Efficiency Bundles	
	1 Summary	-

NIPSCO 2018 IRP AttachAppatazza Page 127

Conserved Energy
APPENDIX B Energy Efficiency-Commercial Sector Measure Costs, Savings, Useful Lives, Cost of
Conserved Energy
APPENDIX C Demand Response Program Costs and Input Assumptions
APPENDIX D Cost Effectiveness Ranking of Energy Efficiency Measures - Residential SectorD-1
APPENDIX E Cost Effectiveness Ranking of Energy Efficiency Measures – C&I SectorE.
APPENDIX F Residential Low-Income Whole-House ProgramF-1

LIST OF TABLES

TABLE 8-14 RESIDENTIAL DEMAND RESPONSE ANNUAL BUDGETS BY BUNDLE
TABLE 8-13 C&I DEMAND RESPONSE MW SAVINGS BY BUNDLE75
TABLE 8-12 RESIDENTIAL DEMAND RESPONSE MW SAVINGS BY BUNDLE
TABLE 8-11 C&I DEMAND RESPONSE PARTICIPANTS BY BUNDLE74
TABLE 8-10 RESIDENTIAL DEMAND RESPONSE PARTICIPANTS BY BUNDLE
TABLE 8-9 DEMAND RESPONSE MW SAVINGS BY PROGRAM71
TABLE 8-8 PROGRAM DEVELOPMENT COSTS
TABLE 8-7 MARKETING COSTS
TABLE 8-6 ADMINISTRATIVE COSTS
TABLE 8-5 EQUIPMENT COSTS
TABLE 8-4 DR PROGRAM LOAD REDUCTION ASSUMPTIONS
TABLE 8-3 DR HIERARCHY
TABLE 8-2 DR PROGRAM STEADY STATE PARTICIPATION RATES
TABLE 8-1 DEMAND RESPONSE PROGRAM OPTIONS
TABLE 7-6 BENEFIT COST ANALYSIS RESULTS FOR THE C/I SECTOR – UTILITY COST TEST
TABLE 7-5 ANNUAL PROGRAM BUDGETS (BASE CASE)61
TABLE 7-4 ACHIEVABLE CUMULATIVE ANNUAL ENERGY EFFICEINCY SAVINGS (MWH) BY PROGRAM (BASE CASE)
TABLE 7-3 ACHIEVABLE C&I SECTOR ENERGY EFFICIENCY SAVINGS AS A PERCENT OF SALES (BASE CASE)
TABLE 7-2 ACHIEVABLE C&I SECTOR ENERGY EFFICIENCY POTENTIAL AND ANNUAL BUDGETS (BASE CASE)
TABLE 7-1 TYPES OF ELECTRIC ENERGY EFFICIENCY MEASURES INCLUDED IN THE C&I SECTOR ANALYSIS
TABLE 6-6 UTILITY COST TEST BENEFIT/COST RATIOS FOR RESIDENTIAL PROGRAMS (2019 TO 2048 PERIOD)
TABLE 6-5 BUDGETS FOR RESIDENTIAL ENERGY EFFICIENCY PROGRAMS (BASE CASE)
TABLE 6-4 ACHIEVABLE RESIDENTIAL SECTOR CUMULATIVE ANNUAL ENERGY EFFICIENCY POTENTIAL BY PROGRAM (BASE
TABLE 6-3 ACHIEVABLE RESIDENTIAL SECTOR ENERGY EFFICIENCY POTENTIAL AS A PERCENT OF SALES (BASE CASE)
TABLE 6-2 ACHIEVABLE RESIDENTIAL SECTOR INCREMENTAL ANNUAL ENERGY EFFICIENCY POTENTIAL AND ANNUAL UTILITY BUDGETS (BASE CASE)
TABLE 6-1 TYPES OF ELECTRIC ENERGY EFFICIENCY MEASURES INCLUDED IN THE RESIDENTIAL SECTOR ANALYSIS
TABLE 4-2 FORECAST OF ANNUAL ELECTRIC SALES BY MARKET SEGMENT, 2018-2048 (MWH)
TABLE 4-1 FORECAST OF ANNUAL ELECTRIC SALES BY MARKET SEGMENT, 2018-2048 (MWH)
TABLE 1-9 UTILITY COST TEST BENEFIT/COST RATIOS FOR DEMAND RESPONSE PROGRAMS (2019 TO 2048 PERIOD)10
TABLE 1-8 UTILITY COST TEST BENEFIT/COST RATIOS FOR C&I ENERGY EFFICIENCY PROGRAMS (2019 TO 2048 PERIOD)9
TABLE 1-7 UTILITY COST TEST BENEFIT/COST RATIOS FOR RESIDENTIAL ENERGY EFFICIENCY PROGRAMS (2019 TO 2048 PERIOD)
TABLE 1-6 NIPSCO ANNUAL DEMAND RESPONSE ANNUAL BUDGETS BY SECTOR FOR 2019 TO 2048
TABLE 1-5 NIPSCO DEMAND RESPONSE CUMULATIVE ANNUAL MW SAVINGS BY SECTOR AND IN TOTAL
1-4
μ μ
1-2 NIPSCO DSM SAVINGS
TABLE 1-1 NIPSCO DSM SAVINGS PLAN UPDATE. INCREMENTAL ANNUAL MWH SAVINGS BY SECTOR AND IN TOTAL

AttachApptdarA

TABLE 9-1 RESIDENTIAL HIGH CASE SAVINGS AND BUDGETS 80 TABLE 9-2 RESIDENTIAL LOW CASE SAVINGS AND BUDGETS 80 TABLE 9-3 HIGH CASE – ACHIEVABLE C&I SECTOR RERGY EFFICIENCY POTENTIAL AND ANNUAL BUDGETS 80 TABLE 9-4 RESIDENTIAL DEMAND RESPONSE HIGH CASE PARTICIPANTS BY BUNDLE 81 TABLE 9-5 RESIDENTIAL DEMAND RESPONSE HIGH CASE PARTICIPANTS BY BUNDLE 82 TABLE 9-7 C&I DEMAND RESPONSE HIGH CASE PARTICIPANTS BY BUNDLE 84 TABLE 9-7 C&I DEMAND RESPONSE HIGH CASE PARTICIPANTS BY BUNDLE 84 TABLE 9-9 RESIDENTIAL DEMAND RESPONSE HIGH CASE MW SAVINGS BY BUNDLE 84 TABLE 9-10 RESIDENTIAL DEMAND RESPONSE HIGH CASE MW SAVINGS BY BUNDLE 87 TABLE 9-10 RESIDENTIAL DEMAND RESPONSE HIGH CASE MW SAVINGS BY BUNDLE 88 TABLE 9-11 C&I DEMAND RESPONSE HIGH CASE BUDGETS BY BUNDLE 88 TABLE 9-12 C&I DEMAND RESPONSE HIGH CASE BUDGETS BY BUNDLE 89 TABLE 9-13 RESIDENTIAL DEMAND RESPONSE HIGH CASE BUDGETS BY BUNDLE 89 TABLE 9-14 RESIDENTIAL DEMAND RESPONSE HIGH CASE BUDGETS BY BUNDLE 89 TABLE 9-14 RESIDENTIAL DEMAND RESPONSE HIGH CASE BUDGETS BY BUNDLE 90 TABLE 9-14 RESIDENTIAL BURGEY EFFICIENCY BASE CASE BUNDLES 91 TABLE 9-14 RESIDENTIAL BURGEY EFFICIENCY BASE CASE BUNDLES 92 TABLE 9-14 RESIDENTIAL E
ANNUAL BUDGETS
ANNUAL BUDGETS. ANNUAL BUDGETS
ANNUAL BUDGETS.
ANNUAL BUDGETS.
ANNUAL BUDGETS
ANNUAL BUDGETS.
ANNUAL BUDGETS. ANNUAL BUDGETS
ANNUAL BUDGETS.
ANNUAL BUDGETS.
ANNUAL BUDGETS .
ANNUAL BUDGETS
ANNUAL BUDGETS. ANNUAL BUDGETS
ANNUAL BUDGETS .
ANNUAL BUDGETS
ANNUAL BUDGETS.
ANNUAL BUDGETS .
ANNUAL BUDGETS
ANNUAL BUDGETS.
ANNUAL BUDGETS.
ANNUAL BUDGETS
ANNUAL BUDGETS .
ANNUAL BUDGETS .
ANNUAL BUDGETS

LIST OF FIGURES

FIGURE 4-1 INDIANA ELECTRIC UTILITY SERVICE TERRITORIES	FIGURE 4-3 ACTUAL 2017 NIPSCO MWH SALES BY FERC FORM 1 MARKET SEGMENT	FIGURE 4-4 2014 BREAKDOWN OF RESIDENTIAL MWH SALES BY END-USE	FIGURE 4-5 2014 BREAKDOWN OF COMMERCIAL MWH SALES BY END-USE24	FIGURE 4-6 2014 BREAKDOWN OF INDUSTRIAL MWH SALES BY END-USE24	FIGURE 5-1 FORECAST OF RESIDENTIAL SECTOR CUMULATIVE ANNUAL MWH SAVINGS	FIGURE 5-2 FORECAST OF NON-RESIDENTIAL SECTOR CUMULATIVE ANNUAL MWH SAVINGS	FIGURE 5-3 FORECAST OF RESIDENTIAL LED GENERAL SERVICES BULBS PURCAHSED AND INSTALLED THROUGH THE NIPSCO		FIGURE 9-1 RESULTS OF ELECTRIC ENERGY EFFICIENCY POTENTIAL STUDIES BASED ON STUDIES COLLECTED BY THE U.S. DOE/9
---	---	---	--	--	---	---	--	--	---

LIST OF EQUATIONS

EFFICIENCY MEASURES	EQUATION 5-2 FORMULA USED TO CALCULATE INCREMENTAL ANNUAL SUMMER PEAK KW SAVINGS FOR ENERGY	 EQUATION 5-1 FORMULA USED TO CALCULATE INCREMENTAL ANNUAL KWH SAVINGS FOR ENERGY EFFICIENCY MEASURES
		 EASURES

Executive Summary

Plan, but not as a comprehensive, new energy efficiency potential study for the NIPSCO service area. GDS to the plan after 2021. This report should be viewed as an extension of the NIPSCO 2019 to 2021 DSM Commission (IURC) in Cause No. 45011. For this update GDS has added many energy efficiency measures offerings for 2019 to 2021 described in NIPSCO's testimony filed with the Indiana Utility Regulatory energy efficiency potential study completed in August 2016 and NIPSCO's current and planned program to a thirty-year planning period from 2019 to 2048. This report captures the insights from NIPSCO's prior This demand side management (DSM) Savings Update report extends NIPSCO's 2019 to 2021 DSM Plan will prepare a new energy efficiency potential study for NIPSCO by June 30, 2019.

In November 2017, NIPSCO filed the 2019 to 2021 DSM Plan with the IURC in Cause 45011 to comply with Indiana energy efficiency legislation. Indiana Code § 8-1-8.5-10(h) states:

Beginning not later than calendar year 2017, and not less than one (1) time every three includes: (3) years, an electricity supplier shall petition the commission for approval of a plan that

- [1] energy efficiency goals;
- 2 energy efficiency programs to achieve the energy efficiency goals;
- [3] program budgets and program costs; and
- 4 evaluation, measurement, and verification procedures that must include independent evaluation, measurement, and verification.

commission shall make the petition and its disclosable contents available through the customers of the electricity supplier whether or not the program is cost effective. The subsection may include a home energy efficiency assistance program for qualified basic rate proceeding or as an independent proceeding. A petition submitted under this for a determination of the overall reasonableness of the plan either as part of a general An electricity supplier may submit a plan required under this subsection to the commission commission's Internet web site.

to a full thirty-year planning period for use in NIPSCO's upcoming Integrated Resource Plan (IRP) filing that NIPSCO prepared this DSM Savings Update Report primarily to extend the NIPSCO 2019 to 2021 DSM Plan will occur later in 2018.

1.2 SUMMARY OF SAVINGS UPDATE PLAN RESULTS

GDS used the following assumptions and information to prepare this report:

- Planning period extended from three years to thirty years
- Energy efficiency and demand response measure costs, kilowatt hour (kWh) and kilowatt (kW) savings and useful lives
- NIPSCO electric load forecast and electric and natural gas avoided costs forecast
- Hourly load shapes for electric end uses
- and planning reserve margin NIPSCO planning assumptions for the general inflation rate, utility discount rate, electric line losses

- residential general service, reflector and specialty bulbs Assumptions for baseline technology energy efficiency levels after 2021 for residential and non-
- Measure participation forecasts after 2021
- Energy efficiency measures included in the 2019 to 2048 DSM Plan

savings update. These models are explained in more detail in Section 5.2. GDS used Excel-based energy efficiency and demand response planning models to prepare this DSM

1.2.1 Energy Efficiency

annual energy efficiency MWH savings as a percent of forecast total MWH sales range from 1.5% to 1.8% are presented as a percent of NIPSCO's electric load forecast for the period 2019 to 2048. The incremental programs. The DSM Plan base case incremental MWH and megawatt (MW) savings by sector and in total commercial and industrial customers¹ who have opted out of NIPSCO's C&I sector energy efficiency for the NIPSCO service area. The DSM Savings Update Report projections provided in this plan exclude Table 1-1 shows the base case incremental annual energy efficiency MWH savings by sector and in total annually over the thirty-year planning period.

mathematical rule is if the number you are rounding is followed by 5, 6, 7, 8, or 9, round the number up. to 1.8% for presentation purposes. In 2048 the percentage is 1.73% and it is rounded down to 1.7%. The to rules for rounding of numbers. For example, in 2045 the percentage is 1.76% and it is rounded upward Otherwise your round down. The annual percent savings in the last column of Table 1-1 decline slightly in the years 2046 to 2048 due

TAB	TABLE 1-1 NIPSCO DSM SAVINGS PLAN UPDATE, INCREMENTAL ANNUAL MWH SAVINGS BY SECTOR AND IN TOTAL	SAVINGS PLAN UPE	DATE, INCREMENTAL	. ANNUAL MWH SAV	/INGS BY SECTOR A	ND IN TOTAL
	Residential				Total (Res &	Total (Res &
	Sector		C&I Sector		C& I)	C&I Sectors)
	Incremental	Savings As A	Incremental	Savings As A	Incremental	Savings As A
	Annual Energy	Percent of	Annual Energy	Percent of C&I	Annual Energy	Percent of
	Savings	Residential	Savings	Sector Sales	Savings	Total Sales
Year	(MWH)	Sales Forecast	(MWH)	Forecast	(MWH)	Forecast
2019	50,974	1.5%	72,000	1.5%	122,974	1.5%
2020	50,947	1.5%	80,000	1.7%	130,947	1.6%
2021	50,918	1.5%	88,000	1.9%	138,918	1.7%
2022	46,240	1.4%	92,147	1.9%	138,387	1.7%
2023	46,887	1.4%	93,761	1.9%	140,648	1.7%
2024	47,503	1.4%	95,389	2.0%	142,892	1.7%
2025	48,178	1.4%	97,581	2.0%	145,759	1.7%
2026	48,716	1.4%	99,966	2.0%	148,683	1.8%
2027	49,287	1.4%	101,463	2.0%	150,750	1.8%
2028	49,744	1.4%	103,076	2.1%	152,820	1.8%
2029	50,231	1.4%	104,627	2.1%	154,858	1.8%
2030	50,686	1.4%	106,017	2.1%	156,703	1.8%
2031	51,166	1.4%	108,458	2.1%	159,625	1.8%
2032	51,645	1.4%	110,023	2.2%	161,669	1.8%

¹ Commercial and Industrial (C&I) refers to participating non-residential customers.

Attachingpotar Page 133

Year	Residential Sector Incremental Annual Energy Savings (MWH) 52 173	Savings As A Percent of Residential Sales Forecast	C&I Sector Incremental Annual Energy Savings (MWH) 111 690	Savings As A Percent of C&I Sector Sales Forecast	Total (<i>Res &</i> <i>C&I</i>) Incremental Annual Energy Savings (MWH) 163 863
2033	52,173	1.4%	111,690	2.2%	163,863
2034	52,411	1.4%	112,850	2.2%	165,261
2035 2036	52,659 53,050	1.4% 1.4%	113,599 114,182	2.2%	166,258 167,231
2037	53,050	1.3%	114,773	2.2%	167,823
2038	53,050	1.3%	115,362	2.2%	168,412
2039	53,050	1.3%	115,362	2.2%	168,412
2040	53,050	1.3%	115,362	2.2%	168,412
2041	53,050	1.3%	115,362	2.2%	168,412
2042	53,050	1.3%	115,362	2.2%	168,412
2043	53,050	1.3%	115,362	2.2%	168,412
2044	53,050	1.2%	115,362	2.2%	168,412
2045	53,050	1.2%	115,362	2.2%	168,412
2046	53,050	1.2%	115,362	2.2%	168,412
2047	53,050	1.2%	115,362	2.2%	168,412
2048	53,050	1.2%	115,362	2.2%	168,412

savings by sector and in total are shown as a percent of NIPSCO's electric load forecast for the period 2019 is projected to be 14.7% by 2028, 21.2% by 2038 and 21.1% by 2048. to 2048. The cumulative annual energy efficiency MWH savings as a percent of forecast total MWH sales who have opted out of NIPSCO's C&I sector energy efficiency programs. The cumulative annual MWH for the NIPSCO service area. As previously noted, the updated DSM Plan base case excludes C&I customers Table 1-2 shows the base case cumulative annual energy efficiency savings (MWH) by sector and in total

	Residential Sector Cumulative Annual Energy Savings (MWH) 50,974 92,051	Savings As A Percent of Residential Sales Forecast 1.5% 2.7%	C&I Sector Cumulative Annual Energy Savings (MWH) 72,000 152,000	Residential Total (Res & Sector Total (Res & C&I Sectors) Total (Res & C&I Sectors) Cumulative C&I Sector C&I Sectors) Total (Res & Cumulative Annual Savings As A Annual Savings As A Annual Savings As A Energy Percent of Energy Percent of Energy Percent Savings Total (Res & Cumulative Savings Savings Residential Savings C&I Sector Savings Total Savings So,974 1.5% 72,000 1.5% 122,974 1.5% 92,051 2.7% 152,000 3.2% 244,051 3.0%	Total (Res & C&I Sectors) Cumulative Annual Energy Savings (MIVH) 122,974 244,051
Year	Energy Savings (MWH)	Percent of Residential Sales Forecast	Energy Savings (MWH)	Percent of C&I Sector Sales Forecast	Energy Saving: (MWH
2019	50,974	1.5%	72,000	1.5%	122,97
2020	92,051	2.7%	152,000	3.2%	244,051
2021	133,111	3.9%	240,000	5.1%	373,111
2022	169,506	5.0%	325,796	6.8%	495,302
2023	204,891	6.0%	419,550	8.7%	624,441
2024	240,718	7.0%	510,798	10.5%	751,516
2025	277,045	8.0%	602,907	12.3%	879,952

TABLE 1-2 NIPSCO DSM SAVINGS PLAN UPDATE, CUMULATIVE ANNUAL MWH SAVINGS BY SECTOR AND IN TOTAL

Attachappatar A

	2047 57	2046 57	2045 57	2044 56	2043 56	2042 56	2041 56	2040 55	2039 55	2038 54	2037 54	2036 53	2035 54	2034 55	2033 55	2032 52	2031 48	2030 45	2029 42	2028 38	2027 35	2026 31	Year (N	Er	AI	Curr	Resi
	572,828	571,874	570,698	569,310	567,657	565,657	563,346	558,537	553,384	547,742	540,698	533,259	542,667	551,963	554,315	522,331	489,118	455,925	421,381	387,093	350,132	313,423		Energy F Savings R		Sector Cumulative	Residential
	13.0%	13.1%	13.3%	13.4%	13.5%	13.6%	13.7%	13.7%	13.8%	13.8%	13.7%	13.7%	14.1%	14.5%	14.7%	14.0%	13.2%	12.4%	11.6%	10.8%	9.9%	8.9%	Sales Forecast	Percent of Residential	Savings As A		
1 485 775	1,482,283	1,477,839	1,472,341	1,465,211	1,456,960	1,447,692	1,437,179	1,425,373	1,412,165	1,397,364	1,379,659	1,361,070	1,342,307	1,317,466	1,286,733	1,206,636	1,127,019	1,046,587	959,682	873,445	786,971	696,948	(MWH)	Energy Savings	Annual	C&I Sector	
/00 00	28.0%	28.0%	27.9%	27.9%	27.8%	27.7%	27.5%	27.4%	27.2%	26.9%	26.6%	26.3%	26.0%	25.6%	25.1%	23.7%	22.2%	20.7%	19.1%	17.5%	15.8%	14.1%	Sales Forecast	Percent of C&I Sector	Savings As A		
2 059 281	2,055,112	2,049,714	2,043,038	2,034,521	2,024,616	2,013,349	2,000,524	1,983,910	1,965,550	1,945,106	1,920,357	1,894,329	1,884,974	1,869,429	1,841,048	1,728,968	1,616,137	1,502,512	1,381,064	1,260,538	1,137,103	1,010,371	(MWH)	Energy Savings	Annual	C&I Sectors)	Total (Res &
21 1%	21.2%	21.3%	21.4%	21.4%	21.4%	21.4%	21.4%	21.4%	21.3%	21.2%	21.1%	20.9%	20.9%	20.9%	20.7%	19.6%	18.4%	17.2%	16.0%	14.7%	13.4%	12.0%	Forecast	Percent of Total Sales	Savings As A	Total (Res & C&I Sectors)	

administration, marketing and program evaluation. The projected costs per first year kWh saved for the installed through NIPSCO programs. GDS also included forecasts of annual costs for program planning and is based on NIPSCO's 2019 to 2021 DSM Plan. The costs of financial incentives from 2022 to 2048 for projections listed in Table 1-2. The energy efficiency program's annual budget for the 2019 to 2021 period kWh saved projected for programs of other electric utilities in the Midwest U.S.² portfolio of measures included in this DSM Savings Update Report is comparable to the costs per first year program participants are based on GDS projections of the number and types of energy efficiency measures Table 1-3 shows the annual energy efficiency budgets by sector and in total to achieve the MWH savings

²GDS Associates, Inc., "Comparison of Incentive and Non-Incentive Costs per First Year kWh Saved for Energy Efficiency Programs of Midwestern Electric Utilities", March 2018.

	IABLE 1-3 NIPSCO ANNUAL ENER	TABLE 1-3 NIPSCO ANNUAL ENERGY EFFICIENCY BUDGET BY SECTOR FOR 2019 TO 2048	FOR 2019 IO 2048
	Annual Utility Energy Efficiency Budget - Residential	Annual Utility Energy	Annual Utility Energy Efficiency Budget - All Sectors
Year	Sector	Efficiency Budget - C&I Sector	Combined
2019	\$9,817,510	\$9,047,188	\$18,864,698
2020	\$9,815,352	\$10,052,432	\$19,867,784
2021	\$9,809,956	\$11,057,675	\$20,867,631
2022	\$20,822,174	\$11,839,493	\$32,661,667
2023	\$21,039,511	\$12,140,734	\$33,180,245
2024	\$21,266,204	\$12,444,981	\$33,711,185
2025	\$21,494,687	\$12,775,475	\$34,270,162
2026	\$21,714,354	\$13,163,727	\$34,878,081
2027	\$21,941,024	\$13,478,238	\$35,419,262
2028	\$22,134,851	\$13,798,511	\$35,933,362
2029	\$22,347,479	\$14,119,573	\$36,467,052
2030	\$22,551,800	\$14,432,594	\$36,984,394
2031	\$22,763,349	\$14,849,184	\$37,612,533
2032	\$22,980,009	\$15,187,942	\$38,167,951
2033	\$23,222,465	\$15,544,398	\$38,766,863
2034	\$23,417,367	\$15,824,693	\$39,242,060
2035	\$23,617,690	\$16,074,726	\$39,692,416
2036	\$23,829,888	\$16,307,510	\$40,137,398
2037	\$23,975,771	\$16,544,828	\$40,520,599
2038	\$24,124,717	\$16,786,479	\$40,911,196
2039	\$24,276,791	\$16,943,342	\$41,220,133
2040	\$24,432,059	\$17,103,500	\$41,535,559
2041	\$24,590,588	\$17,267,020	\$41,857,608
2042	\$24,752,445	\$17,433,974	\$42,186,419
2043	\$24,917,702	\$17,604,435	\$42,522,137
2044	\$25,086,429	\$17,778,475	\$42,864,904
2045	\$25,258,699	\$17,956,170	\$43,214,869
2046	\$25,434,587	\$18,137,597	\$43,572,184
2047	\$25,614,169	\$18,322,833	\$43,937,002
8706	ぐつに 202 につつ		CON DUC NUS

suggested by NIPSCO's stakeholders). efficiency program for low-income customers, the residential solar water heating and heat pump water Study. Factors contributing to the greater MWH savings in this DSM Savings Update Report, as compared than the incremental annual energy efficiency potential shown in the NIPSCO August 2016 AEG Potential heating measures and other residential and C&I sector energy efficiency measures (identified by GDS and projections provided by NIPSCO's program implementer for 2019 to 2021, the whole house energy to the 2016 AEG Potential Study, include adding: updated energy efficiency measure participation The incremental annual MWH savings projected in the DSM Savings Update Report are significantly higher

1.2.2 Demand Response

specific types of customers. Using a mix of programs provides a load reduction resource that can be called under many different conditions. Table 1-4 lists the demand response programs included in this DSM type provides demand response using different load reduction and incentive strategies designed to target customers during the highest load hours of the summer or winter as defined by NIPSCO. Each DR program interruptible tariff. The objective of these program options is to realize demand reductions from eligible For this study, five demand response (DR) program options were considered, including two options for an Savings Update Report.

DR Program Option	Eligible Customer Classes	Mechanism	Season
Direct Load Control (DLC) Central Air Conditioner Cycling	Residential, Small and Medium C&I	DLC Switch for Central Cooling Equipment	Summer
DLC Space Heating	Residential, Small and Medium C&I	DLC Switch for Space Heating Equipment	Winter
DLC Water Heater Cycling	Residential, Small and Medium C&I	DLC Switch for Water Heating Equipment	Summer and Winter
Interruptible Load Tariffs	Large C&I	Customer enacts their customized, mandatory curtailment plan. Penalties apply for non-performance.	Summer
Interruptible Load Tariffs with Third Party Aggregator	Large C&I	Customer enacts their customized, mandatory curtailment plan. Penalties apply for non-performance. Typically managed as a portfolio by third party contractor.	Summer
Table 1-5 shows projections c	of cumulative annua	Table 1-5 shows projections of cumulative annual MW savings for these demand response programs for	e programs for

TABLE 1-4 DEMAND RESPONSE OPTIONS INCLUDED IN THE DSM SAVINGS UPDATE

the NIPSCO service area for 2019 to 2048. a ŏ

rule is if the number you are rounding is followed by 5, 6, 7, 8, or 9, round the number up. Otherwise your for presentation purposes. In 2048 the initial percentage is rounded down to 7.6%. The mathematical to rules for rounding of numbers. For example, in 2045 the initial percentage is rounded upward to 7.8% round down. The annual percent savings in the last column of Table 1-5 decline slightly in the years 2046 to 2048 due

	TABLE 1-5 NIPSCO	DEMAND RESPON	TABLE 1-5 NIPSCO DEMAND RESPONSE CUMULATIVE ANNUAL MW SAVINGS BY SECTOR AND IN TOTAL	JUAL MW SAVING	S BY SECTOR AND IN	TOTAL
	Residential				Total (Res & C&I Sectors)	Total (Res & C&I Sectors)
	Sector	Savings As A	C&I Sector	Savings As A	Incremental	Savings As A
	Cumulative	Percent of	Cumulative	Percent of	Annual Energy	Percent of
	Annual Energy	Peak Load	Annual Energy	Peak Load	Savings	Peak Load
Year	Savings (MW)	Forecast	Savings (MW)	Forecast	(MWH)	Forecast
2019	9	0.3%	17	0.5%	26	0.8%
2020	29	0.9%	51	1.7%	80	2.6%
2021	60	2.0%	104	3.3%	164	5.3%
2022	81	2.6%	139	4.5%	220	7.1%
2023	88	2.8%	153	4.9%	242	7.7%
2024	06	2.9%	158	5.0%	248	7.9%
2025	91	2.9%	159	5.0%	251	7.9%
2026	92	2.9%	161	5.1%	253	7.9%
2027	93	2.9%	162	5.1%	255	8.0%
2028	93	2.9%	163	5.1%	257	8.0%
2029	94	2.9%	164	5.1%	258	8.0%
2030	94	2.9%	165	5.1%	260	8.0%
2031	95	2.9%	166	5.1%	261	8.0%
2032	95	2.9%	167	5.1%	262	8.0%
2033	96	2.9%	168	5.1%	264	8.1%
2034	96	2.9%	169	5.1%	265	8.1%
2035	97	2.9%	169	5.1%	266	8.1%
2036	97	2.9%	170	5.1%	267	8.1%
2037	86	3.0%	170	5.1%	268	8.1%
2038	86	2.9%	171	5.1%	269	8.0%
2039	86	2.9%	171	5.1%	269	8.0%
2040	86	2.9%	171	5.0%	269	7.9%
2041	86	2.9%	171	5.0%	269	7.9%
2042	86	2.9%	171	5.0%	269	7.9%
2043	86	2.9%	171	5.0%	269	7.8%
2044	86	2.8%	171	4.9%	270	7.8%
2045	86	2.8%	171	4.9%	270	7.8%
2046	86	2.8%	171	4.9%	270	7.7%
2047	86	2.8%	171	4.9%	270	7.7%
2048	86	2.8%	171	4.9%	270	7.6%

2048

86

2.8%

171

4.9%

270

7.6%

TABLE 1-5 NIPSCO DEMAND RESPONSE CUMULATIVE ANNUAL MW SAVINGS BY SECTOR AND IN TOTAL

Table 1-6 provides annual budgets for these demand response programs for the 30-year planning period.

	Annual Utility Demand		Annual Utility Demand
Voor	Response Budget - Residential	Annual Utility Demand	Response Budget - All Sectors
2019	\$2,730,094	\$2,002,367	\$4,732,461
2020	\$6,201,027	\$4,874,288	\$11,075,315
2021	\$10,628,926	\$9,712,950	\$20,341,876
2022	\$9,239,009	\$12,920,270	\$22,159,279
2023	\$6,482,812	\$14,125,078	\$20,607,890
2024	\$5,398,053	\$14,295,026	\$19,693,079
2025	\$5,128,854	\$14,483,699	\$19,612,553
2026	\$5,089,518	\$14,624,045	\$19,713,563
2027	\$5,107,204	\$14,739,249	\$19,846,452
2028	\$5,140,800	\$14,853,289	\$19,994,090
2029	\$7,122,333	\$15,076,395	\$22,198,729
2030	\$9,662,116	\$15,127,386	\$24,789,502
2031	\$12,391,809	\$15,222,908	\$27,614,717
2032	\$10,025,815	\$15,300,350	\$25,326,165
2033	\$7,008,310	\$15,377,322	\$22,385,633
2034	\$5,872,307	\$15,360,829	\$21,233,136
2035	\$5,597,235	\$15,438,448	\$21,035,684
2036	\$5,559,865	\$15,494,316	\$21,054,181
2037	\$5,579,953	\$15,530,692	\$21,110,645
2038	\$5,614,453	\$15,567,209	\$21,181,662
2039	\$5,450,304	\$15,575,196	\$21,025,500
2040	\$5,456,694	\$15,583,343	\$21,040,037
2041	\$5,462,073	\$15,591,639	\$21,053,712
2042	\$5,463,512	\$15,600,089	\$21,063,601
2043	\$5,465,092	\$15,608,695	\$21,073,787
2044	\$5,471,593	\$15,617,460	\$21,089,053
2045	\$5,480,432	\$15,626,388	\$21,106,820
2046	\$5,488,230	\$15,635,482	\$21,123,711
2047	\$5,495,020	\$15,644,745	\$21,139,765
	¢۲ 200 070	\$15,654,181	\$21,155,130

1.3 COST-EFFECTIVENESS FINDINGS

present value (NPV) savings to NIPSCO's residential customers is \$254 million for the thirty-year planning overall UCT benefit/cost ratio for the residential portfolio of energy efficiency programs is 2.0. The net programs included in the DSM Savings Update Report have a UCT ratio greater than or equal to 1.0. The for residential programs and new measures from 2019 to 2048. All twelve residential energy efficiency and C&I programs included in this DSM Savings Plan Update. Table 1-7 shows the UCT benefit/cost ratios This section provides summary information on Utility Cost Test (UCT) benefit/cost ratios for residential

savings. period. The NPV of benefits in the UCT benefit/cost ratio calculations are based on net MWH and MW

TABLE 1-7 UTILITY COST TEST BENEFIT/COST RATIOS FOR RESIDENTIAL ENERGY EFFICIENCY PROGRAMS (2019 TO 2048 PERIOD)	st ratios for resider	NTIAL ENERGY EFFICIEN	CY PROGRAMS (2019 TI	o 2048 Period)
Residential Sector Program	NPV Benefits	NPV Costs	Net Benefits	BC Ratio
HVAC Energy Efficient Rebates	\$20,240,111	\$7,423,449	\$12,816,661	2.7
Residential Lighting	\$38,182,714	\$13,738,788	\$24,443,926	2.8
Home Energy Assessment	\$7,720,421	\$5,194,212	\$2,526,210	1.5
Appliance Recycling	\$7,481,400	\$4,676,459	\$2,804,941	1.6
School Education	\$20,025,721	\$7,765,296	\$12,260,425	2.6
Multifamily Direct Install	\$11,325,004	\$4,749,094	\$6,575,911	2.4
Home Energy Report	\$15,204,076	\$12,735,292	\$2,468,784	1.2
Residential New Construction	\$18,270,532	\$5,017,439	\$13,253,094	3.6
HomeLife EE Calculator	\$18,414,941	\$6,111,400	\$12,303,541	3.0
Employee Education	\$6,151,825	\$2,864,091	\$3,287,734	2.1
IQW	\$7,149,749	\$4,261,258	\$2,888,490	1.7
New Measures	\$332,828,064	\$174,474,645	\$158,353,418	1.9
Total	\$502,994,559	\$249,011,424	\$253,983,135	2.0

savings to NIPSCO's C&I customers is \$838 million for the thirty-year planning period. efficiency programs included in the DSM Savings Update Report have a UCT ratio greater than 1.0. The overall UCT benefit/cost ratio for the C&I sector portfolio of energy efficiency programs is 6.5. The NPV Table 1-8 shows the UCT benefit/cost ratios for C&I programs from 2019 to 2048. All the C&I energy

TABLE 1-8 UTILITY COST LEST BETREFITY COST RATILOS FOR CATENERGY EFFICIENCY PROGRATIVIS (2019 10 2048 PERIOD)		XI EINERGT EFFICIEINCT	PROGRAIVIS (2019 IO 2	2048 PERIODJ
Program	NPV Benefits	NPV Costs	Net Benefits	UCT Ratio
Custom	\$340,264,393	\$60,474,877	\$279,789,516	5.6
New Construction	\$98,374,129	\$18,786,751	\$79,587,378	5.2
Prescriptive	\$396,617,207	\$38,748,919	\$357,868,288	10.2
RetroCommissioning	\$16,901,754	\$7,739,152	\$9,162,602	2.2
Small Business Direct Install	\$87,942,866	\$16,596,204	\$71,346,663	5.3
New Measures Prescriptive	\$23,743,405	\$5,029,889	\$18,713,516	4.7
New Measures Custom	\$9,439,944	\$1,990,940	\$7,449,004	4.7
New Prescriptive Ag Measures	\$2,859,702	\$523,495	\$2,336,207	5.5
New Measures New Construction	\$15,594,391	\$3,778,988	\$11,815,403	4.1
Total	\$991,737,791	\$153,669,216	\$838,068,576	6.5

TABLE 1-8 UTILITY COST TEST BENEFIT/COST RATIOS FOR C&I ENERGY EFFICENCY PROGRAMS (2019 TO 2048 PERIOD)

for the Direct Load Control of Space Heating programs for both the residential and C&I sectors. Table 1-9 shows the UCT ratios for demand response programs. All programs were cost-effective except

IABLE 1-9	TABLE 1-9 UTILITY COST LEST BENEFIT/COST RATIOS FOR DEIVIAND RESPONSE PROGRAMS (2019 10 2048 PERIOD)	KAIIOS FOR DEIVIAIND	KESPOINSE PROGRA	AIVIS (2019 IO 2048 PI	
Sector	DR Program Option	NPV Benefits	NPV Costs	Net Benefits	UCT Ratio
	DLC AC	\$207,755,255	\$63,937,910	\$143,817,346	3.25
Residential	DLC Space Heating	\$36,606,272	\$68,437,475	-\$31,831,203	0.53
	DLC EWH	\$43,877,386	\$18,254,930	\$25,622,456	2.40
	DLC AC	\$19,253,739	\$3,106,474	\$16,147,265	6.20
	DLC Space Heating	\$2,110,262	\$2,806,827	-\$696,565	0.75
C&I	DLC EWH	\$9,384,198	\$2,674,703	\$6,709,495	3.51
	Interruptible Tariff	\$215,950,168	\$98,335,692	\$117,614,476	2.20
	Third Party Aggregator	\$213,654,425	\$56,084,259	\$157,570,166	3.81

TABLE 1-9 UTILITY COST TEST RENEFIT/COST RATIOS FOR DEMAND RESPONSE PROGRAMS (2019 TO 2048 PERIOD)

1.4 RECOMMENDED PROGRAMS

1.4.1 Residential Section Programs

existing programs, including solar water heating, heat pump water heaters, refrigerator coil cleaning households. In addition, GDS recommends that NIPSCO add several new energy efficiency measures to brushes, dryer ductwork and vent cleaning, high efficiency clothes washers and other measures that GDS 2021 DSM Plan, but consider adding a new whole house retrofit program for qualifying low-income GDS recommends that NIPSCO retain the residential energy efficiency programs included in the 2019 identified as cost effective. ರ

1.4.2 C&I Sector Programs

equipment distributors and contractors to stock and sell energy efficient measures, such as heating and systems, is fast emerging as a potentially more effective and productive alternative to the customary GDS recommends that NIPSCO retain the C&I energy efficiency programs that are included in the 2019 to cooling equipment. contractors who work between the manufacturers and end users. Incentives are provided directly to customer prescriptive Efficiency Program. This program model, especially for heating, ventilation and air conditioning (HVAC) 2021 DSM Plan, and assess the feasibility, cost and benefits of implementing a Midstream Energy incentive program. Midstream incentive programs target distributors and

maintenance, duct repair and sealing, high efficiency servers, fan system optimization, evaporative preincluding agricultural measures, solar water heating, geothermal heat pumps, HVAC and compressed air GDS recommends that NIPSCO add several new energy efficiency measures to existing programs, cooler and other measures that GDS identified as cost effective.

NIPSCO should investigate the broader applicability for the Prescriptive Program, which could increase While some or all of these measures may be eligible to receive incentives through the Custom Program, market penetration.

GDS also recommends that NIPSCO consider offering a separate agricultural energy efficiency program.

1.5 ENERGY EFFICIENCY AND DEMAND RESPONSE BUNDLES

GDS grouped DSM Plan energy efficiency and demand response measures into bundles according to each measure's cost of saved energy or demand to model energy efficiency and demand response programs in

measures: NIPSCO's 2018 Integrated Resource Plan. GDS created three bundle categories for energy efficiency

- Measures with a utility incentive cost ranging from \$.00 to \$.01 per lifetime kWh saved
- Measures with a utility incentive cost ranging from \$.011 to \$.05 per lifetime kWh saved
- Measures with a utility incentive cost over \$.05 per lifetime kWh saved

response bundles are outlined in Section 8. are detailed in Section 10. The cumulative annual MW savings and annual utility budgets for the demand The cumulative annual MWH and MW savings and annual utility budgets for the energy efficiency bundles

are: cumulative kW saved over the 30-year IRP planning period (2019 to 2048). The demand response bundles GDS grouped demand response programs into three bundles by calculating the levelized cost per

- BUNDLE 1: \$40/kW-year to \$60/kW-year: includes C&I DLC of air conditioning (AC) and DLC of electric water heating equipment
- BUNDLE 2: \$60/kW to \$80/kW-year: includes Residential DLC of water heating equipment and the C&I Third-Party Aggregator program
- BUNDLE 3: Over \$80/kW-year: includes residential DLC of AC and Interruptible Tariff
- **1.6 REPORT ORGANIZATION**

The remainder of this report is organized as follows:

SECTION 2: Glossary of Terms

SECTION 3: Introduction

SECTION 4: Characteristics of Electricity Consumption in the NIPSCO Service Area

SECTION 5: DSM Savings Update Methodology

SECTION 6: Residential Sector Energy Efficiency Savings Plan

SECTION 0: C&I Sector Energy Efficiency Savings Plan

SECTION 0: Demand Response Potential

SECTION 9: Scenario Analysis Results

SECTION 10: Energy Efficiency Bundles

SECTION 11: Summary

2 Glossary of Terms

The following list defines the key energy efficiency and demand response terms used in this report.

non-measure related costs of efficient equipment). This is often referred to as maximum achievable potential. Achievable potential scenario possible (e.g., providing end-users with payments for the entire incremental cost of more that energy efficiency can realistically be expected to displace assuming the most aggressive program monitoring and evaluation, etc.), and the ability administrators to ramp up program activity over time. takes into account real-world barriers to convincing end-users to adopt energy efficiency measures, the Conducting Energy Efficiency Potential Studies" defines achievable potential as the amount of energy use Achievable Potential: The November 2007 National Action Plan for Energy Efficiency "Guide for delivering programs (administration, marketing, tracking systems,

distribution costs that can be avoided if electricity consumption can be reduced with energy efficiency or demand response programs. Avoided Costs: For this report, electric avoided costs are defined as the generation, transmission and

the annual kWh use per bulb per household for a compact fluorescent light (CFL) light bulb that provides efficiency light bulb (e.g., an light emitting diode, or LED bulb), the base case end-use intensity would be and Security Act (EISA) lighting backstop provisions go into effect, if the efficient measure is a high the more efficient technology either replaces or affects. For example, assuming the Energy Independence customer in each market segment. This is the consumption of the electric energy using equipment that the same lumens as the LED bulb. Base Case Equipment End-Use Intensity: The annual electricity used by each base-case technology per

with the electric system peak load period. Coincidence Factor: The fraction of connected load expected to be "on" and using electricity coincident

be cost-effective energy efficiency measure or program. If the benefits are greater than the costs, the measure is said to Cost-Effectiveness: A measure of the relevant economic effects resulting from the implementation of an

from both new participants and ongoing savings from past participants. Since some energy efficiency the sum of all prior year incremental values. measures have relatively short lives where their savings decline over time, cumulative annual is not always Cumulative Annual: Refers to the overall annual savings in a given year for energy efficiency measures

a service and manufacturing facilities that produce goods. This includes NIPSCO's C&I customers C&I Sector: Includes non-manufacturing facilities and premises typically used to sell a product or provide

market conditions, such as curtailment or load control programs Demand Response: Refers to electric demand resources involving dynamic hourly load response to

DSM: This is an abbreviation for demand-side management.

Energy Efficiency Potential Studies" refers to the subset of the technical potential that is economically Economic Potential: The November 2007 National Action Plan for Energy Efficiency "Guide for Conducting

cost-effective as compared to conventional supply-side energy resources as economic potential. Both (e.g., marketing, analysis, administration, evaluation) that would be necessary to capture them. Finally, they only consider the costs of efficiency measures themselves, ignoring any programmatic costs technical and economic potential ignore market barriers to ensuring actual implementation of efficiency.

process heat, cooling). End-Use: A category of equipment or service that consumes energy (e.g., lighting, refrigeration, heating,

with energy conservation, energy conservation means using less of a resource even if this results in a consumer in an economically efficient way. Although energy efficiency is sometimes used interchangeably lower service level (e.g., setting a thermostat lower or reducing lighting levels). Energy Efficiency: Using less energy to provide the same or an improved level of service to the energy

a given DSM technology. Incentive Costs: A rebate or some form of payment used to encourage electricity consumers to implement

response measures for a specific year. Incremental: Savings or costs associated with only new installations of energy efficiency or demand

STAR[®] [™] home package may be treated as a single measure. cases higher-efficiency central air conditioners, sensor-controlled lighting, and retro-commissioning. In some to a building shell, implementation of control strategies, or changes in consumer behavior. Examples are Measure: Any action taken to increase energy efficiency, whether through changes in equipment, changes bundles of technologies or practices may be modeled as single measures. For example, an ENERGY

used to refer to the output of a power plant. MW: A unit of electrical output, equal to one million watts (megawatt) or one thousand kilowatts typically

watts of power in one hour MWH: One thousand kilowatt-hours, or one million watt-hours. One MWH is equal to the use of 1,000,000

program. The impact of other influences, such as consumer self-motivation, is removed. Since there is a particular program) can be complex. large range of influences on consumers' energy consumption, attributing changes to a single cause (i.e., a Net Savings: Net energy or demand savings is the portion of gross savings that is attributable to the

marketing costs, data tracking and reporting, program evaluation, etc.) paid to the customer (i.e.: program administrative costs, contractor management costs, Non-Incentive Cost: Costs incurred by the utility or program administrator that do not include incentives program

of purchasing and installing the efficient equipment, above the cost of standard equipment, that are borne consumption and the incentives received by the customer, including any applicable tax credits by the customer. The benefits include bill savings realized to the customer through reduced energy installing the energy efficiency measure (homeowner, business, etc.). Costs include the incremental costs Participant Cost Test (PCT): The PCT examines the costs and benefits from the perspective of the customer

or the set of all programs conducted by one energy efficiency organization or utility Portfolio: Either a collection of similar programs addressing the same market, technology, or mechanisms;

pursued by a wide range of approaches (typically includes multiple energy efficiency measures). Program: A mechanism to encourage energy efficiency that may be funded by a variety of sources and

given set of programs and funding. Program potential studies can consider scenarios ranging from a single "achievable" in contrast to "maximum achievable." The studies estimate the achievable potential from a different program funding levels. program to a full portfolio of programs. A typical potential study may report a range of results based on funding levels and designs as program potential. Often, program potential outcomes are referred to as Energy Efficiency Potential Studies" refers to the efficiency potential possible given specific program Program Potential: The November 2007 National Action Plan for Energy Efficiency "Guide for Conducting

changes in utility revenues and operating costs caused by energy efficiency and demand response programs. Rate Impact Measure (RIM) Test: The RIM test measures changes to customer bills or rates as related to

generally measured in costs per first year or per lifetime MWH saved (\$/MWH), per lifetime kilowatt hour (kWh) saved (\$/kWh), or lifetime million British thermal units (MMBtu) saved (\$/MMBtu) Resource Acquisition Costs: The cost of energy savings associated with energy efficiency programs,

energy consumption (e.g., increased insulation, low flow devices, lighting occupancy controls, economizer equipment before the end of its operating life with higher-efficiency units (also called "early retirement"). ventilation systems). Retrofit also refers to installing additional controls, equipment, or materials in existing facilities to reduce Retrofit: An efficiency measure or efficiency program that encourages the user to replace functional

potential. application of the efficient technology. The savings factor is used in formulas to calculate energy efficiency Savings Factor: The percentage reduction in electricity or natural gas consumption resulting from the

the energy efficiency program. All costs are included for the utility and the participants. The TRC test takes TRC test includes costs to purchase and install the energy efficiency measure and overhead costs to run for a region or service area from the combined perspective of the utility and program participants. into account the avoided costs of energy and capacity and any quantifiable non-energy benefits (such as reduced emissions of carbon dioxide). Total Resource Cost (TRC) Test: The TRC test measures the net benefits of the energy efficiency program The

energy and capacity implement and evaluate a program. The UCT takes into account the benefits of avoided utility costs of or service area from the utility's perspective. The UCT includes costs for incentives and costs to design, Utility Cost Test (UCT): The UCT measures the net benefits of the energy efficiency program for a region

3.1 OVERVIEW OF THE PLANNING PROCESS FOR THIS REPORT

planning period, starting with 2019. The report captures insights from NIPSCO's 2016 AEG Potential Study The objectives of the NIPSCO DSM Savings Update Report are to: as well as NIPSCO's current and planned program offerings described in NIPSCO's 2019 to 2021 DSM Plan. This DSM Savings Update Report provides an update of DSM program costs and savings for a thirty-year

- _ Develop a detailed plan identifying recommended cost-effective DSM savings programs, as well as any possible market barriers for each recommended program. measures and
- Ν Identify best practices and programs and explain how the recommended practices and programs will achieve the desired results in NIPSCO's service territory.
- ω Place emphasis on innovative energy efficiency and demand response programs and technologies.
- 4 Provide detailed budgets for each program.
- С Provide a lifetime cost analysis.
- 6 Provide a cost-effectiveness³ comparison or ranking for all DSM savings measures reviewed
- 7 Complete cost-effectiveness evaluations for each proposed program

3.2 DESCRIPTION OF DATA SOURCES

Listed below are the key data sources GDS used to develop the NIPSCO DSM Savings Update Report:

- NIPSCO responses to GDS data requests
- NIPSCO DSM testimony in its 2019 to 2021 DSM Plan
- Indiana Technical Reference Manual, Version 2.2
- DSMore Batch Tool output files for the NIPSCO 2019 to 2021 DSM Plan
- Evaluation reports for NIPSCO DSM programs
- Illinois Technical Reference Manual (2016)
- NIPSCO 2016 AEG Potential Study
- Input from NIPSCO's Oversight Board
- electric utilities in the Midwest GDS study of incentive and non-incentive costs for energy efficiency programs implemented by
- 2004 and 2008 National Energy Efficiency Best Practices Studies
- American Council for an Energy-Efficient Economy, Best Practice Studies
- Southwest Energy Efficiency Project, Best Practice Studies
- State of Texas, Guide to Best Practices
- E-Source, Best Practice Studies
- U.S. Energy Information Administration (EIA) Form 861 Energy Efficiency Program data Descriptions of energy efficiency programs from websites of other electric utilities

³ GDS calculated the TRC Test, the UCT, the Participant Test and the RIM Test for each measure. GDS used the UCT test to determine measure, program and portfolio cost effectiveness. All of the results may be found in Appendices E and F.

3.3 THE NIPSCO SITUATION

to 2021 DSM Plan through 2048, providing a 30-year forecast for NIPSCO's energy efficiency and demand side portion of the IRP and to conduct the modeling of supply-side and demand-side resources for the IRP. In February 2018, NIPSCO requested that GDS develop an update of the NIPSCO 2019 to 2021 DSM Plan development of the update and extension of the NIPSCO 2019 to 2021 DSM Plan. response programs. NIPSCO also requested that GDS develop recommendations for adding new measures as part of the IRP update process. NIPSCO retained Charles River Associates (CRA) to develop the supplyand programs to the NIPSCO DSM Plan. Listed below are major factors GDS considered during the To meet the needs of the IRP development process, NIPSCO requested that GDS extend the NIPSCO 2019

3.3.1 Impact of Opt - Out Customers on the NIPSCO Electric Load Forecast

any energy efficiency savings for these opt-out C&I customers. sales. Thus, the base case energy efficiency forecast for this DSM Savings Update Report does not include Update Report. These "opt-out" C&I customers represent over 60% of NIPSCO's 2017 non-residential kWh NIPSCO's energy efficiency programs prior to January 1, 2017 were excluded from the DSM Savings GDS prepare the base case DSM Plan update assuming that C&I electric customers who had opted out of evaluation reports and NIPSCO's 2019 to 2021 DSM Plan. One important request from NIPSCO was that participation, measure and program savings data, results of NIPSCO's 2016 AEG Potential Study, NIPSCO's GDS reviewed the latest information available from NIPSCO relating to energy efficiency program electric load and customer forecasts, NIPSCO end-use load research data, electric avoided costs, program

3.3.2 NIPSCO Energy Efficiency Plan for 2019 to 2021

Plan be added to the DSM Savings Update Report. NIPSCO agreed with this recommendation. measures are available to C&I customers through NIPSCO's Custom Program, they are not explicitly efficiency measures that were identified in the 2016 AEG Potential Study. Although many of these specific reviewing the 2019 to 2021 DSM Plan, GDS determined that the plan excluded many cost-effective energy GDS used the NIPSCO 2019 to 2021 DSM Plan as the first three years of the updated DSM Plan. After identified in the 2016 AEG Potential Study and not already explicitly included in the 2019 to 2021 DSM included in the 2019 to 2021 DSM Plan. GDS recommended to NIPSCO that the cost-effective measures

measures to the DSM Savings Update Report: Based on input from NIPSCO's Oversight Board, GDS also added the following residential and agricultural

High efficiency clothes washers
 Whole-house retrofit program for low-in.

Free

Livestock Waterer/Livestock Waterer – Energy

High Volume Low Speed Fans High Efficiency Exhaust Fans

Dairy Refrigeration Tune-Up

- Whole-house retrofit program for low-income customers
- Refrigerator coil cleaning brushes
- Dryer duct and vent cleaning
 Engine Block Heater Timer for Agricultural
- Equipment
- systems as measures to be considered for inclusion in the DSM Savings Update Report. states. Based on this review, GDS added residential heat pump water heaters and solar water heating Next, GDS reviewed the measures included in energy efficiency programs offered by utilities in other

3.3.3 2016 NIPSCO 2016 AEG Potential Study

average each year over the 20-year forecast period covered by that study. GDS compared the cumulative The 2016 AEG Potential Study projected incremental annual MWH savings of approximately 0.5% on

for the DSM Savings Update Report. This DSM Savings Update Report projects energy efficiency program annual MWH savings from the 2016 AEG Potential Study to the MWH savings proposed in the base case incremental annual savings that are significantly higher on average every year than those projected in the 2016 AEG Potential Study.

3.3.4 Changes That Impact Estimates of Energy Efficiency Potential

made for some of these are discussed below. To prepare the NIPSCO DSM Savings Update Report, GDS updated several input assumptions; the changes

3.3.4.1 Updated NIPSCO Load Forecast, Avoided Cost Forecast and General Planning Assumptions

develop the DSM Savings Update Report. assumptions for the general inflation rate, escalation rates for NIPSCO electric rates, the utility discount increase 0.3% a year on average through the year 2048. NIPSCO also provided GDS with updated planning forecast to calculate the percent of electric MWH sales and peak demand saved each year by DSM In March 2018, NIPSCO sent GDS the latest electric load forecast for 2018 through 2039. Charles River rate, line losses by class of service and the planning reserve margin. GDS used these assumptions to programs. NIPSCO's new load forecast projects that total MWH sales to ultimate customers will only Associates then extended the NIPSCO load forecast through the year 2048. GDS used this new load

3.3.4.2 NIPSCO DSM Plan Assumptions for Measure Costs, Savings, Useful Lives

assumptions for some energy efficiency measures if more recent data was available from NIPSCO GDS reviewed the assumptions for measure costs, savings and useful lives included in the 2019 to 2021 evaluation reports or recently published Technical Reference Manuals from Michigan and Illinois NIPSCO DSM plan and updated these assumptions where appropriate. GDS revised costs and/or savings

light bulbs. The NIPSCO 2019 to 2021 DSM plan assumed that the baseline technology for a residential light bulb was a 60-watt incandescent bulb The largest change for a measure assumption was to the baseline energy efficiency level for residential

recommend allowing a sell-through period to the year 2022, or 2023 at the latest. Another Efficiency Vermont assumed a one-year phase-in period for this efficacy standard. Other experts Vermont, however, decided for planning purposes that LEDs would be the baseline standard in 2020. lighting backstop provisions specify 45 lumens per watt efficacy starting January 1, 2020. Efficiency uncertainty about when the new EISA backstop provisions for lighting efficiency will take effect. The EISA 15 years for LEDs. recommendation GDS received was to shorten the useful life of LEDs. GDS previously used a useful life of GDS collected information from industry experts and program implementation contractors, showing

baseline technology after 2021 for general service bulbs become a CFL or equivalent bulb that meets the efficiency for most light bulbs will be significantly increased. GDS recommends going forward, that the the new EISA standard will decrease the achievable potential for lighting savings because the baseline EISA standard will not allow bulbs to be sold that do not meet the new efficacy requirements. Therefore, there is uncertainty about whether these efficacy standards will go into effect on January 1, 2020. The delaying or canceling the implementation of these new lighting efficacy standards. As of August 2018, recent energy industry news articles, GDS understands that the Trump administration is considering EISA backstop provision efficacy level of 45 lumens per watt. The new efficacy standard for lighting is scheduled by law to go into effect on January 1, 2020. Based on

3.3.4.3 Federal Appliance and Equipment Efficiency Standards

standards to improve energy efficiency that will save consumers energy and money. This DOE program than 60 products, representing about 90% of home energy use, 60% of commercial building energy use, was initially authorized to develop, revise, and implement minimum energy efficiency standards by the and 30% of industrial energy use. standards. The DOE is currently required to periodically review standards and test procedures for more have required regular updates these standards and has expanded the list of products covered by the Federal Energy Policy and Conservation Act (EPCA) in 1975. Several subsequent legislative amendments The U.S. Department of Energy (DOE) develops and implements federal appliance and equipment

efficiency advocates, and the general public, to participate in the rulemaking process. The standards meet to comply with EPCA. These are amended by subsequent energy legislation and reflect the businesses when determining whether any new or amended standard is economically justified economically justified. The DOE must consider the impact on consumers, manufacturers, and small C&I is required to set efficiency standards that maximize energy savings that are technologically feasible and set forth in the Federal Advisory Committee Act. The process culminates in a final rule in which the DOE facilitate deeper stakeholder engagement by allowing for negotiated rulemakings under the guidelines program established the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) to DOE encourages all stakeholders, including consumers, manufacturers, trade associations, utilities, energy program's obligation to review all standards every six years and test procedures every seven years. The The standards program's predictable rulemaking schedule is driven by statutory deadlines the DOE must

bulbs. efficiency standards for those standards that are currently in place or expected to be implemented by the DOE after 2021, including the EISA backstop provisions for general service, reflector and specialty light This DSM Savings Update Report takes into account the impacts of federal appliance and equipment

3.3.5 Cost-Effectiveness Findings

report. These findings provide the present value of costs, benefits, net dollar savings and Utility Cost Test Cost test, the Participant Test and the Rate Impact Measure test. report provide cost effectiveness ratios for all measures based on the Utility Cost Test, the Total Resource benefit/cost ratios for the energy efficiency and demand response measures. The appendices of this The primary cost-effectiveness findings for 2019 through 2048 are in Sections 1, 6, 7, 8, and 9 of this

Service Area Characterization of Electricity Consumption in the NIPSCC

NIPSCO service area. This section provides an overview of historical and forecast information for electricity use by sector in the

4.1 ANALYSIS OF FORECAST OF KWH SALES AND CUSTOMERS BY SECTOR

gas customers and 468,000 electric customers across the northern third of Indiana. As shown on the service area map, Duke Energy serves the largest geographical region in Indiana, followed by NIPSCO, company and the second largest electric distribution company in Indiana, with more than 819,000 natural Figure 4-1 shows the electric utility service areas in Indiana⁴. NIPSCO is the largest natural gas distribution Indiana & Michigan Power Company and Vectren.

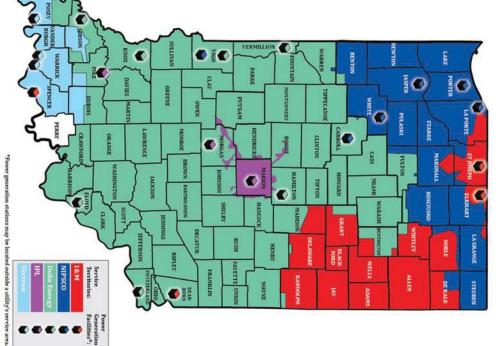


FIGURE 4-1 INDIANA ELECTRIC UTILITY SERVICE TERRITORIES

sales percentages by market sector to the residential, commercial and industrial sectors in 2020 are 21%, Figure 4-2 shows NIPSCO's forecast of annual MWH sales by market sector for 2017 to 2048. Total electric 24% and 55% respectively).

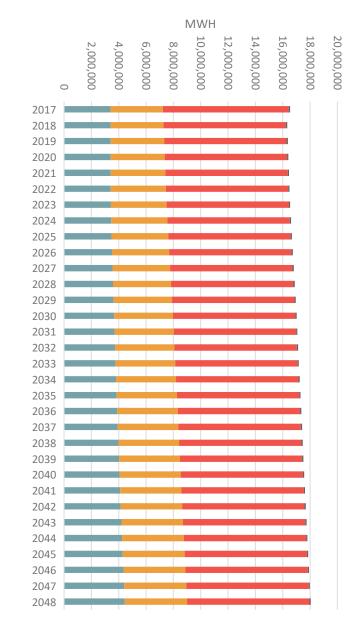


FIGURE 4-2 FORECAST OF ANNUAL MMH SALES BY MARKET SEGMENT, 2017-2048 (MMH) Residential (MWh) Commercial (MWh) Industrial (MWh) Other (MWh)

sector are projected to stay flat through 2048. projected to increase on average 0.4% per year over the period from 2018 through 2048. MWH sales to the residential sector are projected to increase the fastest at 0.9% per year; while sales to the industrial Table 4-1 shows the load forecast data used in Figure 4-2. NIPSCO's total annual MWH electric sales are

TAE	BLE 4-1 FORECAST	OF ANNUAL ELEC	CTRIC SALES BY M/	TABLE 4-1 FORECAST OF ANNUAL ELECTRIC SALES BY MARKET SEGMENT, 2018-2048 (MMH)	18-2048 (MWH)	
		Residential	Commercial	Industrial	Other	Total
Year		(MWH)	(MWH)	(MWH)	(MWH)	(MWH)
2017		3,391,385	3,842,073	9,204,406	102,632	16,437,864
2018		3,410,511	3,870,784	8,946,803	100,471	16,228,098
2019		3,419,840	3,910,422	8,946,803	98,287	16,277,064
2020		3,418,287	3,949,329	8,952,929	96,282	16,320,544
2021		3,418,378	3,991,648	8,952,929	93,920	16,362,954
2022		3,413,121	4,031,039	8,952,929	91,736	16,397,089
2023		3,429,702	4,071,806	8,952,929	91,736	16,454,437
2024		3,452,144	4,108,912	8,952,929	91,914	16,513,984
2025		3,480,056	4,147,675	8,952,929	91,736	16,580,660
2026		3,506,664	4,185,585	8,952,929	91,736	16,645,178

Attachingpptdix A Page 151

	Residential	Commercial	Industrial	Other	Total
Year	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)
2027	3,541,334	4,218,771	8,952,929	91,736	16,713,034
2028	3,581,230	4,252,308	8,952,929	91,914	16,786,467
2029	3,623,926	4,277,261	8,952,929	91,736	16,854,116
2030	3,666,725	4,304,926	8,952,929	91,736	16,924,580
2031	3,696,367	4,331,067	8,952,929	91,736	16,980,363
2032	3,728,359	4,351,071	8,952,929	91,914	17,032,358
2033	3,762,824	4,370,867	8,952,929	91,736	17,086,619
2034	3,803,157	4,391,294	8,952,929	91,736	17,147,380
2035	3,849,051	4,413,355	8,952,929	91,736	17,215,335
2036	3,893,443	4,426,330	8,952,929	91,914	17,272,702
2037	3,935,763	4,433,845	8,952,929	91,736	17,322,536
2038	3,979,056	4,442,509	8,952,929	91,736	17,374,494
2039	4,021,734	4,449,579	8,952,929	91,736	17,424,243
2040	4,066,934	4,461,329	8,952,929	91,736	17,572,928
2041	4,112,643	4,473,110	8,952,929	91,736	17,630,417
2042	4,158,865	4,484,922	8,952,929	91,736	17,688,451
2043	4,205,606	4,496,764	8,952,929	91,736	17,747,036
2044	4,252,873	4,508,639	8,952,929	91,736	17,806,177
2045	4,300,671	4,520,544	8,952,929	91,736	17,865,881
2046	4,349,007	4,532,481	8,952,929	91,736	17,926,153
2047	4,397,885	4,544,450	8,952,929	91,736	17,987,000
2048	4,447,313	4,556,450	8,952,929	91,736	18,048,428
Compound average annual rate of growth 2018 to 2048	0.9%	0.5%	0.0%	-0.3%	0.4%

4.2 BREAKDOWN OF NIPSCO ANNUAL MWH SALES BY SECTOR

1, filed with FERC in April 2018. In 2017, 57% of NIPSCO MWH sales were to the Large or Industrial sector, FERC Form 1. Figure 4-3 shows a breakdown of NIPSCO's annual MWH sales reported on the 2017 Form The Federal Energy Regulatory Commission (FERC) developed class of service categories to be used on exclude resale electricity sales. 23% were to the Small or Commercial sector, and 20% were to the Residential sector. These numbers

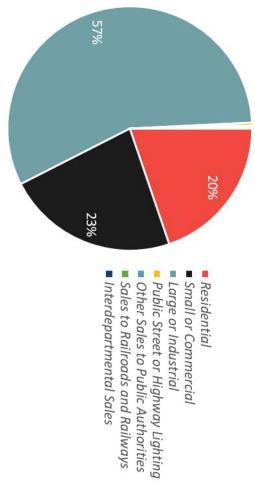
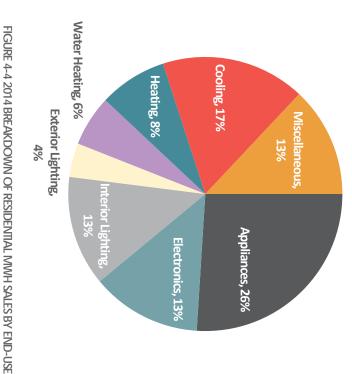


FIGURE 4-3 ACTUAL 2017 NIPSCO MWH SALES BY FERC FORM 1 MARKET SEGMENT

for the period 2017 to 2048. Over fifty percent of NIPSCO's annual MWH sales are forecasted to be in the Table 4-2 presents the forecast of the market share for annual MWH sales to each major customer sector industrial sector for the next three decades.

Year	Residential (MWH)	Commercial (MWH)	Industrial (MWH)	Other (MWH)	Total (MWH)
2017	20.6%	23.4%	56.0%	0.6%	100.0%
2018	21.0%	23.9%	55.1%	0.6%	100.0%
2019	21.0%	24.0%	55.0%	0.6%	100.0%
2020	20.9%	24.2%	54.9%	0.6%	100.0%
2021	20.9%	24.4%	54.7%	0.6%	100.0%
2022	20.8%	24.6%	54.6%	0.6%	100.0%
2023	20.8%	24.7%	54.4%	0.6%	100.0%
2024	20.9%	24.9%	54.2%	0.6%	100.0%
2025	21.0%	25.0%	54.0%	0.6%	100.0%
2026	21.1%	25.1%	53.8%	0.6%	100.0%
2027	21.2%	25.2%	53.6%	0.5%	100.0%
2028	21.3%	25.3%	53.3%	0.5%	100.0%
2029	21.5%	25.4%	53.1%	0.5%	100.0%
2030	21.7%	25.4%	52.9%	0.5%	100.0%
2031	21.8%	25.5%	52.7%	0.5%	100.0%
2032	21.9%	25.5%	52.6%	0.5%	100.0%
2033	22.0%	25.6%	52.4%	0.5%	100.0%
2034	22.2%	25.6%	52.2%	0.5%	100.0%
2035	22.4%	25.6%	52.0%	0.5%	100.0%
2036	22.5%	25.6%	51.8%	0.5%	100.0%
2037	22.7%	25.6%	51.7%	0.5%	100.0%

TAB
BLE
4-2
FORE
S
STO
FA
NNN ¹
₽
ELEC
TRIC
S
LES B
MA
RKET
SEGN
MENI
, 20
100-
2048
(MM)
F


Attachianen Attachianen Page 153

Year	Residential (MWH)	Commercial (MWH)	Industrial (MWH)	Other (MWH)	Total (MWH)
2038	22.9%	25.6%	51.5%	0.5%	100.0%
2039	23.1%	25.5%	51.4%	0.5%	100.0%
2040	23.1%	25.4%	50.9%	0.5%	100.0%
2041	23.3%	25.4%	50.8%	0.5%	100.0%
2042	23.5%	25.4%	50.6%	0.5%	100.0%
2043	23.7%	25.3%	50.4%	0.5%	100.0%
2044	23.9%	25.3%	50.3%	0.5%	100.0%
2045	24.1%	25.3%	50.1%	0.5%	100.0%
2046	24.3%	25.3%	49.9%	0.5%	100.0%
2047	24.5%	25.3%	49.8%	0.5%	100.0%
2048	24.6%	25.2%	49.6%	0.5%	100.0%

4.3 BREAKDOWN OF ELECTRICITY CONSUMPTION BY BUILDING TYPE AND END-USE

commercial, and industrial sectors respectively by end-use for 2014. This data was obtained from the 2016 Figure 4-4, Figure 4-5, and Figure 4-6 show a breakdown of NIPSCO electric sales to the residential, Management (DSM) Market Potential Study for Electricity" ⁵ AEG Potential Study report titled "Northern Indiana Public Service Company (NIPSCO) Demand-side

Figure 4-4 shows NIPSCO total 2014 residential MWH electric sales with appliances as the largest water heating (6%), and exterior lighting (4%). Miscellaneous end-use represented the remaining 13%. percentage (26%), followed by cooling (17%), electronics (13%), interior lighting (13%), heating (8%),

⁵ "Northern Indiana Public Service Company (NIPSCO) Demand-side Management (DSM) Market Potential Study for Electricity – Revised Report", published by Applied Energy Group, Inc. Revised August 8, 2016.

lighting having the largest percentage of market share (28%), followed by cooling (23%), exterior lighting Figure 4-5 shows NIPSCO total 2014 commercial sector MWH electric sales by end-use with interior food preparation (1%). Miscellaneous end-use represented the remaining 8%. (12%), office equipment (9%), ventilation (8%), heating (6%), water heating (3%), refrigeration (2%), and

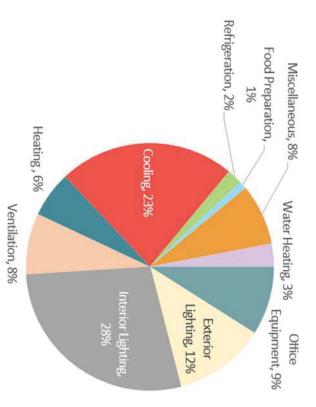


FIGURE 4-5 2014 BREAKDOWN OF COMMERCIAL MWH SALES BY END-USE

treatment and vending machines) represented the remaining 5%. Combined, electric motor and process percentage of market share (38%), followed by process use (21%), interior lighting (13%), cooling (13%), Figure 4-6 shows NIPSCO total 2014 industrial MWH electric sales with electric motors as the largest use accounted for 59% of total 2014 industrial MWH electric sales. computers, servers, refrigeration, laundry equipment, ventilation (4%), heating (3%). Miscellaneous end-use (includes end uses such as office equipment, air conditioning, transformers, and water

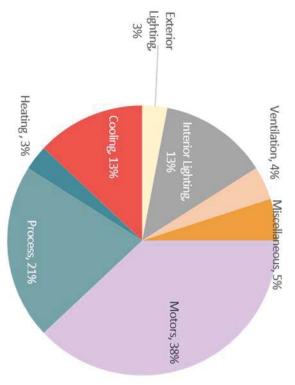


FIGURE 4-6 2014 BREAKDOWN OF INDUSTRIAL MWH SALES BY END-USE

Savings Update Methodology

5.1 DSM SAVINGS POTENTIAL IN THE DSM SAVINGS UPDATE REPORT

implementation contractor indicated it could achieve up to the levels listed in the settlement reached by costs and savings of NIPSCO's current and planned program offerings described in NIPSCO's 2019 to 2021 NIPSCO's 2016 AEG Potential Study, recent process and impact evaluations of NIPSCO's programs, and to cover years 2022 to 2048. To extend the budgets and savings beyond 2022, GDS examined results from This section describes the methodology GDS used to extend projected kWh and kW savings and budgets uses the costs and savings forecasted in the NIPSCO 2019 to 2021 DSM Plan. the parties in Cause No. 44872 ("Second Bids"). For the first three years, the DSM Savings Update Report DSM Plan. NIPSCO set 2019 to 2021 Energy Efficiency Plan goals based on the savings the program

GDS added new energy efficiency measures to the plan for the years after 2021 from three categories:

- _ Energy efficiency measures that were found to be cost effective in the NIPSCO 2016 AEG Potential Study and were not already included in the NIPSCO 2019 to 2021 DSM Plan.
- Ν Additional energy efficiency measures recommended by NIPSCO's Oversight Board
- ω NIPSCO 2019 to 2021 DSM Plan. Energy efficiency measures offered by other Midwest electric utilities and not already included in the

5.2 MODELING FRAMEWORK

models, model inputs and outputs as deliverables for this savings update. This report includes all planning reserve margin and other key assumptions. GDS is providing NIPSCO with the DSM planning assumptions, the general inflation rate, the discount rate for financial analysis, avoided costs, line losses, not "black boxes." The model user can view all model input data such as measure costs and savings and model outputs can be viewed by the user. One major advantage of the GDS models is that they are periods ranging from one to thirty years. These models are transparent and all formulas, model inputs costs, participants, kWh and kW savings, savings of other fuels, and benefit/cost ratios for planning demand response planning models. These models are used to develop forecasts of measure and program lives and the cost of conserved energy for each measure. assumptions used by GDS for DSM measure costs, per unit measure kWh and kW savings, measure useful To prepare this DSM Savings Update Report, GDS used Microsoft Excel-based energy efficiency and

kWh savings for each energy efficiency measure: The GDS energy efficiency planning model uses the following formula to calculate incremental annual

kWh Savings (Net) for year t	Incremental Annual
П	
ing	Annual Dorl Init Moacuro
×	
Participants in Year t	Drojected Number of
×	
Ratio	Not to Groce

EQUATION 5-1 FORMULA USED TO CALCULATE INCREMENTAL ANNUAL KWH SAVINGS FOR ENERGY EFFICIENCY MEASURES

each energy efficiency measure: measure and uses the following formula to calculate incremental annual summer peak kW savings for The GDS model calculates the kWh savings over the useful life designated for each energy efficiency

	Savings (Net) for year t	Summer Peak kW	Incremental Annual
5		Ш	
	Measure	Peak kW Savings for Each	Annual Per Unit Summer
		×	
	רמו מכוףמות: זורו במדנ	Particinants in Vent	Drainted Number of
		×	
	Natio	Partin	Not to Grace

EQUATION 5-2 FORMULA USED TO CALCULATE INCREMENTAL ANNUAL SUMMER PEAK KW SAVINGS FOR ENERGY EFFICIENCY MEASURES

efficiency measure The GDS model calculates the summer peak kW savings over the useful life designated for each energy

5.3 ENERGY EFFICIENCY AND DEMAND RESPONSE PROGRAMS AND BUNDLES

MW savings and utility DSM program costs in two ways: GDS has provided the summary of projected incremental annual and cumulative annual MWH savings,

- Projected costs, MWH and MW savings broken down by program; and
- Projected costs, MWH and MW savings broken down by measure levelized incentive cost per lifetime kWh saved category.

the measure incentive cost per lifetime kWh saved or cost per lifetime kW saved of DSM resources. modeling framework for the IRP to determine how much DSM should be selected for the IRP based on information for the IRP process. This breakdown of projected MWH and MW savings will allow the NIPSCO The breakdown by measure incentive cost per lifetime kWh saved category was developed to provide

5.4 IMPACT OF NEW EISA EFFICIENCY STANDARDS ON RESIDENTIAL LIGHTING MWH AND MW SAVINGS

provision efficacy level of 45 lumens per watt be the baseline technology for general service light bulbs. standard. GDS recommends that after 2021, a CFL or equivalent bulb that meets the EISA backstop about which types of bulbs (i.e., general service, reflector or specialty) will be covered by the new EISA 3 of this report, there is uncertainty about the effective date of the new efficacy standard for lighting, and that do not meet the new efficacy requirements for light bulbs of 45 lumens per watt. As noted in Section efficiency standard, scheduled to go into effect on January 1, 2020, will not allow light bulbs to be sold baseline energy efficiency level for residential general service, reflector and specialty bulbs. The EISA The NIPSCO 2019 to 2021 DSM Plan assumed that a 60-watt, conventional incandescent bulb was the

wattage going forward of 7 watts). While GDS assumed that annual residential lighting hours of use will drop to 6 watts (based on an energy efficiency baseline for a CFL bulb of 13 watts and an average LED bulbs will be significantly increased. The kW demand (wattage) savings for residential light bulbs in the lighting MWH MW savings in the NIPSCO service area because the baseline efficiency for residential light residential lighting savings after 2021 will drop by 88% from the savings levels in 2021 remain at 902, and if all other factors are held constant, because of the new standard NIPSCO's annual 2019 to 2021 DSM plan of 51 watts (based on a baseline of 60 watts and an LED wattage of 9 watts) will This new EISA standard for residential lighting will significantly decrease the achievable potential for

5.5 EXPLANATION OF FUTURE TRENDS IN NIPSCO'S ENERGY EFFICIENCY POTENTIAL

programs for the period 2019 to 2048. These savings projections should be viewed as an extension of the The DSM Savings Update Report presents projections of future savings from NIPSCO energy efficiency

study.⁶ GDS decided to adopt the AEG participation rate forecasts for each measure because they were forecasts developed by AEG and included in Appendix B of the 2016 NIPSCO energy efficiency potential rate forecasts are applied to the measure kWh savings assumptions used in this Update Report. trends for cumulative annual MWH savings for the residential sector that result when these participation potential studies conducted in the region as well as NIPSCO specific data. Figure 5-1 shows the long-term developed using a systematic approach and were based on a literature search conducted by AEG of program participants would adopt through NIPSCO programs, GDS used the measure participation rate NIPSCO 2019 to 2021 DSM Plan. To develop estimates of the number of each efficiency measure that

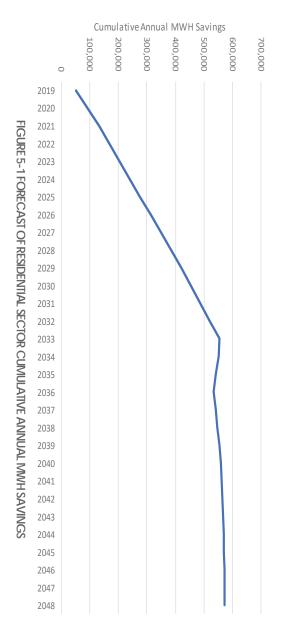
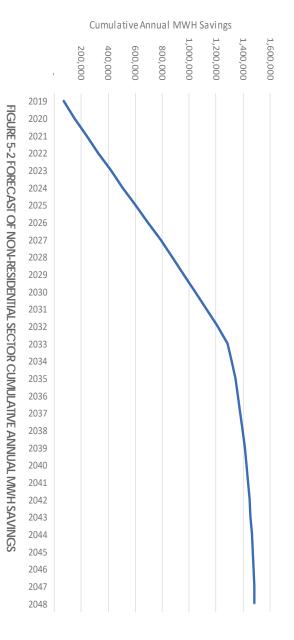



Figure 5-2 shows the long-term trend for cumulative annual MWH savings for the non-residential sector used in this Update Report. that result when these participation rate forecasts are applied to the measure kWh savings assumptions

⁶ According to this 2016 study, these rates represent customer adoption of economic measures when delivered through a best-practice portfolio of well-operated efficiency programs under a reasonable policy or regulatory framework. Information channels are assumed to be established and efficient for marketing, educating consumers, and coordinating with trade allies and delivery partners. The primary adjusted upward assumption and customer participation is expected to continue at this pace, then the market adoption rates for that measure were bring the adoption rates into alignment. For example, if the program achieved a higher adoption rate than suggested by the initial adoption from the region. The initial rates were then compared with recent NIPSCO program results and adjustments were made, if necess ary, to barrier to adoption reflected in this case is customer preferences. The initial adoption rates were developed from other potential studies

cumulative annual MWH sales starting in the year 2034: annual MWH savings levels off. There are two key factors that contribute to the leveling off of the increases every year (after 2019) through 2033. In 2034 the rate of increase in the level of cumulative GDS notes that the level of the cumulative annual MWH savings shown in Figure 5-1 and Figure 5-2

- and no longer contribute energy savings. While this study assumes that units retiring in 2034 will be The first factor is that energy efficiency measures installed in 2019 reach the end of their useful lives savings level that existed in 2033 (the prior year). replaced with a measure having similar annual kWh savings, such replacements only maintain the
- Ν measure become well known in the marketplace. In in the third stage of the product life cycle, the first year or two. In the second stage of the product life cycle market penetration accelerates as a penetration curve. In general, this product life cycle "S" curve starts with slower penetration in the The second factor is that the market penetration of energy efficiency measures follows an "S" shaped maximum penetration. rate of market penetration declines as a market becomes saturated and reaches its long-term

constant after 2036. Similar market penetration trends occur for most of the other energy efficiency to increase from just under 600,000 a year in 2019 to approximately 730,000 by 2036, and then stay ð projected to be purchased and installed through NIPSCO's residential lighting program for the period 2019 potential study. This figure shows the forecast of the number of residential general service bulbs that are measures included the DSM Savings Update. Figure 5-3 below provides an example of the market penetration rate forecast for LED bulbs from the 2016 2048. As one can see, the number of LED bulbs purchased and installed through this program is forecast

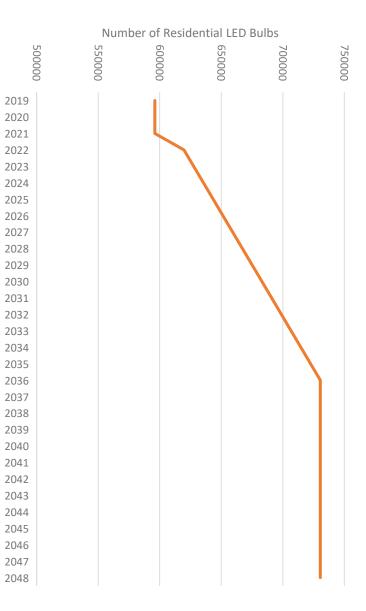


FIGURE 5-3 FORECAST OF RESIDENTIAL LED GENERAL SERVICES BULBS PURCAHSED AND INSTALLED THROUGH THE NIPSCO RESIDENTIAL LIGHTING PROGRAM

Residential Sector Energy Efficiency Savings Plan

6.1 OVERVIEW OF RESIDENTIAL SECTOR ELECTRIC ENERGY EFFICIENCY SAVINGS

sector. The residential sector includes single-family, multi-family, manufactured, and mobile homes. The GDS will prepare a new energy efficiency potential study for NIPSCO by June 31, 2019. DSM Plan, but not as a comprehensive, new energy efficiency potential study for the NIPSCO service area. 2019 to 2021 DSM Plan to 2048. This report should be viewed as an update to the NIPSCO 2019 to 2021 low case savings forecasts are presented in Section 9. The DSM Savings Update Report extends the NIPSCO energy efficiency potential estimates in this section represent the base case forecast. Additional high and This section provides achievable electric energy efficiency savings estimates for the NIPSCO residential

For this update, GDS added many residential energy efficiency measures to the DSM Plan Update after 2021, including the following measures:

- energy efficiency budget by over \$7.5 million. See Appendix F for a description of this program and program implemented by Ameren Illinois. GDS assumed 750 low-income participants a year after by the Citizen's Action Coalition ("CAC")⁷. GDS based the design and costs for this program on a similar GDS added a comprehensive whole house retrofit program for low-income customers as requested eligible participants and measures. 2021 with costs of approximately \$10,000 per participant. This program alone will increase the annual
- NIPSCO's 2019 to 2021 DSM Plan. to participants in the residential energy efficiency programs will be equal to the incentive levels in residential programs. GDS assumed that the percent of incremental measure costs paid as incentives GDS added heat pump water heaters and solar water heaters as measures available through NIPSCO's
- and vent cleaning services as requested by stakeholders. GDS added high efficiency washing machines, refrigerator coil cleaning brushes and dryer ductwork
- Plan. potential study as being cost effective but were not yet included in the NIPSCO 2019 to 2021 DSM GDS added 98 additional residential energy efficiency measures that were identified in the 2016 AEG

efficiency program portfolio budget starting in 2022. Adding all of these programs and measures result in a significant increase in the NIPSCO residential energy

6.1.1 Energy Efficiency Measures

and costs from NIPSCO's 2019 to 2021 DSM Plan. GDS reviewed this data and updated these measure GDS obtained the majority of data on residential energy efficiency measure costs, kWh and kW savings the NIPSCO 2016 AEG Potential Study but were not already included in NIPSCO's 2019 to2021 DSM Plan. assumptions for years after 2021 where necessary. measures added by GDS as suggested by NIPSCO's stakeholders. These new measures were included in The measures included in this analysis are based on NIPSCO's 2019 to 2021 DSM Plan with several new Report. Table 6-1 provides a summary of measures included for each end use in the residential sector. There are 249 unique residential electric energy efficiency measures included in the DSM Savings Update

⁷ According to the CAC web site, "CAC's activities include performing research, carrying out public education campaigns, organizing citizens, creating public awareness, lobbying legislators, intervening in utility cases before the Indiana Utility Regulatory Commission, and litigating when necessary"

End Use	Measure Types Included
	 Energy Star Desktop and Laptop Computers, Monitors,
Electronic Equipment	 Energy Star Smart Power Strips
	– Energy Star Televisions
	 Energy Star Refrigerators
	 Energy Star Freezers
	 Energy Star Washing Machines
Appliances	 Energy Star Clothes Dryers
	- Energy Star Dehumidifier
	- Retrigerator Pick-up and Recycling
	- Freezer Fich-up and necycling
	– Building Insulation Improvements (Attic, Wall, Floor, Etc.)
	 Air sealing (Weatherization)
בוועפוטטפ	 High Efficiency Windows
	- Cool Roofing
	 High Efficiency Heating Equipment (e.g., Heat PUMP with ECM)
	 Heating & Cooling Duct Sealing and Repair
HVAC Equipment	 High Efficiency Natural Gas Furnace
	 High Efficiency Natural Gas Boiler
	– Wi-Fi Smart Thermostat
	 Interior LED Bulbs and Fixtures
Lighting	 Exterior LED Bulbs and Fixtures
	- LED NIGHTIIGHTS
	- Pool Pump Controls
Pools	- High Efficiency Pool Pumps
	- High Efficiency Pool Pump Heaters
) -	 High Efficiency Central Air Conditioning System
space Cooling	- Air Source Heat Pump
	 Energy Star Room Air Conditioner
	 High Efficiency Water Heater
	 Heat Pump Water Heater
Water Heating	 Faucet Aerators & Low Flow Showerheads
	 How Water Pipe and Tank Insulation
	 Solar Water Heating System
	 Home Energy Reports and Other Types of Behavioral Programs
	 Energy Efficiency Education Kits for Employees of NIPSCO's
	Customers
Other	 High Efficiency Well Pump
	 High Efficiency Hot Tub
	 Dryer Vent Cleaning
	 Refrigerator Coil Cleaning

TABLE 6-1 TYPES OF ELECTRIC ENERGY EFFICIENCY MEASURES INCLUDED IN THE RESIDENTIAL SECTOR ANALYSIS

6.1.2 Achievable Electric Energy Efficiency Potential

with measures that were: The achievable electric energy efficiency potential for the residential sector includes savings associated

Included in the NIPSCO 2019 to 2021 DSM Plan.

were suggested by NIPSCO's stakeholders). Added to the plan by GDS (including those in NIPSCO's 2016 energy efficiency potential study or that

Table 6-2 shows the cumulative annual achievable residential sector energy efficiency potential for 2019 to 2048 and estimates of the annual NIPSCO energy efficiency budgets for residential sector programs.

	Incremental Annual Energy	Incremental Annual Demand	
Year	Savings (MWH)	Savings (MW)	Annual Utility Cost (\$)
2019	50,974	10	\$9,817,510
2020	50,947	17	\$9,815,352
2021	50,918	24	\$9,809,956
2022	46,240	42	\$20,822,174
2023	46,887	61	\$21,039,511
2024	47,503	79	\$21,266,204
2025	48,178	86	\$21,494,687
2026	48,716	117	\$21,714,354
2027	49,287	137	\$21,941,024
2028	49,744	156	\$22,134,851
2029	50,231	175	\$22,347,479
2030	50,686	195	\$22,551,800
2031	51,166	215	\$22,763,349
2032	51,645	234	\$22,980,009
2033	52,173	254	\$23,222,465
2034	52,411	268	\$23,417,367
2035	52,659	281	\$23,617,690
2036	53,050	294	\$23,829,888
2037	53,050	298	\$23,975,771
2038	53,050	301	\$24,124,717
2039	53,050	304	\$24,276,791
2040	53,050	307	\$24,432,059
2041	53,050	310	\$24,590,588
2042	53,050	311	\$24,752,445
2043	53,050	313	\$24,917,702
2044	53,050	314	\$25,086,429
2045	53,050	315	\$25,258,699
2046	53,050	316	\$25,434,587
2047	53,050	317	\$25,614,169
2048	53,050	318	\$25,797,522

TABLE 6-2 ACHIEVABLE RESIDENTIAL SECTOR INCREMENTAL ANNUAL ENERGY EFFICIENCY POTENTIAL AND ANNUAL UTILITY BUDGETS (BASE CASE)

efficiency program savings as a percent of forecast annual retail sales are projected to be 10.8% by 2028 and 13.8% by 2038. residential sector forecast MWH sales. NIPSCO's residential sector cumulative annual MWH energy Table 6-3 shows the base case cumulative annual energy efficiency potential as a percent of total annual

13.0%	4,397,886	142	572,828	2047
13.1%	4,349,007	142	571,874	2046
13.3%	4,300,672	142	570,698	2045
13.4%	4,252,874	142	569,310	2044
13.5%	4,205,607	141	567,657	2043
13.6%	4,158,865	140	565,657	2042
13.7%	4,112,643	138	563,346	2041
13.7%	4,066,935	136	558,537	2040
13.8%	4,021,734	147	553,384	2039
13.8%	3,979,056	146	547,742	2038
13.7%	3,935,763	143	540,698	2037
13.7%	3,893,443	141	533,259	2036
14.1%	3,849,051	140	542,667	2035
14.5%	3,803,157	140	551,963	2034
14.7%	3,762,824	140	554,315	2033
14.0%	3,728,359	131	522,331	2032
13.2%	3,696,367	122	489,118	2031
12.4%	3,666,725	114	455,925	2030
11.6%	3,623,926	105	421,381	2029
10.8%	3,581,230	96	387,093	2028
9.9%	3,541,334	87	350,132	2027
8.9%	3,506,664	79	313,423	2026
8.0%	3,480,056	70	277,045	2025
7.0%	3,452,144	61	240,718	2024
6.0%	3,429,702	53	204,891	2023
5.0%	3,413,121	43	169,506	2022
3.9%	3,418,378	34	133,111	2021
2.7%	3,418,287	25	92,051	2020
1.5%	3,419,840	17	50,975	2019
Residential Sector MWH Sales	Forecast (MWH)	Annual Demand Savings (MW)	Cumulative Annual Energy Savings (MWH)	Year
Cumulative Annual MWH Savings As A Percent of	Residential Sector Sales	Cumulative	Residential Sector	
	NIPSCO			

TABLE 6-3 ACHIEVABLE RESIDENTIAL SECTOR ENERGY EFFICIENCY POTENTIAL AS A PERCENT OF SALES (BASE CASE)

CT C' \++'
212 7NN N
(MWH)
Forecast
Sector Sales
Residential
NIPSCO

efficiency program for each existing and proposed NIPSCO program. Additional energy efficiency Table 6-4 shows a breakdown of the cumulative annual energy efficiency potential by residential energy "new measures." measures added to the NIPSCO 2019 to 2021 DSM Plan by GDS are shown separately and identified as

to 2021 DSM Plan by GDS are shown separately and identified as "new measures". existing and proposed NIPSCO program. Additional energy efficiency measures added to the NIPSCO 2019 Table 6-5 shows annual budgets for 2019 through 2048 for residential energy efficiency programs for each

Decidential

													Residential
	111/10												Sector
	HVAC Energy		Home			Multi- Family	Home	Residential	Homelife				Total Cumulative
	Efficiency	Residential	Energy	Appliance	School	Direct	Energy	New	EE	Employee		New	Annual
	Rebates	Lighting	Assessment	Recycling	Education	Install	Report	Construction	Calculator	Education	IQW	Measures	MWH
Year	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	(MWH)	Savings
2019	2,396	26,172	2,145	1,647	2,580	1,127	9,786	854	2,064	1,006	1,197	0	50,975
2020	4,789	52,344	4,231	3,292	5,157	2,253	9,774	1,707	4,126	2,011	2,367	0	92,051
2021	7,178	78,515	6,314	4,935	7,731	3,377	9,763	2,561	6,185	3,015	3,536	0	133,111
2022	9,666	78,515	7,160	6,639	10,418	4,551	10,210	3,480	8,335	3,711	4,300	22,520	169,506
2023	12,187	78,515	8,016	8,363	13,143	5,741	10,359	4,421	10,515	4,417	5,053	44,161	204,891
2024	14,741	78,515	8,885	10,107	15,905	6,948	10,508	5,384	12,724	5,134	5,816	66,051	240,718
2025	17,328	78,515	9,766	11,871	18,705	8,171	10,657	6,369	14,964	5,860	6,591	88,247	277,045
2026	19,948	78,515	10,660	13,655	21,542	9,410	10,806	7,376	17,234	6,597	7,375	110,303	313,423
2027	22,600	78,515	11,567	15,460	24,417	10,665	10,955	8,405	19,534	7,344	8,171	132,498	350,132
2028	25,286	78,515	12,486	17,284	27,330	11,937	11,104	9,455	21,865	8,101	8,955	154,774	387,093
2029	28,005	78,515	13,012	19,129	29,290	13,006	11,253	10,528	23,433	8,482	9,575	177,152	421,381
2030	30,757	78,515	13,551	20,994	31,289	14,092	11,403	11,622	25,032	8,874	10,207	199,589	455,925
2031	33,541	78,515	14,103	21,232	33,327	15,194	11,552	12,738	26,662	9,277	10,848	222,129	489,118
2032	36,359	78,515	14,648	21,492	35,353	16,301	11,701	13,877	28,283	9,670	11,491	244,643	522,331
2033	39,209	78,515	15,023	21,774	36,819	17,422	11,850	15,037	29,456	9,841	12,066	267,303	554,315
2034	39,863	52,344	14,091	21,996	37,421	17,633	11,850	15,365	29,938	9,669	11,859	289,935	551,963
2035	40,533	26,172	13,155	22,197	37,890	17,845	11,850	15,693	30,312	9,442	11,650	305,927	542,667
2036	41,207	0	12,208	22,379	38,333	18,057	11,850	16,022	30,667	9,200	11,437	321,901	533,259
2037	41,604	0	12,528	22,540	38,717	18,227	11,850	16,284	30,974	9,287	11,642	327,044	540,698
2038	41,970	0	12,840	22,681	39,060	18,381	11,850	16,525	31,249	9,362	11,838	331,986	547,742
2039	42,307	0	12,999	22,802	39,366	18,518	11,850	16,744	31,493	9,428	11,956	335,922	553,384
2040	42,605	0	13,150	22,903	39,634	18,639	11,850	16,941	31,708	9,483	12,065	339,561	558,537
2041	42,870	0	13,291	22,983	39,864	18,744	11,850	17,116	31,892	9,528	12,164	343,044	563,346

Year	HVAC Energy Efficiency Rebates (MWH)	Residential Lighting (MWH)	Home Energy Assessment (MWH)	Appliance Recycling (MWH)	School Education (MWH)	Multi- Family Direct Install (MWH)	Home Energy Report (MWH)	Residential New Construction (MWH)	Homelife EE Calculator (MWH)	Employee Education (MWH)	іQW (МWН)	New Measures (MWH)	Residential Sector Total Cumulative Annual MWH Savings
2042	43,103	0	13,417	23,044	40,056	18,832	11,850	17,269	32,046	9,562	12,251	344,228	565,657
2043	43,302	0	13,531	23,084	40,211	18,904	11,850	17,401	32,170	9,587	12,328	345,290	567,657
2044	43,468	0	13,576	23,104	40,345	18,963	11,850	17,510	32,277	9,608	12,370	346,239	569,310
2045	43,602	0	13,617	23,104	40,458	19,010	11,850	17,598	32,367	9,625	12,404	347,064	570,698
2046	43,703	0	13,653	23,104	40,550	19,043	11,850	17,663	32,441	9,638	12,432	347,799	571,874
2047	43,770	0	13,681	23,104	40,620	19,064	11,850	17,707	32,497	9,648	12,451	348,436	572,828
2048	43,805	0	13,704	23,104	40,670	19,073	11,850	17,729	32,537	9,653	12,462	348,970	573,556

TABLE 6-5 BUDGETS FOR RESIDENTIAL ENERGY EFFICIENCY PROGRAMS (BASE CASE)

													Annual
	HVAC Energy		Home			Multifamily	Home	Residential	HomeLife				Residential
	Efficient	Residential	Energy	Appliance	School	Direct	Energy	New	EE	Employee		New	Energy Efficiency
Year	Rebates	Lighting	Assessment	Recycling	Education	Install	Report	Construction	Calculator	Education	IQW	Measures	Program Budget
2019	\$531,292	\$4,919,295	\$852,006	\$431,926	\$638,244	\$374,314	\$566,969	\$312,095	\$487,373	\$279,497	\$424,499	\$0	\$9,817,510
2020	\$530,548	\$4,919,292	\$851,001	\$431,417	\$637,491	\$377,244	\$566,298	\$312,095	\$486,799	\$279,167	\$424,000	\$0	\$9,815,352
2021	\$529,832	\$4,919,297	\$850,036	\$430,929	\$636,740	\$376,817	\$565,630	\$312,095	\$486,225	\$278,838	\$423,517	\$0	\$9,809,956
2022	\$499,655	\$0	\$237,287	\$288,712	\$494,889	\$315,162	\$849,222	\$338,361	\$393,173	\$176,973	\$267,198	\$16,961,541	\$20,822,174
2023	\$511,610	\$0	\$243,129	\$295,978	\$507,499	\$322,339	\$879,715	\$348,752	\$403,165	\$181,163	\$272,835	\$17,073,327	\$21,039,511
2024	\$523,820	\$0	\$249,088	\$303,415	\$520,403	\$329,655	\$911,114	\$359,301	\$413,388	\$185,433	\$278,571	\$17,192,016	\$21,266,204
2025	\$536,292	\$0	\$255,170	\$311,028	\$533,607	\$337,114	\$943,444	\$370,013	\$423,850	\$189,786	\$284,408	\$17,309,974	\$21,494,687
2026	\$549,034	\$0	\$261,376	\$318,823	\$547,121	\$344,721	\$976,730	\$380,893	\$434,555	\$194,224	\$290,349	\$17,416,528	\$21,714,354
2027	\$562,052	\$0	\$267,711	\$326,804	\$560,952	\$352,480	\$1,010,998	\$391,946	\$445,511	\$198,749	\$296,397	\$17,527,426	\$21,941,024
2028	\$575,354	\$0	\$274,177	\$334,975	\$575,108	\$360,393	\$1,046,274	\$403,176	\$456,725	\$203,364	\$302,554	\$17,602,750	\$22,134,851
2029	\$588,948	\$0	\$280,779	\$343,343	\$589,600	\$368,467	\$1,082,586	\$414,588	\$468,203	\$208,070	\$308,824	\$17,694,072	\$22,347,479
2030	\$602,842	\$0	\$287,519	\$351,911	\$604,434	\$376,704	\$1,119,962	\$426,188	\$479,952	\$212,871	\$315,210	\$17,774,206	\$22,551,800
2031	\$617,043	\$0	\$294,403	\$360,686	\$619,622	\$385,110	\$1,158,431	\$437,981	\$491,981	\$217,769	\$321,714	\$17,858,611	\$22,763,349
2032	\$631,559	\$0	\$301,433	\$369,673	\$635,172	\$393,688	\$1,198,021	\$449,972	\$504,296	\$222,766	\$328,340	\$17,945,090	\$22,980,009

Year	HVAC Energy Efficient Rebates	Residential Lighting	Home Energy Assessment	Appliance Recycling	School Education	Multifamily Direct Install	Home Energy Report	Residential New Construction	HomeLife EE Calculator	Employee Education	IQW	New Measures	Annual Residential Energy Efficiency Program Budget
2033	\$646,400	\$0	\$308,614	\$378,877	\$651,094	\$402,444	\$1,238,763	\$462,166	\$516,904	\$227,866	\$335,091	\$18,054,247	\$23,222,465
2034	\$658,002	\$0	\$312,546	\$384,281	\$665,172	\$408,085	\$1,264,777	\$474,570	\$528,056	\$230,688	\$338,156	\$18,153,033	\$23,417,367
2035	\$669,840	\$0	\$316,565	\$389,800	\$679,549	\$413,829	\$1,291,337	\$478,331	\$539,443	\$233,581	\$341,286	\$18,264,128	\$23,617,690
2036	\$677,898	\$0	\$320,094	\$395,434	\$690,472	\$419,679	\$1,318,455	\$482,171	\$548,075	\$236,111	\$344,484	\$18,397,016	\$23,829,888
2037	\$686,124	\$0	\$323,697	\$401,186	\$699,752	\$424,061	\$1,346,143	\$486,092	\$555,409	\$238,590	\$347,505	\$18,467,212	\$23,975,771
2038	\$694,524	\$0	\$327,376	\$407 <i>,</i> 059	\$709,227	\$428,534	\$1,374,412	\$490,095	\$562,897	\$241,121	\$350,589	\$18,538,883	\$24,124,717
2039	\$703,099	\$0	\$331,132	\$413,056	\$718,902	\$433,102	\$1,403,274	\$494,182	\$570,542	\$243,705	\$353,739	\$18,612,058	\$24,276,791
2040	\$711,855	\$0	\$334,967	\$419,178	\$728,779	\$437,765	\$1,432,743	\$498,354	\$578 <i>,</i> 348	\$246,344	\$356,954	\$18,686,771	\$24,432,059
2041	\$720,795	\$0	\$338,883	\$425,429	\$738,864	\$442,527	\$1,462,831	\$502,615	\$586,318	\$249,038	\$360,237	\$18,763,052	\$24,590,588
2042	\$729,922	\$0	\$342,881	\$431,811	\$749,161	\$447,388	\$1,493,550	\$506,965	\$594,455	\$251,788	\$363,589	\$18,840,935	\$24,752,445
2043	\$739,241	\$0	\$346,962	\$438,328	\$759,674	\$452,352	\$1,524,915	\$511,406	\$602,763	\$254,596	\$367,011	\$18,920,454	\$24,917,702
2044	\$748,756	\$0	\$351,130	\$444,981	\$770,407	\$457,420	\$1,556,938	\$515,940	\$611,245	\$257,463	\$370,505	\$19,001,642	\$25,086,429
2045	\$758,471	\$0	\$355,385	\$451,774	\$781,366	\$462,594	\$1,589,634	\$520,570	\$619,906	\$260,391	\$374,073	\$19,084,536	\$25,258,699
2046	\$768,389	\$0	\$359,729	\$458,709	\$792,556	\$467,877	\$1,623,016	\$525,297	\$628,748	\$263,380	\$377,715	\$19,169,170	\$25,434,587
2047	\$778,516	\$0	\$364,165	\$465,790	\$803,980	\$473,271	\$1,657,099	\$530,123	\$637,777	\$266,431	\$381,434	\$19,255,582	\$25,614,169
2048	\$788,856	\$0	\$368,693	\$473,020	\$815,644	\$478,778	\$1,691,899	\$535,051	\$646,994	\$269,547	\$385,231	\$19,343,809	\$25,797,522

6.2 BEST PRACTICES FOR RESIDENTIAL PROGRAMS

Since the late 1980s, energy efficiency programs have been operating successfully in various parts of the them are summarized below. U.S. Many energy efficiency program best practice strategies have evolved from these programs. Some of

key studies GDS reviewed and provides a road map of the best practices that are included in the design and delivery of energy-efficiency programs. This section of the report presents information on the GDS conducted a thorough literature search to obtain up-to-date information on best practices for the recommended programs.

6.3 KEY BEST PRACTICES STUDIES REVIEWED

Listed below are examples of key studies reviewed.

_ appliances, designing new office buildings, or operating existing buildings. efficiency programs being offered in various areas of the U.S. today. A common characteristic of the Efficient Economy's (ACEEE) reports on America's leading energy-efficiency programs.⁸ The GDS reviewed program participation and penetration data in the American Council for an Energy effectively change the customers' practices and transform the market, including purchasing new programs profiled in the ACEEE reports is their success in reaching customers through messages that information in these ACEEE reports clearly demonstrates the wide range of high-quality energy-

define "best practices" for successful energy-efficiency programs⁹: The winning programs, featured in these annual ACEEE reports, listed the following traits that help

Comprehensive approaches are being taken in all customer segments

- Customized services and customer-focused approaches are common
- Programs sell more than energy efficiency.
- Some very successful programs are tightly focused on a single service or technology.
- Program marketing and support services are essential for program success
- Program incentives, including rebates, have not gone away.
- Resource acquisition as a program objective has not gone away.
- Market transformation is a significant program objective and model.
- Utilities are still major providers of energy-efficiency services
- Non-utility programs are increasing.
- achieving significant market impacts. Partnerships and collaboratives that bring together a wide variety of market actors are keys to
- Effective "supporting" programs and services are important to achieve program success
- ENERGY STAR [®] features prominently in many of these programs.
- Ν that could improve end-use natural gas efficiency in New York. GDS has included the results of this Efficiency Programs."¹⁰ This study summarized best practices among the leading gas-efficiency GDS reviewed the findings in the 2005 NYSERDA-sponsored study "An Evaluation of Natural Gas programs in North America and specifically targeted types of programs or program characteristics

 ⁸ Dan York and Martin Kushler, "America's Best: Profiles of America's Leading Energy Efficiency Programs," published by the American Council for an Energy Efficient Economy, March 2003, Report Number U032.
 ⁹ Ibid., pp. 6-9.
 ¹⁰ David Zabetakis, "An Evaluation of Natural Gas Efficiency Programs," published by NYSERDA, July 2005.

programs. study here because all these best practices apply equally to electric and natural gas energy efficiency

According to this study, successful natural gas efficiency programs contain these key elements: 11

- Strong relationships among contractors, retailers, and trade allies.
- Strong training programs.
- Well-designed and well-executed program management and monitoring
- Results-based marketing and promotion.
- Consistent delivery of marketing and promotion messages
- Stability of regulatory treatment over time
- Responsiveness to customers and quality service
- Appropriate incentive levels for both service providers and consumers

implementation of these program elements. market segments The study also details specific ways that each of the key elements can be applied to different end-use and lists suggestions and characteristics that contribute to the successful

- ω best practices listed in this report apply equally well to other types of energy-efficiency programs. methodology to identify best practices for a wide variety of program types. The following excerpt is GDS reviewed the December 2004 National Energy Efficiency Best Practices Study.¹² The purpose from Quantum Consulting's National Energy Efficiency Best Practices Study¹³; GDS founds that the implementation, and evaluation of energy-efficiency programs. The project used a benchmarking this study was to develop and communicate best practices nationwide to enhance the design, ç
- à Program Theory and Design
- Develop a complete and well-thought-out program plan
- Involve multiple stakeholders
- Have a well-articulated theory or program logic
- Build feedback loops into the program design and implementation process
- Include features targeting supply-side actors in the program design
- Understand local market conditions
- Do not over-promise results
- ò Program Management: Project Management
- Put the process plan, including program management, in writing
- Keep management teams small
- Include stakeholders in developing program implementation plans
- Capture and retain institutional memory in-house
- contractors Spread implementation dollars among multiple "implementers," who may also be distributors or
- ņ **Program Management: Reporting and Tracking**
- development process Define and identify the key information needed to track and report early in the program
- Clearly articulate the data requirements to measure success
- Link databases to exchange information dynamically and minimize duplicative data entry

¹¹ Ibid., pp. 7-11.

- 12 3 National Energy Efficiency Best Practices Study, December 2004
- Quantum Consulting Inc., National Energy Efficiency Best Practices Study, Exhibit R2-E2

- Conduct regular checks of tracking reports to assess program performance
- Use the Internet to facilitate data entry and reporting; build in real-time data validation systems Develop accurate algorithms and assumptions on which to base estimates of savings
- that perform routine data quality functions
- Automate routine functions such as monthly reports
- Carefully document the tracking system and provide manuals for all users Build in rigorous quality control screens for data entry
- <u>0</u> Program Management: Quality Control and Verification
- Develop inspection and verification procedures during the program design phase
- Consider administrative costs in designing the verification strategy
- Provide quick and timely feedback to applicants
- Ensure that inspectors have adequate training to identify and explain reasons for failure
- transformation programs Use the inspection and verification function as a training tool for the market, especially in market
- Establish a streamlined inspection scheduling process
- based on observed performance and demonstrated quality work Build in statistical features to the sampling protocol to allow reduction in required inspections
- Φ **Program Implementation: Participation Process**
- Review and understand product availability before establishing product eligibility
- application procedures manuals or online help tools Offer personal assistance in preparing and submitting program applications, or provide thorough
- details Use the Internet to facilitate program participation, include procedures to report installation
- Provide contractors with easy-to-use load software for running the Manual J calculations (if required)
- Avoid being the middlemar
- Keep participation simple
- Provide contractors training on proper installation practices
- Develop a technical and procedures manual for participating market actors
- to promote high-efficiency equipment and to prompt customers to consider the high-efficiency Use incentives to prompt upstream market actors (contractors, distributors, and manufacturers)
- ÷ Program Implementation: Marketing & Outreach

alternative

- Use the ENERGY STAR® logo to instill consumer confidence
- Communicate with customers through multiple media
- Cooperate with retailers and contractors to promote the program
- messages to that audience Know your target consumer demographic and tailor your incentive structures and promotional
- Program Evaluation
- Ģ design Regularly complete and utilize program evaluation to support program rationale and program
- Develop evaluation metrics that are in line with program goals
- evaluation Clearly explain to participants early in the process any role they may be asked to play in the
- View evaluation results in the context of the overall market

- matched systems, proper sizing and proper installation practices installation practices and consumer awareness of benefits associated with high efficiency, Periodically review and update market-level information about AC distributor and contractor
- Periodically review and update algorithms for calculating project savings
- 4 from policy goals.¹⁴ programs that addressed multiple customer sectors, equipment markets, vintage segments, and and summarizes lessons learned in conducting the study. Portfolios of interest for this study were Conferences held annually in January or February. Among these papers was "Best Practices of Energy comprehensive in their coverage of technologies and practices and included a wide range of different identifies specific administrative- and policy-level approaches that have been found to be most useful The paper summarizes best practices benchmarking results across nine energy-efficiency portfolios Efficiency Portfolios," a report prepared as part of the National Energy Efficiency Best Practices Study. papers presented at the Association of Energy Services Professionals National Energy Services In addition to the December 2004 National Energy Efficiency Best Practices Study, GDS reviewed around the country, highlighting findings from selected portfolio practices. Additionally, it
- 'n Best practices for setting and tracking Portfolio Objectives are:
- Develop and use clearly articulated objectives that are internally consistent, actionable, and if possible, measurable.
- more specificity, the better. Establish goals and objectives that bring clarity to all aspects of the portfolio's operation. The
- financial risk/reward mechanisms; and are periodically updated research; aligned with the portfolio administrator's available resources, program tools, Set quantitative goals that are consistent with portfolio and policy objectives; backed by sound and
- and report progress back to the organization. Develop tools to track the portfolio's performance against these objectives on a continuous basis
- ò **Best practices for Portfolio Planning are:**
- but concisely articulated program theories. Design programs in the portfolio based on sound program plans; where appropriate, use clearly
- Solicit stakeholder input into the portfolio and program plans either through a formal interview
- conditions. Conduct selective market analyses around information gaps and key issues to understand market process or a collaborative planning process involving key stakeholders.
- Conduct baseline research.
- Allocate market research efforts strategically across the portfolio. Target resources toward the largest markets and those that are least understood
- of the filed portfolio and program plans. Use a structured and disciplined portfolio and program planning process, to ensure the integrity
- Develop a long-term market strategy and use it to guide market entry/exit decisions
- Link strategic approach to policy objectives and constraints.
- Build feedback loops into program design and logic.
- goals and objectives Maintain the flexibility to rebalance portfolio initiatives, as needed, to achieve the portfolio's

- ņ Best practices for Adaptation to Changes in Technologies and Market Conditions are:
- of new developments in technologies and program delivery strategies. Maintain a separate Research and Development (R&D) function (even if it is small) to keep abreast
- appropriate based on the longer-term market strategy. Proactively track new codes and standards that affect program baselines. Adjust programs when
- Participate in the development of new codes and standards when possible
- Balance these against established, proven strategies. Be willing to experiment with new program approaches that have proven successful elsewhere.
- Network with industry leaders and peers; stay connected to developments in the market
- Foster close relationships with market actors; rely on them for market intelligence

Ģ Best practices for Program Integration are:

- (e.g., energy conservation, water conservation, renewables, and demand response Design an integration strategy that includes programs with related and complementary goals
- seamless to the customer. efficiency, renewables, and financing measures from several different organizations but are Simplify participation in multiple programs. Offer one "bundle" that may consist of energy
- customers should be offered a whole building strategy that incorporates measures from multiple should be assigned a single point of contact that represents all related programs. Efficiently deliver integrated programs to all end-users regardless of their size. Larger customers programs. Smaller
- their strengths. organization's strengths and key interests. Clearly define roles and responsibilities that leverage Assign roles and responsibilities among complementary organizations that play to each
- specialists, etc. Leverage relationships from complementary organizations such as utilities, trade allies, industry
- Φ Best practices for Reporting and Tracking are:
- Clearly articulate the data requirements for measuring portfolio and program success
- managers, contractors, and evaluators. Design tracking systems to support the requirements of all major users: program administrators,
- that perform routine data quality functions. Use the Internet to facilitate data entry and reporting; build in real-time data validation systems
- Automate, as much as is practical, routine functions (e.g., monthly portfolio and program reports, financial tracking).
- Integrate financial tracking and payment functions.
- Develop accurate algorithms and assumptions on which to base savings estimates
- real-time reporting capability. Conduct regular checks of tracking reports to assess program performance; if possible, develop
- If possible, incorporate data likely to be needed for project assessments (such as historical billing data for large end-users).
- Periodically "mine" tracking data to understand historical portfolio and program experiences
- С detailed information on the lessons learned from implementation of energy-efficiency programs GDS reviewed the July 2006 National Action Plan for Energy Efficiency (NAPEE).¹⁵ This report provides organizations it reviewed are acquiring energy-efficiency resources for about \$0.03/lifetime kWh for across the U.S. For example, this report states that most of utilities and energy-efficiency

notes that energy-efficiency organizations operate in diverse locations under different administrative that is substantially less than the cost of new supply—on the order of half the cost. This report also four main areas: and regulatory structures. The best practices in the NAPEE report are broken down into the following electric programs. The report notes that in many cases, energy efficiency is being delivered at a cost

- ģ Recognize energy efficiency as a high-priority energy resource. Best practices for achieving this include:
- Establishing strong leadership at multiple levels to enact policy change
- Achieving organizational alignment to ensure that goals are realized.
- appropriate measures for all customer classes. Understanding the opportunities and costs of developing the efficiency resource to develop
- b- Develop a strong, long-term energy-efficiency plan:
- Align goals with funding.
- Provide programs for all key customer classes.
- Use cost-effectiveness tests that are consistent with long-term planning
- Consider building codes and appliance standards when designing programs
- Plan for developing and incorporating new technology.
- Consider efficiency investments to alleviate transmission and distribution constraints
- reduction goals. Create a road map that documents key program components, milestones, and explicit energy-
- C program design and delivery: Broadly communicate the benefits of, and opportunities for, energy efficiency through strong
- Conduct a market assessment with input from stakeholders, customers, and trade allies
- Leverage private-sector expertise, external funding, and financing.
- and training. Start with demonstrated program models; build infrastructure for the future through education
- 0 Budget, plan, and initiate evaluation from the onset; formalize and document evaluation plans Provide sufficient and stable program funding to deliver energy efficiency where cost effective:
- Develop program and project tracking systems.
- Conduct process evaluations to ensure that programs
- Conduct process evaluations to ensure that programs are working.
- Conduct impact evaluations to ensure that mid- and long-term goals are being met.
- tangible. Communicate evaluation results to key stakeholders. Include case studies to make success more

6.4 RECOMMENDED RESIDENTIAL PROGRAMS

refrigerator coil cleaning brushes, dryer ductwork and vent cleaning, high efficiency clothes washers and measures to existing programs, including such measures as solar water heating, heat pump water heating, and effective manner. In addition, GDS recommends that NIPSCO add several new energy efficiency qualifying low-income households if such a program can be designed to be administered in an efficient 2019 to 2021 DSM Plan, but consider adding a new program such as a whole-house retrofit program for GDS recommends that NIPSCO retain the residential energy efficiency programs that are included in the many other measures that GDS added that were cost effective

equipment if this program can be expanded to include electric water heating energy efficiency measures. efficient alternatives. The electric program promotes premium efficiency air conditioners, high-efficiency alternatives. These measures are paid per-unit installed, reimbursing customers for a portion of the cost. provide incentives to residential customers to replace inefficient HVAC equipment with energy efficient-HVAC Energy Efficient Rebates Program

 The HVAC Energy Efficient Rebates Program is designed to measures that could be added to this program include heat pump water heaters and solar water heating heat pumps, electronically commutated motors, and "smart" Wi-Fi thermostats. Examples of new The program's intent is to lower the financial barrier associated with the initial cost of these energy-

adjustments ensure that the program offers incentives for lighting products that meet the latest standards measures. As ENERGY STAR specifications change, program offerings are adjusted accordingly. These STAR specifications are an important external factor to certify the quality and efficiency of program products that meet the energy efficiency standards set by the U.S. DOE ENERGY STAR® Program. ENERGY to purchase and use energy-efficient lighting products. The program provides instant discounts on lighting Lighting Program • The Lighting Program is designed to motivate NIPSCO's residential electric customers products baseline energy efficiency light bulb will need to meet the EISA backstop efficacy provisions for lighting and highest quality of efficiency. GDS notes that the main factor that will change for this program is the

vent cleaning services and brushes for cleaning refrigerator coils. energy-efficiency measures. New measures that can be added to this program include dryer ductwork and an intense assessment leading to easy to achieve kWh savings opportunities. This program provides customers improve the efficiency and comfort of their homes, as well as deliver an immediate reduction homeowners with a Comprehensive Home Assessment report followed by installations of low-cost, in electricity consumption (measured in kilowatt hours (kWh)). This program is unique in that it provides Home Energy Assessment Program

 The Home Energy Assessment Program is designed to help eligible

freezer. residential customers who will recycle a qualifying primary or secondary working refrigerator and/or Appliance Recycling Program

 The Appliance Recycling Program is designed to provide an incentive to

an energy education kit containing quality, high-efficiency products and installation instructions for their national and state learning standards. Students participate in an energy education presentation at school At school, the program provides informative posters, classroom instruction, and activities aligned with savings by influencing fifth grade students and their families to focus on the efficient use of electricity. School Education Program • The School Education Program is designed to produce cost-effective electric at school families. They also complete a worksheet. The experience at home completes the learning cycle started and learn about basic energy concepts through class lessons and activities. For their home, students receive

complementary incentive offers available through other NIPSCO programs. Property managers are direct installation services provided by Phase I is a walkthrough assessment of each property, which is conducted to determine eligibility for the program generates immediate energy savings and improvements in two distinct program phases. containing three or more residences receiving service from NIPSCO. With flexible and affordable options, stop-shopping" experience to multifamily building owners, managers, and tenants of multifamily units Multifamily Direct Install Program • The Multifamily Direct Install Program is designed to provide a "onepresented with an Energy Improvement Plan that prioritizes recommendations along with a proposal to the Multifamily Direct Install Program, along with

bulbs, low-flow showerheads, faucet aerators, pipe wrap, and Wi-Fi or smart thermostats. Educational provide the direct installation services outlined in Phase II. Phase II is an in-unit direct installation of are also provided. materials about home operation, maintenance, and behavior factors that may reduce energy consumption energy-efficient devices at no or low-cost to the tenant or landlord, such as light emitting diode light

knowledge, resulting in changed behavior. usage better and uses competition through neighbor comparisons to influence customers to act on this energy usage in line with similar homes. The program empowers customers to understand their energy out if they do not wish to participate. The reports engage customers and drive them to act to bring their their homes more efficient. Customers are randomly chosen to participate in the program and may optcontain personalized information about their energy use and provide ongoing recommendations to make savings through behavioral modification. The program provides customers with home energy reports that Home Energy Report Program • The Home Energy Report Program is designed to encourage energy

strategies for incorporating the Silver, Gold, and Platinum designations into their marketing efforts to the homebuilders received to achieve the various Home Energy Rating System tiers, along with of single-family homes. This program produces long-term, cost-effective savings because of the training practices, with a focus on capturing energy efficiency opportunities during the design and construction builders and increases awareness and understanding of the benefits of energy-efficient building Residential New Construction Program

The Residential New Construction Program targets home attract home buyers.

implement to manage electric consumption; (2) allows eligible customers to request a free home energy kit; customers an online, no cost "do-it-yourself" audit and an energy savings kit for completing the audit. The HomeLife EE Calculator Program • The HomeLife EE Calculator Program offers NIPSCO's residential network of trade allies. efficiency portfolio; and (4) assists customers in finding qualified and experienced contractors through a (3) educates customers about the variety of programs available to them through the residential energy audit tool effectively: (1) identifies low-cost/no-cost measures that a residential customer can easily

training seminars to employees of NIPSCO's C&I customers by at their place of employment. Employees manage their energy consumption. Employees can also request a free energy efficiency kit online. receive Employee Education Program • The Employee Education Program provides residential energy efficiency educational materials that detail energy savings opportunities and methods to proactively

achieved to make the home more comfortable and reduce energy costs. $^{\rm 16}$ for Needy Families (TANF), Supplemental Security Income (SSI) or Supplemental Security Disability Income application. If the household meets these initial criteria, they automatically qualify for services regardless Comprehensive Home Assessment to identify areas of the home where additional energy savings can be (SSDI). Qualifying households receive direct installation of no-cost energy efficiency measures and a of income if the household receives Low-Income Home Energy Assistance (LIHEAP), Temporary Assistance active service and must not have received weatherization services in the past 10 years from the date of households. For a household to be eligible, the customer must be a NIPSCO residential customer with IQW Program • The IQW Program provides energy efficiency services to qualifying low-income

¹⁶ Ind. Code §8-1-8.5-10 states that a plan may include a home energy efficiency assistance program for qualified customers of the electricity supplier whether or not the program is cost effective. NIPSCO is offering the IQW Program, which has a benefit cost test score of 1.7 for thethirty-year planning horizon

to NIPSCO's residential customers is \$254 million for the thirty-year planning period. The NPV of benefits ratio for the residential portfolio of energy efficiency programs is 2.0. The Net Present Value (NPV) savings energy efficiency programs have a UCT ratio greater than or equal to 1.0. The overall UCT benefit/cost Residential Program Cost Effectiveness

 Table 6-6 shows the UCT benefit/cost ratios for the 2019 to benefit/cost ratios in Appendices E and F. in the UCT benefit/cost ratio calculations are based on net MWH and MW savings. See measure-level 2048 period for residential programs included in this DSM Savings Update Report. All twelve residential

TABLE 6-6 UTILITY COST TEST BENEFIT/COST RATIOS FOR RESIDENTIAL PROGRAMS (2019 TO 2048 PERIOD)	DST RATIOS FOR RESID	DENTIAL PROGRAMS (20)	19 TO 2048 PERIOD)	
Residential Sector Program	NPV Benefits	NPV Utility Costs	Net Benefits	BC Ratio
HVAC Energy Efficient Rebates	\$20,240,111	\$7,423,449	\$12,816,661	2.7
Residential Lighting	\$38,182,714	\$13,738,788	\$24,443,926	2.817
Home Energy Assessment	\$7,720,421	\$5,194,212	\$2,526,210	1.5
Appliance Recycling	\$7,481,400	\$4,676,459	\$2,804,941	1.6
School Education	\$20,025,721	\$7,765,296	\$12,260,425	2.6
Multifamily Direct Install	\$11,325,004	\$4,749,094	\$6,575,911	2.4
Home Energy Report	\$15,204,076	\$12,735,292	\$2,468,784	1.2
Residential New Construction	\$18,270,532	\$5,017,439	\$13,253,094	3.6
HomeLife EE Calculator	\$18,414,941	\$6,111,400	\$12,303,541	3.0
Employee Education	\$6,151,825	\$2,864,091	\$3,287,734	2.1
Income Qualified Weatherization ("IQW")	\$7,149,749	\$4,261,258	\$2,888,490	1.7
New Measures	\$332,828,064	\$174,474,645	\$158,353,418	1.9
Total	\$502,994,559	\$249,011,424	\$253,983,135	2.0

discount rate of 7.65% to be consistent with the IRP modeling that the Company has underway during the summer Program and 2.9 for the Home Energy Analysis Program for calendar year 2017. It is important to note that the 2017 ¹⁷ The NIPSCO 2017 Portfolio Evaluation Reports lists a Utility Cost Test ratio of 3.4 for the NIPSCO Residential Lighting Portfolio Evaluation Report used a nominal discount rate of 6.53%. This DSM Savings Plan Update uses a nominal and fall of 2018.

C&I Sector Energy Efficiency Savings Plan

7.1 OVERVIEW OF C&I SECTOR ELECTRIC ENERGY EFFICIENCY SAVINGS

efficiency savings forecasts are presented in Section 9. sector. The C&I sector includes commercial, industrial and agricultural customers. The energy efficiency This section provides estimates of the achievable electric energy efficiency savings for the NIPSCO C&I savings estimates in this section represent the base case forecast. Additional high and low case energy

7.1.1 Energy Efficiency Measures

current custom program may technically be able to accommodate many of these measures, most would in the 2016 AEG Potential Study. A total of 167 additional measures were considered. Although NIPSCO's efficiency potential analysis. Table 7-1 shows a summary of the types of measures included for each end typically be considered to be prescriptive or new construction measures. with some new measures added by GDS. These new measures are based on a review of measures included use in the C&I sector. The measures included in this analysis are based on NIPSCO's 2019 - 2021 DSM Plan There were 340 unique electric energy efficiency measures for the C&I sector included in the energy

End Use	Measure Types Included
Office Equipment	High Efficiency Servers, Computers and Office Equipment
1	Air System Maintenance
1	Variable Frequency Drive Compressed Air
Compressed Air –	Engineered Nozzle
1	Custom Compressed Air Measures
1	Retro-Commissioning
	Efficient Cooking Equipment
	Custom Kitchen
1	Building Insulation Improvements
Envelope –	High Efficiency Windows
1	Cool Roofing
1	Programmable and Smart Thermostats
	Custom EMS Installation/Optimization
	Occupancy Control System
1	Retro-Commissioning
I	Fixture Retrofits
1	Premium Efficiency T8 and T5
1	High Bay Lighting Equipment
	LED Bulbs and Fixtures
	Light Tube
1	Lighting Occupancy Sensors
1	Custom Interior and Exterior Lighting
1	Retro-Commissioning
	Pool Pump Controls
	High Efficiency Pool Pump Heaters
1	Vending Misers
Refrigeration –	Strip Curtains and Auto Door Closers
1	Efficient Refrigerators/Freezers/Ice Machines

TABLE 7-1 TYPES OF ELECTRIC ENERGY EFFICIENCY MEASURES INCLUDED IN THE C&I SECTOR ANALYSIS

Agriculture	Other	Water Heating	Ventilation	Space Cooling	
 Engine Block Heater Timer Energy Efficient/Energy Free Livestock Waterer High Volume Low Speed Fans High Efficiency Exhaust Fans Dairy Refrigeration Tune-up 	 Efficient Point of Sale Terminal Efficient Transformers Custom Motors and Drives Custom Process Custom Pumps/Fans Retro-Commissioning Process Retro-Commissioning Motors and Drives 	 Efficient Equipment High Efficiency HW Appliances Faucet Aerator/Low Flow Nozzles Pipe and Tank Insulation Heat Recovery Systems Efficient HW Pump and Controls Solar Water Heating System Pre-Rinse Spray Valves Desuperheater Custom Water Heating 	 Enthalpy Economizer Variable Speed Drive Duct Repair and Sealing Controlled Ventilation Optimization Demand Controlled Ventilation Custom Ventilation 	 Efficient Cooling Equipment Evaporative Pre-Cooler Economizer Air Source Heat Pump Geothermal Heat Pump Chiller/HVAC Maintenance Chilled Water Reset Room AC Retro-Commissioning 	 High Efficiency/Variable Speed Compressors ECM Cooler Motors Door Heater Controls Efficient Compressors and Controls Door Gaskets Floating Head Pressure Controls Display Case Lighting and Controls Custom Refrigeration Retro-Commissioning

7.1.2 Achievable Electric Energy Efficiency Savings

The achievable electric energy efficiency savings for the C&I sector includes savings associated with measures that are:

- Included in the NIPSCO 2019 to 2021 DSM plan.
- New energy efficiency measures added to the plan by GDS that pass the UCT.

of the annual energy efficiency budgets. Table 7-2 shows the cumulative annual achievable energy efficiency savings for 2019 – 2048 and estimates

\$18,137,597	198.5	1,477,839	2046
\$17,956,170	197.7	1,472,341	2045
\$17,778,475	196.7	1,465,211	2044
\$17,604,435	195.5	1,456,960	2043
\$17,433,974	194.1	1,447,692	2042
\$17,267,020	192.6	1,437,179	2041
\$17,103,500	190.9	1,425,373	2040
\$16,943,342	189.1	1,412,165	2039
\$16,786,479	187.0	1,397,364	2038
\$16,544,828	184.6	1,379,659	2037
\$16,307,510	182.1	1,361,070	2036
\$16,074,726	179.7	1,342,307	2035
\$15,824,693	176.5	1,317,466	2034
\$15,544,398	172.5	1,286,733	2033
\$15,187,942	161.1	1,206,636	2032
\$14,849,184	149.8	1,127,019	2031
\$14,432,594	138.5	1,046,587	2030
\$14,119,573	126.5	959,682	2029
\$13,798,511	114.6	873,445	2028
\$13,478,238	102.8	786,971	2027
\$13,163,727	91.0	696,948	2026
\$12,775,475	78.9	602,907	2025
\$12,444,981	66.9	510,798	2024
\$12,140,734	55.1	419,550	2023
\$11,839,493	43.1	325,796	2022
\$11,057,675	31.3	240,000	2021
\$10,052,432	19.8	152,000	2020
\$9,047,188	9.4	72,000	2019
Annual Cost (\$)	Cumulative Annual Demand Savings (MW)	Cumulative Annual Energy Savings (MWH)	Year
BUDGETS (BASE CASE)	TABLE 7-2 ACHIEVABLE C&I SECTOR ENERGY EFFICIENCY POTENTIAL AND ANNUAL BUDGETS (BASE CASE)	TABLE 7-2 ACHIEVABLE C&I SECTOR ENER	

TABLE 7-2 ACHIEVABLE C&I SECTOR ENERGY EFFICIENCY POTENTIAL AND ANNUAL BUDGETS (BASE CASE)

\$18,511,960	199.7	1,485,725	2048
\$18,322,833	199.2	1,482,283	2047
Annual Cost (\$)	Cumulative Annual Demand Savings (MW)	Cumulative Annual Energy Savings (MWH)	Year

Table 7-3 shows the cumulative annual energy efficiency savings as a percent of total C&I sector sales, excluding C&I customers that have opted out of NIPSCO's energy efficiency programs.

28.0%	5,292,379	1,482,283	2047
28.0%	5,280,410	1,477,839	2046
27.9%	5,268,473	1,472,341	2045
27.9%	5,256,567	1,465,211	2044
27.8%	5,244,693	1,456,960	2043
27.7%	5,232,850	1,447,692	2042
27.5%	5,221,038	1,437,179	2041
27.4%	5,209,258	1,425,373	2040
27.2%	5,197,508	1,412,165	2039
26.9%	5,190,437	1,397,364	2038
26.6%	5,181,773	1,379,659	2037
26.3%	5,174,258	1,361,070	2036
26.0%	5,161,284	1,342,307	2035
25.6%	5,139,223	1,317,466	2034
25.1%	5,118,796	1,286,733	2033
23.7%	5,099,000	1,206,636	2032
22.2%	5,078,996	1,127,019	2031
20.7%	5,052,855	1,046,587	2030
19.1%	5,025,190	959,682	2029
17.5%	5,000,237	873,445	2028
15.8%	4,966,699	786,971	2027
14.1%	4,933,514	696,948	2026
12.3%	4,895,604	602,907	2025
10.5%	4,856,840	510,798	2024
8.7%	4,819,735	419,550	2023
6.8%	4,778,968	325,796	2022
5.1%	4,739,576	240,000	2021
3.2%	4,697,257	152,000	2020
1.5%	4,652,224	72,000	2019
Cumulative savings Percent of Sales	Opt-Out) (MWH)	(MWH) (MWH)	Year
II OF SALES (BASE CASE)	C C	IABLE /-3 ACHIEVABLE C&I SECIOR ENE	

TABLE 7-3 ACHIEVABLE C&I SECTOR ENERGY EFFICIENCY SAVINGS AS A PERCENT OF SALES (BASE CASE)

2048	Year	
1,485,725	Cumulative Energy Savings (MWH)	
5,304,379	C&I Sector Sales Forecast (Excl. Opt-Out) (MWH)	
28.0%	Cumulative Savings Percent of Sales	

of following energy efficiency programs currently being offered by NIPSCO. Table 7-4 presents a breakdown of the cumulative annual energy efficiency savings by program for each

- efficiency improvements in existing buildings. and is paid based on per unit installed, reimbursing the customer for a portion of the measure cost. Prescriptive Incentive Program: Offers financial incentives for a set list of energy efficient measures The Prescriptive Program offers incentives to NIPSCO's C&I customers that are making electric energy
- as an energy efficiency measure in the Prescriptive Program. to ensure that only cost-effective projects are approved. Qualifying measures are required to have a that incorporate alternative technologies. Project pre-approval is required for all custom incentives TRC test score greater than 1.0, have a simple payback greater than 12 months and not be included energy-saving equipment. Custom incentives are designed for more complicated projects, or those Custom Incentive Program: Offers financial incentives to NIPSCO C&I customers for installing new
- the program may include any of the following: (1) new building projects wherein no structure or site are efficient from the beginning. New construction projects that may be eligible for incentives under achieve efficiency, above and beyond the 2010 Indiana Energy Conservation Code. The goal of the encourage building owners, designers and architects to exceed standard building practices and efficient C&I facilities within the NIPSCO service territory. This program offers financial incentives New Construction Incentive Program: Offers financial incentives to encourage construction of energy systems/equipment. (3) a gut rehabilitation for a change of purpose requiring replacement of all electrical and mechanical footprint presently exists; (2) additions to or expansion of an existing building or site footprint; and New Construction Incentive Program is to produce newly constructed and expanded buildings that đ
- of ways for small businesses, with billing demands not exceeding 200 kW, to improve the efficiency capital budget to develop and implement an energy efficiency plan. The SBDI Program offers a variety C&I energy efficiency program for small C&I customers that do not possess the in-house expertise or Small Business Direct Install Program (SBDI): Offers incentives to facilitate participation in the NIPSCO from smaller C&I customers. Program, but with slightly higher incentive rates in an effort to encourage energy efficient investment of their existing facilities. Measures are paid out on a per unit basis, similar to the Prescriptive
- greater than 1.0, have a simple payback of less than 12 months and not be included as an energy optimizing their existing systems. Projects in the program examine energy consuming systems for determine the energy performance of their facilities and identify energy savings opportunities by efficiency measure in the Prescriptive Program. removed or reduced to yield energy savings. Qualifying measures are required to have a TRC test score cost-effective savings opportunities. The RCx process identifies operational inefficiencies that can be Retro-Commissioning (RCx) Incentive Program: Offers incentives to help NIPSCO's C&I customers

and identified as either a prescriptive or custom measure Additional energy efficiency measures added to the plan by GDS that pass the UCT are shown separately

NIPSCO 2018 IRP AttachAppendix B Page 182

TABLE 7-4 ACHIEVABLE CUMULATIVE ANNUAL ENERGY EFFICEINCY SAVINGS ((MWH) BY PROGRAM (BASE CASE)
--	------------------------------

					Small				New	
		New		Retro	Business Direct	New Measures	New Measures	New Measures	Measures New	
Year	Custom	Construction	Prescriptive	Commissioning	Investment	Prescriptive	Custom	Agriculture	Construction	Total
2019	30,240	9,360	20,880	3,600	7,920	0	0	0	0	72,000
2020	63,840	19,760	44,080	7,600	16,720	0	0	0	0	152,000
2021	100,800	31,200	69,600	12,000	26,400	0	0	0	0	240,000
2022	129,617	42,828	94,421	16,456	35,351	3,620	1,234	525	1,745	325,796
2023	165,320	54,643	119,587	20,968	44,425	7,342	2,508	1,044	3,713	419,550
2024	201,559	66,646	145,097	21,936	53,095	11,198	3,819	1,563	5,885	510,798
2025	238,334	78,836	170,951	22,560	61,478	15,414	5,158	2,082	8,096	602,907
2026	275,644	91,214	197,148	22,840	69,886	19,852	7,049	2,601	10,714	696,948
2027	312,179	102,704	222,399	23,120	76,962	24,233	8,974	3,120	13,281	786,971
2028	349,104	114,261	247,420	23,400	83,990	25,843	10,959	3,639	14,829	873,445
2029	386,201	125,746	272,593	23,680	90,796	27,345	12,993	3,823	16,506	959,682
2030	423,789	137,387	298,047	23,960	97,673	28,598	15,051	4,007	18,077	1,046,587
2031	461,204	146,562	319,516	24,240	104,268	29,449	17,689	4,191	19,900	1,127,019
2032	499,059	155,615	340,829	24,520	110,912	30,128	19,733	4,375	21,466	1,206,636
2033	537,351	164,545	361,984	24,800	117,604	30,762	21,850	4,559	23,278	1,286,733
2034	550,373	168,145	369,333	25,023	119,402	31,450	23,788	4,743	25,209	1,317,466
2035	560,916	171,070	375,098	25,191	120,510	32,064	25,659	4,927	26,872	1,342,307
2036	568,975	173,319	379,321	25,303	121,079	32,796	27,014	5,111	28,152	1,361,070
2037	576,901	175,382	384,359	25,359	122,428	33,231	27,754	5,295	28,949	1,379,659
2038	584,692	177,260	389,192	25,359	123,722	33,575	28,444	5,479	29,641	1,397,364
2039	591,453	178,859	393,044	25,359	124,900	33,838	29,088	5,479	30,144	1,412,165
2040	597,629	180,261	396,492	25,359	125,970	34,030	29,688	5,479	30,464	1,425,373
2041	603,222	181,467	399,533	25,359	126,930	34,204	30,243	5,479	30,740	1,437,179
2042	608,299	182,502	402,247	25,359	127,800	34,296	30,752	5,479	30,956	1,447,692

NIPSCO 2018 IRP AttachAppendix B Page 183

Year	Custom	New Construction	Prescriptive	Retro Commissioning	Small Business Direct Investment	New Measures Prescriptive	New Measures Custom	New Measures Agriculture	New Measures New Construction	Total
2043	612,861	183,366	404,633	25,359	128,580	34,325	31,215	5,479	31,142	1,456,960
2044	616,907	184,059	406,690	25,359	129,268	34,373	31,773	5,479	31,304	1,465,211
2045	620,437	184,580	408,426	25,359	129,867	34,426	32,316	5,479	31,451	1,472,341
2046	623,465	184,933	409,848	25,359	130,383	34,454	32,361	5,479	31,557	1,477,839
2047	625,991	185,172	410,956	25,359	130,818	34,489	32,371	5,479	31,649	1,482,283
2048	628,015	185,296	411,812	25,359	131,171	34,527	32,351	5,479	31,715	1,485,725

7.2 BEST PRACTICES FOR C&I PROGRAMS

Since the late 1980s, energy efficiency programs have been operating successfully in the U. S. Many best classes; designing and delivering energy efficiency programs that optimize budgets and ensuring that efficiency a resource; developing a cost-effective portfolio of energy efficiency programs for all customer practice program strategies have evolved from the experience of these programs such as: making energy programs deliver results.

program portfolio that is currently offered by NIPSCO. This section focuses on industry best practices for C&I sector energy efficiency programs, such as the

7.2.1 Successful Practices for Small C&I/Prescriptive Programs

following best practices¹⁸ are recommended for addressing these barriers to participation. awareness and knowledge of energy efficiency benefits and how to make use of the utility programs. The facilities, they do not have decision-making control over building energy systems. Further, they also lack have the time, staff or capital to devote to energy efficiency. Also, since many customers rent their targeting small C&I customers, face several barriers to participation. First, many C&I customers do not Programs, such as NIPSCO's SBDI program and to a large extent, the Prescriptive Incentive Program,

the work to reduce costs through volume replication of similar installations. participation simple, easy, and convenient for businesses. Employ preferred or contracted vendors to do segments. Use direct install, like NIPSCO's SBDI program, or another program delivery method that makes a small set of efficiency measures to a variety of businesses in most industries and customer sub-Provide streamlined installation and lighting measures. Lighting delivers cost-effective savings through

improve participation, customer satisfaction, and depth of savings. Design program structure and services characteristics and energy needs, and then offer customized approaches tailored to each sub-segment to Segment the market. Divide the small business customer base into sub-segments with common (measures, incentive levels, and delivery pathways) appropriate to each customer type.

and target potential high-savings customers to increase participation and reduce marketing cost per marketing messages for each industry sub-segment and present them in a customized, personalized way. business. Generic messages may not be perceived as relevant. Use customer and market data analytics to segment Tailor and target marketing and communications to customer needs. Along with segmentation, craft

rebates can reduce customers' share of project costs and provide them with an instant positive cash flow customer co-payments over time. Pairing convenient low- or no-interest financing with high measure bill financing and on-bill repayment. The highest correlation is with programs that offer 0% financing. between the largest, best-performing small C&I programs and those that offer financing, especially onby offering loans to program participants to address the up-front cost barrier. There is a high correlation This can be important for businesses with low profit margins and high energy use. numerous lending and credit law entanglements as, technically, these are not loans, but rather scheduled Participation drops off dramatically when any interest rate at all is charged. Zero-interest loans avoid Offer financing to encourage comprehensive retrofits and deeper savings. Provide needed project funds

efficiency measures, there are several issues that need to be considered before such a program is offered: While on-bill utility financing can help overcome the up-front cost barrier to customer investment energy

Seth Nowak Report, American Council for an Energy-Efficient Economy, November 2016, pp. v - vi. ¹⁸ Big Opportunities for Small Business: Successful Practices of Utility Small Commercial Energy Efficiency Programs, Report Number U1607

- Utilities are often reluctant to take on the role of financing entity because of potential exposure to consumer lending laws.
- Significant alterations to utility billing systems are required.
- Repayment allocation (i.e., who is paid first) is an issue when customers partially pay their bills
- If transferability is not allowed, businesses must pay off entire loan upon sale of property

midstream programs (discussed below), to provide similar benefits to customers These issues must be carefully considered and NIPSCO may find other ways, such as direct install or

market segmentation research will reveal appropriate measure packages by customer type. and natural gas energy saving measures that are a natural fit for the direct install model. Effective advance only if programs offer non-lighting measures. Many programs offer smart Wi-Fi thermostats, refrigeration, energy is used, and for some segments, it is less than one-quarter of the total. Deep savings are possible Offer a wide set of eligible measures. For many industry segments, lighting is not where the greatest

energy assessments and walking customers through the program and measure installation process can assistance and support on energy efficiency, perhaps in collaboration with local organizations. Conducting help reach underserved market segments. Provide dedicated project process managers. Expand program participation by providing direct technical

that generally utilities on their own cannot. This paves the way for increased program awareness and groups can provide access to more business customers and engage them as trusted local partners in ways participation. Establish partnerships. Chambers of commerce, small business advocacy organizations, and community

7.2.2 Emerging Program Models, Features, and Trends

energy efficiency programs. These include pay-for-performance program models, online customer engagement tools and midstream Recent research by ACEEE¹⁹ has identified small business program trends that it considers noteworthy.

opportunities can occur if a program focuses on "low-hanging fruit" measures that are the most cost measures, leaving the program with lost energy efficiency opportunities. Lost energy efficiency While cost effectiveness and customer satisfaction are high, savings are typically all from lighting vertically integrated energy efficiency services to small businesses based on a negotiated contractual price this approach, the utility works with an implementation contractor or service provider who offers effective. for energy savings. This model aims to reduce risk for the utility and make service quality more consistent. The pay-for-performance program model is becoming more common in energy efficiency portfolios. In

ಕ demonstrating that they were driving increased program participation but indicated that it is still too early satisfying to customers than static web pages with lists of measures and rebates. ACEEE did not find data recommendations on their websites specifically for small businesses. These tools are more engaging and engage business customers. Several utilities are providing energy assessments and energy efficiency Online energy assessment tools and energy efficiency recommendations are being used by utilities to assess this trend. Some utilities are going further, developing more extensive online customer

Seth Nowak Report, American Council for an Energy-Efficient Economy, November 2016, p. vi. Swimming to Midstream: New Residential HVAC Program Models and Tools, 2016 ACEEE Summer Study on Energy Efficiency in Buildings. ¹⁹ Big Opportunities for Small Business: Successful Practices of Utility Small Commercial Energy Efficiency Programs, Report Number U1607,

engagement tools and integrating them with their customer billing and marketing data. They are also actively promoting the services to increase customer use of the online software.

work between the manufacturers and end users. Midstream programs provide utility-funded incentives provides the incentive to the bottom of the supply chain – the end user. Upstream incentives are provided alternative to the more customary downstream incentive programs. Incentive programs are classified lighting products and heating and cooling equipment. to equipment distributors and contractors to stock and sell energy efficient measures, such as commercial to the manufacturers, while midstream incentive programs target the distributors and contractors who based on where the incentive recipient is in the supply chain. The traditional downstream program design reducing energy consumption and are fast emerging as a potentially more effective and productive Midstream energy efficiency programs are a relatively new approach to increasing efficiency and

box stickers that read, "Special Pricing" brought to you by Efficiency Vermont. awareness of the utility's role. Efficiency Vermont addressed this issue by developing materials such as paperwork, allowing the distributor to pass the savings on to the customer immediately, which can have between filling out forms and receiving the rebate. Midstream programs typically require little to no downstream program would provide, without investing the effort to claim a rebate or waiting a long time a positive effect on customer behavior and satisfaction. However midstream programs reduce customer The midstream approach allows the end user to benefit from the financial and/or energy savings that a

while achieving market transformation in the commercial sector.²⁰ Programs such as the Small Business Program offered by Tucson Electric Power in Arizona and the Business Cooling Program offered by Xcel Energy Colorado show how midstream designs can drive energy savings

purchasing approved equipment. The program provided rebates to HVAC distributors to stock and sell a designs for this program used a downstream model, i.e., offered rebates directly to customers for Xcel Energy Colorado introduced a midstream commercial heating and cooling program in 2015. Prior used in smaller commercial buildings, as well as other high efficiency commercial cooling products. prescribed set of heat pumps and air conditioners, including high efficiency rooftop units, which are widely

and installers of commercial lighting, HVAC and refrigeration equipment, and motors. The program added customers with a monthly demand less than 200 kW. The program provides rebates directly to contractors a custom component in 2012. The Tucson Electric Power Small Business Program is designed to offer a turn-key option for commercial

equipment on hand. It also has a business development effect, by providing direct support for these through financial incentives to educate and work with their customers to improve the efficiency of their Both Xcel Energy and Tucson Electric midstream programs have motivated contractors and installers installers through the rebates issued by the program. businesses. This has a market transformation effect since it encourages installers to keep efficient

7.2.3 Successful Practices for Custom Rebate Programs

offer free or subsidized energy assessments to help companies identify energy efficiency opportunities. Most utilities offer a custom rebate program to complement prescriptive rebates, and many of these also for the custom rebates, which help move the projects to implementation. It is also helpful to consider These programs are most effective when integrated, so that the assessments identify projects that qualify

or consultants to help with project implementation. Without this assistance, energy assessment reports follow up support such as assistance with applying for custom rebates and providing a list of trade allies Free or subsidized energy assessments help companies identify energy efficiency projects on their own incentive structures that encourage customers to implement projects identified in energy assessments. can just end up on shelves, leaving significant potential energy efficiency measures ignored and evaluate potential savings to complete the application for custom rebates. Also important is utility

of technical assistance and custom incentives.²¹ In general, customers have been very satisfied with this program . A summary of the key steps of this program: WattSmart Program of Rocky Mountain Power (RMP) in Utah and Idaho features a fully integrated process There are a few examples of the smooth integration of technical assistance and rebate programs. The

- The customer contacts RMP for assistance, and both parties sign a letter of intent.
- RMP provides a free scoping assessment (through a consultant) to identify potential energy efficiency opportunities. The customer then discusses the opportunities with RMP and indicates which ones it
- incentive agreement form before the company proceeds with any purchase orders for the equipment. assessment, including refined estimates of energy savings, and the amount of utility incentives to be RMP allows up to two years for customers to implement the projects. paid for the projects if implemented, and any commissioning requirements. The two parties sign an RMP provides the customer a free detailed energy analysis of the measures identified in the scoping is most likely to implement.
- breakdown of costs for the projects. The company implements the projects, completes any required commissioning, and submits a final
- RMP completes a post implementation inspection, documents final energy savings, and writes a check to the company for the incentives.

those for RMP's Energy FinAnswer, with the following main differences: with energy conservation potential of at least 2 GWh. The steps involved in this program are similar to assistance and incentive programs. The Process Efficiency Program is available to industrial customers Xcel Energy's Process Efficiency Program is another good example of the integration of technical

- The free scoping assessment also includes a free assessment of the customer's strategic energy management program with recommendations for improvement.
- The customer must pay for 25% of the cost of the detailed follow up energy assessment, up to \$7,500.
- Incentives are based on the amount of peak demand reduction.
- time frame if needed Xcel Energy encourages the customer to agree to complete projects within a year but allows a longer

7.2.4 Successful Practices for C&I New Construction Programs

supporting the adoption of more energy-efficient building practices. The key elements of the best practice to be effective in creating a more energy-efficient new building stock, showcasing new technologies, and is commercial or residential. Among the programs identified as best practice examples, incentives are the programs are training, technical assistance, and financial incentives, regardless of whether the program According to a study conducted by Nexant,²² the best practices in new construction programs have proven

^{2011.} ²¹ For more information, see https://www.rockymountainpower.net/bus/se/utah.html
²² Saving Energy and Money: HOW TO START, EXPAND, OR REFINE MOU PROGRAMS, A Guide to Best Practices for Energy Efficiency in ²² Saving Energy and Money: HOW TO START, EXPAND. ocally Governed Electric Service Areas in the State Submitted to Texas State Energy Conservation Office Submitted By: Nexant, Inc, October

most prominent component. The incentives offered were based on three different models: 1) prescriptive, 2) performance based, and 3) capital cost offset.

- Prescriptive incentives offer predetermined incentives for the installation of prequalified equipment or design strategies.
- savings, a Home Energy Rating System (HERS) rating in residential projects, or the estimated savings resulting from a specific higher efficiency measure installed. Performance-based incentives are typically determined based on the project's projected energy
- energy-efficient strategies by providing financial support to offset higher initial capital costs Capital cost offset incentives are designed to encourage projects to implement more aggressive

efficiency, and more expensive strategies. In addition, it builds flexibility into the programs with two advantages. It can effectively support wide scale adoption of nonstandard, higher In addition, most of the programs included a tiered incentive structure. A tiered structure provides practice. program designers to easily phase out technologies or efficiency targets as they become standard program to allow

the goals, some include technical assistance for design teams to create showcase projects that highlight what is possible. Others provide industry training on the construction of high performance buildings to facilitate Training and technical assistance were also key in the best practice programs. Depending on the program adoption of better building practices across the board.

administration processes, program administrators can focus their resources on other aspects of the immediate market recognition. program. In addition, the association with a recognized national program can lend credibility as well as and LEED[®]. Because these programs have already developed sound concepts, technical rigor, Many of the programs also leveraged existing national programs such as Advanced BuildingTM Guidelines, and

Also, program. These groups are then able to provide leads for the utility's project pipeline, which saves the modeling. The accelerated performance tier, a partnership with the DOE and Seventhwave, offers higher building type. The custom tier accommodates more-in-depth projects that can afford some custom or analyses can go through the prescriptive offering and use a modeling template for the customer's custom tier, and an accelerated performance tier. New construction projects that lack funds for modeling modeling process that saves time and money. The program includes three tiers: a prescriptive tier, a challenges of rising building codes, the advancing pace of project delivery, and the high costs of modeling. ComEd's C&I new construction program is a good example of a tiered incentive structure that drives utility time and money in identifying projects.²³ trainings to educate the architectural and engineering communities about the utility's new construction performance-based incentives than the other tiers in exchange for more savings. ComEd also offers participation and accommodates all types of new construction projects. This flexibility mitigates the by developing online templates for multiple building types, ComEd has created an expedited

7.2.5 Successful Practices for Retro-Commissioning (RCx) Programs

identified the following RCx best practices: A study conducted by the Massachusetts Energy Efficiency Advisory Council (EEAC) Consultant Team²⁴

24 MA EEAC Retro-commissioning Best Practices Study 23 JANUARY 12, 2018. Best Practices for Cost-Effective DSM Programs, Part of the Next Generation of Energy Savings Project, Liza Minor, Kevin Andrews, E-Source

- Pre-screen potential project sites to ensure a good likelihood of significant RCx savings and to identify for RCx incentives. specific focus areas for the RCx study. Facilities that do not pass the pre-screening will not be eligible
- For applicants that pass the aggressive screening, provide incentives to cover the full RCx study cost, up to cost cap, at their own expense. conditioned on a customer commitment to install all measures under a specified payback period or
- RCx providers deliver consistent and cost-effective services. Create a consistent set of tools, templates, and protocols and provide training to help prequalified
- measurement and verification, hands-on operator training. Continue to support the customer throughout the implementation phase of the project, including

Additional recommendations for potential program enhancements include

- that is facilitated by a monitoring system to provide energy performance feedback is called MBCx. to retain continuity in the market, reduce savings uncertainty, and ensure measure persistence. RCx Evaluate integration of Monitoring Based Commissioning (MBCx) with the program elements above
- Provide incentives for account managers to pursue RCx projects.

square feet), with relatively engaged, savvy, and motivated managers and building operators on staff and niche" offering for larger buildings (most programs have a minimum size threshold of 50,000 to 100,000 market or in this case, the NIPSCO service area. It was also noted that the best RCx programs are a "market implementing the best practices that were identified and their potential for success in the Massachusetts owners who are motivated to achieve operational savings. The EEAC study also noted that additional research is required to determine the cost effectiveness 우

training. While immediately eliminating the first cost barrier could be a quick fix to garner increased typically have a 2 to 3 year development cycle from intake to verified measure installation and owner use of qualified providers, and standardized tools. to move past implementation and persist in the long term. These other factors include rigorous screening, enrollment, the research showed that incentives need to be coupled with many other factors for measures Another key finding of the research was the long timeframe for RCx project development. Projects

7.3 RECOMMENDED PROGRAMS AND BUDGETS

on the new cost-effective measures and industry best practices for C&I programs that are identified in encourage energy efficient new construction of C&I facilities. smaller business with less complex projects, custom and retro-commissioning programs targeting mostly this report. The NIPSCO portfolio of C&I programs is already comprehensive in its coverage of customer larger businesses with more complex systems and projects, and a new construction program designed to markets, measures and incentive types. It includes direct install and prescriptive programs targeting This section outlines recommendations for enhancing NIPSCO's energy efficiency program portfolio based

7.3.1 Potential New Measures

NIPSCO should consider adding new cost-effective measures to its comprehensive portfolio of programs. These include:

- **Chiller Maintenance**
- **HVAC Duct Repair & Sealing**
- **Pool Pump Timer**
- **Pre-Rinse Spray Valve**

I I High Efficiency Servers

High Efficiency Compressor for Refrigeration

Evaporative Pre-Cooler

- Water Heating Desuperheater

- Drainwater Heat Recovery
- 1 1 Faucet Aerator/Low Flow Nozzles
- Water Heater Pipe Insulation
- 1 Solar Water Heating
- **Chilled Water Reset**
- Compressed Air System Maintenance
- Fan System Optimization
- **Geothermal Heat Pump**
- Variable Frequency Drive Compressed Air
- **Motor Efficient Rewind**

- Industrial Pumping System Optimization
- L **Roof Top HVAC System Maintenance**
- High Efficiency Transformer
- I Equipment **Engine Block Heater Timer for Agricultural**
- Livestock Waterer/Livestock Waterer -
- Energy Free
- **High Volume Low Speed Fans**
- **Dairy Refrigeration Tune-Up** High Efficiency Exhaust Fans

L

NIPSCO should investigate their broader applicability for the Prescriptive and New Construction Programs, which would increase their market penetration. While some or all of these measures may be eligible to receive incentives through the Custom Program,

7.3.2 Program Budgets

added. new measures, program design/delivery improvements and new potential new programs that may be as future program plans are developed to reflect program evaluation results, more detailed analysis on identified in this report are shown in Table 7-5. These budgets are preliminary and will need to be refined The estimated NIPSCO annual program budgets to acquire the cost effective achievable potential

TABLE 7-5 ANNUAL PROGRAM BUDGETS (BASE CASE)

					Small		·		New	
					Business	New	New	New	Measures	
Year	Custom	New Construction	Prescriptive	Retro Commissioning	Direct Investment	Measures Prescriptive	Measures Custom	Measures Agriculture	New Construction	Total
2019	\$3,814,322	\$1,155,141	\$2,454,485	\$484,380	\$1,138,860	\$0	\$0	\$0	\$0	\$9,047,188
2020	\$4,238,136	\$1,283,490	\$2,727,206	\$538,200	\$1,265,400	\$0	\$0	\$0	\$0	\$10,052,432
2021	\$4,661,950	\$1,411,839	\$2,999,926	\$592,020	\$1,391,940	\$0	\$0	\$0	\$0	\$11,057,675
2021	\$4,660,184	\$1,446,059	\$2,979,465	\$611,467	\$1,275,604	\$491,447	\$118,148	\$53,513	\$203,606	\$11,839,493
2022	\$4,766,377	\$1,480,872	\$3,044,916	\$623,814	\$1,302,205	\$511,362	\$127,475	\$54,016	\$229,696	\$12,140,734
2023	\$4,874,363	\$1,516,295	\$3,111,540	\$636,376	\$1,329,249	\$531,565	\$136,837	\$54,528	\$254,228	\$12,444,981
2025	\$4,984,190	\$1,552,343	\$3,179,367	\$649,159	\$1,356,747	\$570,714	\$145,646	\$55,052	\$282,256	\$12,775,475
2026	\$5,095,908	\$1,589,035	\$3,248,431	\$662,168	\$1,384,712	\$615,387	\$186,825	\$55,587	\$325,675	\$13,163,727
2027	\$5,209,568	\$1,626,388	\$3,318,763	\$675,410	\$1,413,155	\$632,331	\$197,866	\$56,133	\$348,622	\$13,478,238
2028	\$5,325,225	\$1,664,420	\$3,390,400	\$688,891	\$1,442,091	\$637,315	\$209,063	\$56,690	\$384,416	\$13,798,511
2029	\$5,442,931	\$1,703,150	\$3,463,375	\$702,617	\$1,471,531	\$637,254	\$220,395	\$57,259	\$421,060	\$14,119,573
2030	\$5,562,742	\$1,742,595	\$3,537,726	\$716,595	\$1,501,491	\$633,370	\$231,237	\$57,840	\$448,999	\$14,432,594
2031	\$5,684,716	\$1,782,777	\$3,613,487	\$730,831	\$1,531,983	\$659,379	\$282,621	\$58,433	\$504,957	\$14,849,184
2032	\$5,808,910	\$1,823,714	\$3,690,698	\$745,332	\$1,563,022	\$666,241	\$296,197	\$59,039	\$534,788	\$15,187,942
2033	\$5,935,384	\$1,865,428	\$3,769,398	\$760,106	\$1,594,622	\$673,309	\$310,077	\$59,657	\$576,417	\$15,544,398
2034	\$6,045,553	\$1,905,675	\$3,840,826	\$766,695	\$1,619,077	\$688,437	\$285,775	\$60,288	\$612,367	\$15,824,693
2035	\$6,157,793	\$1,923,299	\$3,913,661	\$773,423	\$1,643,999	\$693,667	\$288,915	\$60,933	\$619,036	\$16,074,726
2036	\$6,271,611	\$1,940,948	\$3,967,979	\$780,292	\$1,668,451	\$699,782	\$292,142	\$61,591	\$624,714	\$16,307,510
2037	\$6,386,938	\$1,958,968	\$4,023,202	\$787,305	\$1,693,262	\$706,298	\$295,459	\$62,263	\$631,133	\$16,544,828
2038	\$6,504,228	\$1,977,366	\$4,079,473	\$794,466	\$1,718,514	\$712,951	\$298,845	\$62,949	\$637,687	\$16,786,479
2039	\$6,562,946	\$1,996,151	\$4,118,929	\$801,777	\$1,733,464	\$719,744	\$302,303	\$63,650	\$644,379	\$16,943,342
2040	\$6,622,898	\$2,015,330	\$4,159,214	\$809,241	\$1,748,728	\$726,680	\$305,833	\$64,365	\$651,211	\$17,103,500
2041	\$6,684,108	\$2,034,911	\$4,200,345	\$816,863	\$1,764,313	\$733,761	\$309,437	\$65,095	\$658,186	\$17,267,020
2042	\$6,746,604	\$2,054,904	\$4,242,340	\$824,644	\$1,780,225	\$740,991	\$313,117	\$65,841	\$665,308	\$17,433,974
2043	\$6,810,413	\$2,075,317	\$4,285,216	\$832,588	\$1,796,472	\$748,372	\$316,875	\$66,602	\$672,580	\$17,604,435
	+ 0,0 = 0, 10	+ =,0.0,0 = /	+ .,===,===0	+00=,000	+ <u>-</u>)	L	+0=0,0.0	+00,00-	+0. =,000	<i>+,</i>

NIPSCO 2018 IRP Attach<u>Appendix B</u> Page 192

		New		Retro	Small Business Direct	New Measures	New Measures	New Measures	New Measures New	
Year	Custom	Construction	Prescriptive	Commissioning	Investment	Prescriptive	Custom	Agriculture	Construction	Total
2044	\$6,875,561	\$2,096,159	\$4,328,993	\$840,700	\$1,813,059	\$755,909	\$320,711	\$67,379	\$680,004	\$17,778,475
2045	\$6,942,077	\$2,117,438	\$4,373,690	\$848,982	\$1,829,995	\$763,604	\$324,628	\$68,172	\$687,584	\$17,956,170
2046	\$7,009,991	\$2,139,164	\$4,419,325	\$857,438	\$1,847,286	\$771,461	\$328,627	\$68,983	\$695,324	\$18,137,597
2047	\$7,079,330	\$2,161,346	\$4,465,918	\$866,071	\$1,864,941	\$779,482	\$332,710	\$69,810	\$703,226	\$18,322,833
2048	\$7,150,126	\$2,183,994	\$4,513,490	\$874,886	\$1,882,966	\$787,672	\$336,878	\$70,654	\$711,293	\$18,511,960

7.3.3 Potential New Programs and Program Improvements

investigation should include assessing the costs and benefits of all potential program improvements and Based on our review of energy efficiency program best practices detailed in Section 7.2, GDS recommends new program options. that NIPSCO further investigate the following program improvements and new program options. This

Potential New Program

the effort to file a rebate form and wait for a rebate check. Midstream programs typically require little to from the financial and energy savings that a downstream program would provide, without having to make commercial lighting products and heating and cooling equipment. This allows the customer to benefit incentives to equipment distributors and contractors to stock and sell energy efficient measures, such as who work between the manufacturers and end users. Midstream programs provide utility-funded downstream incentive program. Midstream incentive programs target the distributors and contractors is fast emerging as a potentially more effective and productive alternative to the more prevalent have a positive effect on program participation and customer satisfaction. no paperwork, allowing the distributor to pass the savings on to the customer immediately, which can implementing a Midstream Energy Efficiency Program. This program model, especially for HVAC systems, Midstream Energy Efficiency Program. NIPSCO should assess the feasibility, cost and benefits of

Potential Program Improvements

arrangement that NIPSCO has with its third- party implementer. Some of these suggestions may already These recommendations for program improvements must be considered in the context of the contractual including the compensation model. be implemented by the third-party implementer or may be not be feasible under current contract terms,

Small Business Direct Install & Prescriptive Programs

- improve participation, customer satisfaction, and depth of savings. characteristics and energy needs, and then offer customized approaches tailored to each in order to Segment the market. Classify the small business customer base into sub-segments with common
- way. craft marketing messages for each industry subsector and present them in a customized, personalized Tailor and target marketing and communications to customer needs. In concert with segmentation,
- programs and those that offer financing, especially on-bill financing and on-bill repayment. However, program participants. There is a high correlation between the largest, best-performing small business up-front cost barrier and provide needed project funds by offering no or low interest financing to there are several significant issues regarding the implementation of on-bill financing that may make Consider offering financing to encourage comprehensive retrofits and deeper savings. Address the
- the program inappropriate in NIPSCO's service territory. These issues are identified in Section 7.2.1. local partners in ways that utilities on their own generally cannot. community groups can provide access to more commercial customers and engage them as trusted Establish partnerships. Chambers of commerce, small business advocacy organizations, and

Custom Program

rebates, which help move the projects to implementation. effective when integrated, so that the assessments identify projects that qualify for the custom assessments to help companies identify energy efficiency opportunities. These programs are most Integrate energy assessments into program. Most utilities, like NIPSCO, offer a custom rebate program to complement prescriptive rebates, and many of these also offer free or subsidized energy

- encourage customers to implement projects identified in energy assessments. Link incentive structures to assessment findings. It is helpful to consider incentive structures that
- leaving significant potential energy efficiency measures ignored. program success. Without this assistance energy assessment reports can just end up on shelves, and providing a list of trade allies or consultants to help with project implementation is critical to Provide follow-up support. Follow up support such as assistance with applying for custom rebates

New Construction Program

- structure. A tiered structure provides programs with two advantages. It can effectively support wide targets as they become standard practice. flexibility into the program to allow program designers to easily phase out technologies or efficiency scale adoption of nonstandard, higher efficiency, and more expensive strategies. In addition, it builds Offer a tiered incentive structure. The best new construction programs include a tiered incentive
- performance buildings to facilitate the adoption of better building practices across the board. that highlight what is possible. Others provide industry training on the construction of high success. Some programs include technical assistance for design teams to create showcase projects Provide training and technical assistance. Training and technical assistance is critical to program
- focus their resources on other aspects of the program. In addition, the association with a recognized developed sound concepts, technical rigor, and administration processes, program administrators can national programs (Advanced Building Guidelines, and LEED). Because these programs have already Leverage existing national programs. Many of the best new construction programs leveraged existing national program can lend credibility as well as immediate market recognition.

Retro-Commissioning (RCx) Program

- eligible for RCx incentives. identify specific focus areas for the RCx study. Facilities that do not pass the pre-screening will not be Pre- screen potential project sites. This will ensure a good likelihood of significant RCx savings and
- measures under a specified payback period or up to cost cap. incentives to cover the full RCx study cost, conditioned on a customer commitment to install all Provide incentives to cover the RCx study cost. For applicants that pass the screening, provide
- services. protocols and provide training to help prequalified RCx providers deliver consistent and cost-effective Create tools and provide training for RCx providers. Create a consistent set of tools, templates, and
- the project, including measurement and verification and hands-on operator training. Provide on-going customer support. Support the customer throughout the implementation phase of
- reduce savings uncertainty and ensure measure persistence. energy performance feedback is called MBCx. Where appropriate and cost-effective, it will help Integrate Monitoring Based Commissioning. RCx that is facilitated by a monitoring system to provide

7.4 BENEFIT/COST ANALYSIS

program portfolio based on the UCT. All individual measures included in programs pass the UCT. This section presents the benefit cost analysis results for each energy efficiency program and for the entire

and for the C/I portfolio as a whole. Table 7-6 shows the NPV of benefits, costs, net benefits and the benefit-cost ratio for each C/I program

IABLE /-6 BENEHI CO	IST AMALYSIS RESULTS	hable 7-6 benefit Cost Analysis results for the C/TSECTOR - Utility Cost test	- UIILITY COSETEST	
Program	NPV Benefits	NPV Costs	Net Benefits	UCT Ratio
Custom	\$340,264,393	\$60,474,877	\$279,789,516	5.6
New Construction	\$98,374,129	\$18,786,751	\$79,587,378	5.2
Prescriptive	\$396,617,207	\$38,748,919	\$357,868,288	10.2
RetroCommissioning	\$16,901,754	\$7,739,152	\$9,162,602	2.2
Small Business Direct Install	\$87,942,866	\$16,596,204	\$71,346,663	5.3
New Measures Prescriptive	\$23,743,405	\$5,029,889	\$18,713,516	4.7
New Measures Custom	\$9,439,944	\$1,990,940	\$7,449,004	4.7
New Prescriptive Ag Measures	\$2,859,702	\$523,495	\$2,336,207	5.5
New Measures New Construction	\$15,594,391	\$3,778,988	\$11,815,403	4.1
Total	\$991,737,791	\$153,669,216	\$838,068,576	6.5

TABLE 7-6 BENEFIT COST ANALYSIS RESULTS FOR THE C/I SECTOR – UTILITY COST TEST

8.1.2 Customer Participation All customer participation rates were taken from the 2016 AEG Potential Study. These rates were developed by AEG based on a combination of existing or past NIPSCO DR programs and the performance	Interruptible Load Tariffs Customer enacts their customized, mandatory curtailment plan. with Third Party Aggregator Large C&I Penalties apply for non- performance. Typically managed as a portfolio by third party contractor.	Customer enacts their customized, mandatory curtailment plan. Penalties apply for non- performance.	DLC Water Heater Cycling Residential, Small and DLC Switch for Water Heating a Medium C&I Equipment a	DLC Space Heating Residential, Small and DLC Switch for Space Heating Medium C&I Equipment	DLC Central Air Conditioner Residential, Small and DLC Switch for Central Cooling Cycling Medium C&I Equipment	DR Program Option Eligible Customer Classes Mechanism	TABLE 8-1 DEMAND RESPONSE PROGRAM OPTIONS	8.1.1 Demand Response Program Options For this study, five DR options were considered, including two options for the interruptible tariff. The objective of these options is to realize demand reductions from eligible customers during the highest load hours of the summer or winter as defined by the utility. Each program type provides demand response using different load reduction and incentive strategies designed to target different types of customers. From the utility perspective, load reduction events for each of the different program types can be called with different notification time. Using a mix of programs provides load reduction resources that can be called under many different conditions.	 Demand Response Potential 8.1 METHODOLOGY For the Demand Response section, GDS updated assumptions on the kWh and kW savings of demand response measures included in NIPSCO's 2016 AEG Potential Study. With this update, GDS changed a few savings values to reflect more up-to-date research, and extended the forecast to go out 30 years.
y. These rates were and the performance	nized, in. Summer ;ed as ;actor.	nized, nn. Summer	ing Summer and Winter	ng Winter	ing Summer	Season		erruptible tariff. The aring the highest load es demand response types of customers. n types can be called esources that can be	V savings of demand e, GDS changed a few out 30 years.

NIPSCO 2018 IRP Attachi Page 196

performance of programs in states within the region. performance. Residential DLC AC was also developed by calibrating to 2014 program performance. Interruptible Load Tariff participation and overall impacts were calibrated to 2014 actual program of similar programs within states geographically and demographically comparable to northern Indiana. Participation for other programs was developed by taking the 50th percentile of existing program

software, telemetry, or other equipment required, takes place. For NIPSCO, GDS assumed that programs marketing and recruitment, in addition to the physical implementation and installation of any hardware, New DR programs need time to ramp up and reach a steady state. During ramp up, customer education, ramp up over five years, typical of industry experience.

Table 8-2 shows the participation assumptions for the potential scenarios in DR options by customer class.

TABLE	TABLE 8-2 DR PROGRAM STEADY STATE PARTICIPATION RATES	PATION RATES
Sector	DR Program Option	Base Case Steady State Participation
	DLC AC	20%
Residential	DLC Space Heating	20%
	DLC Water Heating	8.5%
	DLC AC	5%
	DLC Space Heating	5%
C&I	DLC Water Heating	3.2%
	Interruptible Tariff	16.6%
	Third Party Aggregator	16.6%

8.1.3 Hierarchy

the participation hierarchy by customer class for applicable DR options. aggregators, both of which could target the same load for curtailment on the same days. Table 8-3 shows that customers do not participate in mutually exclusive programs at the same time. For example, large C&I customers cannot participate in the load curtailment program and a curtailment program run by To avoid double counting of load reduction impacts, program-eligibility criteria were defined to ensure

Small and Medium C&I	Residential	Sector Prior	
	First and only option	Priority / Loading	
	Direct Load Control	DR Programs	
Small and Medium C&I customers with eligible equipment	Residential customers with eligible equipment	Eligible Customers	

TABLE 8-3 DR HIERARCHY

Large C&I		Sector
Second	First	Priority / Loading
Third Party Aggregator	Interruptible Load Tariffs All Large C&I Customers	DR Programs
All Large C&I Customers not enrolled in Interruptible Load Tariffs	All Large C&I Customers	Eligible Customers

8.1.4 Load Reduction Assumptions

sources. The majority of load reductions were obtained from the 2016 AEG potential study, with the developed by taking an average of existing/past program performance from programs in states within the percentage was scaled to match current program performance. The remaining program impacts were programs. The Interruptible Load Tariff impact was sourced from actual program performance. The based on program performance for current or past NIPSCO programs and on secondary research for new customers, provides the potential demand savings estimate. Load reduction impact assumptions are The per-customer kW electric peak load reduction, multiplied by the total number of participating exceptions noted in the table. region. Table 8-4 shows the per-customer load reductions used for estimating the potential, along with

Third Party Aggregator 18% of Coincident Peak Load	Interruptible Tariff 18% of Coincident Peak Load	Business DLC Water Heating 2.7 kW	DLC Space Heating 1.5 kW	DLC AC 3.1 kW	DLC Water Heating 0.9 kW	Residential DLC Space Heating 0.62 kW	DLC AC 0.972 kW	
% of Coincident Peak AEG Study Load	% of Coincident Peak AEG Study Load	2.7 kW AEG Study	1.5 kW PGE Brattle Group 2016 Study	3.1 kW AEG Study	0.9 kW AEG Study	0.62 kW AEG Study	FERC 2012 Survey adjusted 0.972 kW to IN using NOAA temperatures	

TABLE 8-4 DR PROGRAM LOAD REDUCTION ASSUMPTIONS

8.1.5 Program Costs

secondary research. GDS assumed that residential programs would have an O&M cost of \$5 per customer administration costs, marketing and recruitment costs, enabling technology costs for purchase and Program costs include fixed and variable cost elements: program development costs, annual program following tables for each program option. and C&I programs \$15 per customer. GDS added a central controller hardware cost of \$25,000²⁵ for direct assumptions are based on actual program costs from existing or past NIPSCO programs and GDS installation, annual operations and maintenance (O&M) costs, and participant incentive costs. These load control programs, with a \$5,000 software cost per year. Other cost assumptions are detailed in the

Sector DR Program Option	TABLE 8-6 ADMINISTRATIVE COSTS	Third Party Aggregator	Interruptible Tariff	C&I DLC Water Heating	DLC Space Heating	DLC AC	DLC Water Heating	Residential DLC Space Heating	DLC AC	Sector DR Program Option	TABLE 8-5 EQUIPMENT COSTS
Admin Cost (\$/MW)	SISO	\$0	\$0	\$100	\$100	\$140	\$100	\$100	\$140	Equipment Cost (\$/new participant)	SIG

Sector		Т		C&I				Residential		Sector	
DR Program Option	TABLE 8-7 MARKETING COSTS	Third Party Aggregator	Interruptible Tariff	DLC Water Heating	DLC Space Heating	DLC AC	DLC Water Heating	DLC Space Heating	DLC AC	DR Program Option	TABLE 8-6 ADMINISTRATIVE COSTS
Marketing Cost (\$/new participant)		\$15,000	\$15,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	Admin Cost (\$/MW)	S

 $^{\rm 25}$ One-time cost expected to last 10 years and then be replaced.

C&I

				dential		or		
DLC Water Heating	DLC Space Heating	DLC AC	DLC Water Heating	DLC Space Heating	DLC AC	DR Program Option	TABLE 8-7 MARKETING COSTS	Third Party Aggregator
\$155	\$155	\$155	\$45	\$45	\$45	Marketing Cost (\$/new participant)		\$15,000

Resid

		Sector
Third Party Aggregator	Interruptible Tariff	DR Program Option
\$200	\$200	Marketing Cost (\$/new participant)

TABLE 8-8 PROGRAM DEVELOPMENT COSTS

		Program Development Cost
Sector	DR Program Option	(One-Time Cost)
	DLC AC	\$80,000
Residential	DLC Space Heating	\$80,000
	DLC Water Heating	\$80,000
	DLC AC	\$10,000
	DLC Space Heating	\$10,000
C&I	DLC Water Heating	\$10,000
	Interruptible Tariff	\$50,000
	Third Party Aggregator	\$50,000

8.2 OVERVIEW OF SECTOR DEMAND RESPONSE POTENTIAL

in the study. Table 8-9 shows the demand response MW potential broken down by program and sector for each year

TABLE 8-9 DEMAND RESPONSE MW SAVINGS BY PROGR	MA
TABLE 0-7 DEMIAND RESI ONSE IMM SAMINOS DI TROOM	

020 21 4 4 29 3 1 1 23 23 51 80 021 45 8 8 60 4 2 2 48 48 104 164 022 60 11 11 81 5 2 2 65 65 139 220 023 65 11 11 88 6 2 2 71 71 153 242 024 67 12 12 90 6 3 3 73 75 151 251 026 68 12 12 92 6 3 3 75 75 162 255 028 69 12 12 93 6 3 3 76 76 163 257 029 69 12 12 94 6 3 3 77 77 165 260 031 70 12 12 95 6 3 3 <td< th=""><th></th><th></th><th>Resi</th><th>dential</th><th></th><th></th><th></th><th></th><th>C&I</th><th></th><th></th><th></th></td<>			Resi	dential					C&I			
020 21 4 4 29 3 1 1 23 23 51 80 021 45 8 8 60 4 2 2 48 48 104 164 022 60 11 11 81 5 2 2 65 65 139 220 023 65 11 11 88 6 2 2 71 71 153 242 024 67 12 12 90 6 3 3 73 75 151 251 026 68 12 12 92 6 3 3 75 75 162 255 028 69 12 12 93 6 3 3 76 76 163 257 029 69 12 12 94 6 3 3 77 77 165 260 031 70 12 12 95 6 3 3 <td< th=""><th></th><th>DLC AC</th><th></th><th></th><th></th><th>DLC AC</th><th></th><th>EWH</th><th></th><th></th><th></th><th>Total</th></td<>		DLC AC				DLC AC		EWH				Total
021 45 8 8 60 4 2 2 48 48 104 164 022 60 11 11 81 5 2 2 65 65 139 220 023 65 11 11 88 6 2 2 71 71 153 242 024 67 12 12 90 6 3 3 73 73 158 248 025 68 12 12 91 6 3 3 74 74 159 251 026 68 12 12 93 6 3 3 75 75 161 253 028 69 12 12 94 6 3 3 76 76 164 258 030 70 12 12 94 6 3 3 77 77 165 260 031 70 12 12 95 6 3 3	2019	7	1	1	9	2	1	1	7		17	26
022 60 11 11 81 5 2 2 65 65 139 220 023 65 11 11 88 6 2 2 71 71 153 242 024 67 12 12 90 6 3 3 73 73 158 248 025 68 12 12 91 6 3 3 74 74 159 251 026 68 12 12 92 6 3 3 75 75 161 253 026 69 12 12 93 6 3 3 76 76 163 257 028 69 12 12 94 6 3 3 76 76 164 258 030 70 12 12 94 6 3 3 77 77 165 260 031 70 12 12 95 6 3 3	2020	21	4	4	29	3	1	1	23	23	51	80
023 65 11 11 88 6 2 2 71 71 153 242 024 67 12 12 90 6 3 3 73 73 158 248 025 68 12 12 91 6 3 3 74 74 159 251 026 68 12 12 92 6 3 3 75 75 161 253 026 69 12 12 93 6 3 3 76 76 163 257 028 69 12 12 94 6 3 3 76 76 164 258 020 70 12 12 94 6 3 3 77 77 165 260 031 70 12 12 95 6 3 3 78 78 167 262 033 71 12 12 96 7 3 3	2021	45	8	8	60	4	2	2	48	48	104	164
02467121290633731582480256812129163374741592510266812129263375751612530276912129363376761632570286912129363376761632570296912129463376761642580307012129563377771652600317012129563378781672620337112129663378781682640347112129673378781692650357213139773379791702680367313139873379791712690407313139873379791712690417313139873379791712690427313139873	2022	60	11	11	81	5	2	2	65	65	139	220
02568121291633747415925102668121292633757516125302769121293633767616325702869121293633767616325702969121294633767616425803070121294633777716526003170121295633787816726203371121296633787816826403471121296733797917026603572131397733797917026603673131398733797917126903773131398733797917126904073131398733797917126904173131398733797917126904273131398	2023	65	11	11	88	6	2	2	71	71	153	242
02668121292633757516125302769121293633757516225502869121293633767616325702969121294633767616425803070121294633777716526003170121295633777716626103271121295633787816726203371121296633787816926503371121296733797916926603471121296733797917026703572131397733797917126903673131398733797917126904073131398733797917126904273131398733797917126904273131398	2024	67	12	12	90	6	3	3	73	73	158	248
02769121212936337575162255028691212936337676163257029691212946337676164258030701212946337777165260031701212956337777166261032711212956337878167262033711212966337878169265034711212967337878169265035721313977337979170267036731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269042731313987337979171269042731313	2025	68	12	12	91	6	3	3	74	74	159	251
028691212936337676163257029691212946337676164258030701212946337777165260031701212956337777166261032711212956337878167262033711212966337878168264034711212967337878169265035721313977337979169266036721313987337979170268038731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269042731313987337979171269	2026	68	12	12	92	6	3	3	75	75	161	253
029691212946337676164258030701212946337777165260031701212956337777166261032711212956337878167262033711212966337878169265034711212967337878169265035721313977337979169266036721313987337979170267037731313987337979171269039731313987337979171269040731313987337979171269042731313987337979171269042731313987337979171269042731313987337979171269	2027	69	12	12	93	6	3	3	75	75	162	255
030701212946337777165260031701212956337777166261032711212956337878167262033711212966337878169265034711212967337878169265035721313977337979169266036721313987337979170267037731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2028	69	12	12	93	6	3	3	76	76	163	257
031701212956337777166261032711212956337878167262033711212966337878168264034711212967337878169265035721313977337979169266036721313977337979170267037731313987337979170268039731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2029	69	12	12	94	6	3	3	76	76	164	258
032711212956337878167262033711212966337878168264034711212967337878169265035721313977337979169266036721313977337979170267037731313987337979170268038731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2030	70	12	12	94	6	3	3	77	77	165	260
033711212966337878168264034711212967337878169265035721313977337979169266036721313977337979170267037731313987337979170268038731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269042731313987337979171269	2031	70	12	12	95	6	3	3	77	77	166	261
034711212967337878169265035721313977337979169266036721313977337979170267037731313987337979170268038731313987337979171269039731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2032	71	12	12	95	6	3	3	78	78	167	262
035721313977337979169266036721313977337979170267037731313987337979170268038731313987337979171269039731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2033	71	12	12	96	6	3	3	78	78	168	264
036721313977337979170267037731313987337979170268038731313987337979171269039731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2034	71	12	12	96	7	3	3	78	78	169	265
037731313987337979170268038731313987337979171269039731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2035	72	13	13	97	7	3	3	79	79	169	266
038731313987337979171269039731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2036	72	13	13	97	7	3	3	79	79	170	267
039731313987337979171269040731313987337979171269041731313987337979171269042731313987337979171269	2037	73	13	13	98	7	3	3	79	79	170	268
040731313987337979171269041731313987337979171269042731313987337979171269	2038	73	13	13	98	7	3	3	79	79	171	269
041731313987337979171269042731313987337979171269	2039	73	13	13	98	7	3	3	79	79	171	269
042 73 13 13 98 7 3 3 79 79 171 269	2040	73	13	13	98	7	3	3	79	79	171	269
	2041	73	13	13	98	7	3	3	79	79	171	269
043 73 13 13 98 7 3 3 79 79 171 269	2042	73	13	13	98	7	3	3	79	79	171	269
	2043	73	13	13	98	7	3	3	79	79	171	269

		Resi	dential					C&I			
	DLC AC	DLC EWH Summer	DLC EWH Winter	Total Residential	DLC AC	DLC EWH Summer	DLC EWH Winter	Interruptible Tariff	Third Party Aggregator	Total C&I	Total
2044	73	13	13	98	7	3	3	79	79	171	270
2045	73	13	13	98	7	3	3	79	79	171	270
2046	73	13	13	98	7	3	3	79	79	171	270
2047	73	13	13	98	7	3	3	79	79	171	270
2048	73	13	13	98	7	3	3	79	79	171	270

calculating the levelized cost per cumulative kW over the 30-year lifetime of the program. The three The Demand Response programs were grouped into three bundles. These bundles were created by bundles are:

- BUNDLE 1: \$40/kW-year to \$60/kW-year: includes C&I DLC of AC and DLC of Water Heating
- BUNDLE 2: \$60/kW to \$80/kW-year: includes Residential DLC of Water Heating and C&I Third-Party Aggregator program
- BUNDLE 3: Over \$80/kW-year: includes residential DLC of AC and Interruptible Tariff

therefore not included in any bundles. Both Residential and C&I DLC of Space Heating programs were found to be not cost-effective and were The results are presented in the Table 8-10 to Table 8-13, grouped by bundles and separated by sectors.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75,018	14,184	0	2044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75,018	14,184	0	2043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75,018	14,184	0	2042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75,018	14,184	0	2041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75,018	14,184	0	2040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75,018	14,184	0	2039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75,018	14,184	0	2038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74,624	14,109	0	2037
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74,226	14,034	0	2036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73,827	13,959	0	2035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73,431	13,884	0	2034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73,039	13,810	0	2033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72,646	13,735	0	2032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72,241	13,659	0	2031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71,821	13,579	0	2030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71,398	13,499	0	2029
o +, 100 0 8, 715 0 11, 676 0 12, 717 0 13, 038 0 13, 171 0 13, 260 0 13, 340	70,975	13,419	0	2028
o +, 100 0 8, 715 0 11,676 0 12,717 0 13,038 0 13,171 13,260 13,260	70,555	13,340	0	2027
o +, 100 0 8, 715 0 11,676 0 12,717 0 13,038 0 13,171	70,134	13,260	0	2026
o +,100 0 8,715 0 11,676 0 12,717 0 13,038	69,663	13,171	0	2025
0 +,100 0 8,715 0 11,676 0 12,717	68,960	13,038	0	2024
0 +,100 0 8,715 0 11,676	67,260	12,717	0	2023
0 8,715	61,752	11,676	0	2022
	46,092	8,715	0	2021
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22,046	4,168	0	2020
19 0 1,278 6,758	6,758	1,278	0	2019
Bundle 1 ²⁶ Bundle 2 Bundle 3	Bundle 3	Bundle 2	Bundle 1 ²⁶	
Bundle 2		TABLE 8-10 RESIDENTIAL DEMAND RESPONSE PARTICIPANTS BY BUNDLE Bundle 1 ²⁶ Bundle 1 ²⁶	TABLE 8-10 RESIDENTIAL DE Bundle 1 ²⁶	

²⁶ There were no residential programs in bundle 1

NIPSCO 2018 IRP Attach Apptdar A Page 204

	Bundle 1 ²⁶	Bundle 2	Bundle 3
2045	0	14,184	75,018
2046	0	14,184	75,018
2047	0	14,184	75,018
2048	0	14,184	75,018

			0100
259	250	3,272	2047
259	250	3,256	2046
259	250	3,240	2045
258	250	3,225	2044
258	250	3,209	2043
258	250	3,194	2042
258	250	3,178	2041
258	250	3,163	2040
258	249	3,148	2039
258	249	3,133	2038
258	249	3,118	2037
258	249	3,103	2036
258	249	3,088	2035
258	249	3,073	2034
258	249	3,058	2033
258	249	3,043	2032
258	249	3,029	2031
258	249	3,014	2030
258	249	3,000	2029
258	249	2,985	2028
258	249	2,971	2027
258	249	2,957	2026
258	249	2,943	2025
258	249	2,928	2024
258	249	2,914	2023
212	202	2,357	2022
166	156	1,804	2021
120	109	1,257	2020
74	62	715	2019
Bundle 3	Bundle 2	Bundle 1	

NIPSCO 2018 IRP AttachAppatdix Page 205

7	7	3	2019
Bundle 3	Bundle 2	Bundle 1	
	TABLE 8-13 C&I DEMAND RESPONSE MW SAVINGS BY BUNDLE	TABLE 8-13 C&I DEMAN	
73	26	0	2048
73	26	0	2047
73	26	0	2046
73	26	.5 0	2045
73	26	0	2044
73	26	0	2043
73	26	0	2042
73	26	0	2041
73	26	0	2040
73	26	0	2039
73	26	0	2038
73	25	0	2037
72	25	0	2036
72	25	0	2035
71	25	0	2034
71	25	0	2033
71	25	0	2032
70	25	0	2031
70	24	0	2030
69	24	0	2029
69	24	0	2028
69	24	0	2027
68	24	.6 0	2026
68	24	0	2025
67	23	0	2024
65	23	0	2023
60	21	0	2022
45	16	0	2021
21	ω	0	2020
7	2	0	2019
Bundle 3	Bundle 2	Bundle 1 ²⁷	
	TABLE 8-12 RESIDENTIAL DEVIAND RESPONSE IVIN SAVINGS BY BUNDLE	IABLE 8-12 RESIDENTIAL DEV	

TABLE 8-12 RESIDENTIAL DEMAND RESPONSE MW SAVINGS BY BUNDLE

²⁷ There were no residential programs in bundle 1

NIPSCO 2018 IRP AttachAppatotax Page 206

79	79	13	2048
79	79	13	2047
79	79	12	2046
79	79	12	2045
79	79	12	2044
79	79	12	2043
79	79	12	2042
79	79	12	2041
79	79	12	2040
79	79	12	2039
79	79	12	2038
79	79	12	2037
79	79	12	2036
79	79	12	2035
78	78	12	2034
78	78	12	2033
78	78	12	2032
77	77	12	2031
77	77	12	2030
76	76	11	2029
76	76	11	2028
75	75	11	2027
75	75	11	2026
74	74	11	2025
73	73	11	2024
Bundle 3	Bundle 2	Bundle 1	

8.3 RECOMMENDED PROGRAMS & BUDGETS

Only cost-effective demand response programs shown in Table 8-14 should be pursued further. The budgets by bundle for cost-effective programs are included in the following tables.

	Table 8-14 Resid	ENTIAL DEMAND RESPONSE	TABLE 8-14 RESIDENTIAL DEMAND RESPONSE ANNUAL BUDGETS BY BUNDLE	
	Bundle 1	Bundle 2	Bundle 3	Total
2019	\$0	\$514,254	\$2,215,840	\$2,730,094
2020	\$0	\$1,027,023	\$5,174,004	\$6,201,027
2021	\$0	\$1,817,967	\$8,810,958	\$10,628,926
2022	\$0	\$1,810,510	\$7,428,499	\$9,239,009
2023	\$0	\$1,531,060	\$4,951,752	\$6,482,812
2024	\$0	\$1,416,817	\$3,981,237	\$5,398,053
2025	\$0	\$1,392,076	\$3,736,778	\$5,128,854
2026	\$0	\$1,393,067	\$3,696,452	\$5,089,518

NIPSCO 2018 IRP AttachAppahdixA Page 207

				4
	Bundle T	Bungle 2	Bundle 3	i otal
2027	\$0	\$1,400,536	\$3,706,667	\$5,107,204
2028	0\$	\$1,409,983	\$3,730,818	\$5,140,800
2029	0\$	\$1,589,560	\$5,532,773	\$7,122,333
2030	0\$	\$1,792,767	\$7,869,349	\$9,662,116
2031	0\$	\$2,022,338	\$10,369,471	\$12,391,809
2032	0\$	\$1,835,632	\$8,190,183	\$10,025,815
2033	0\$	\$1,595,563	\$5,412,748	\$7,008,310
2034	0\$	\$1,509,338	\$4,362,969	\$5,872,307
2035	\$0	\$1,493,542	\$4,103,694	\$5,597,235
2036	\$0	\$1,497,199	\$4,062,666	\$5,559,865
2037	\$0	\$1,505,470	\$4,074,483	\$5,579,953
2038	\$0	\$1,514,912	\$4,099,541	\$5,614,453
2039	\$0	\$1,495,880	\$3,954,424	\$5,450,304
2040	\$0	\$1,497,811	\$3,958,883	\$5,456,694
2041	\$0	\$1,499,664	\$3,962,408	\$5,462,073
2042	\$0	\$1,501,257	\$3,962,255	\$5,463,512
2043	\$0	\$1,502,875	\$3,962,218	\$5,465,092
2044	\$0	\$1,504,932	\$3,966,661	\$5,471,593
2045	\$0	\$1,507,194	\$3,973,238	\$5,480,432
2046	\$0	\$1,509,431	\$3,978,799	\$5,488,230
2047	\$0	\$1,511,595	\$3,983,425	\$5,495,020
2048	\$0	\$1,513,742	\$3,987,208	\$5,500,949

	TABLE 8	TABLE 8-15 C&I DEMIAND RESPONSE BUDGETS BY BUNDLE	BUDGETS BY BUNDLE	
	Bundle 1	Bundle 2	Bundle 3	Total
2019	\$444,835	\$592,310	\$965,222	\$2,002,367
2020	\$404,450	\$1,632,084	\$2,837,754	\$4,874,288
2021	\$462,441	\$3,362,072	\$5,888,438	\$9,712,950
2022	\$521,129	\$4,501,593	\$7,897,548	\$12,920,270
2023	\$580,525	\$4,916,368	\$8,628,185	\$14,125,078
2024	\$388,442	\$5,044,783	\$8,861,801	\$14,295,026
2025	\$392,288	\$5,111,958	\$8,979,453	\$14,483,699
2026	\$396,195	\$5,161,634	\$9,066,216	\$14,624,045
2027	\$400,164	\$5,202,200	\$9,136,885	\$14,739,249
2028	\$404,197	\$5,242,328	\$9,206,764	\$14,853,289
2029	\$539,066	\$5,274,590	\$9,262,739	\$15,076,395
2030	\$499,202	\$5,307,806	\$9,320,378	\$15,127,386
2031	\$506,104	\$5,340,222	\$9,376,582	\$15,222,908
2032	\$513,156	\$5,366,052	\$9,421,142	\$15,300,350
2033	\$520,360	\$5,391,665	\$9,465,298	\$15.377.322

Attachingpotdar A Page 208

2035	\$436,812	\$5,444,773	\$9,556,863	\$15,438,448
2036	\$441,464	\$5,463,701	\$9,589,152	\$15,494,316
2037	\$446,193	\$5,475,560	\$9,608,940	\$15,530,692
2038	\$451,000	\$5,487,450	\$9,628,759	\$15,567,209
2039	\$455,869	\$5,489,009	\$9,630,317	\$15,575,196
2040	\$460,834	\$5,490,600	\$9,631,909	\$15,583,343
2041	\$465,881	\$5,492,225	\$9,633,533	\$15,591,639
2042	\$471,013	\$5,493,884	\$9,635,192	\$15,600,089
2043	\$476,231	\$5,495,578	\$9,636,886	\$15,608,695
2044	\$481,538	\$5,497,307	\$9,638,615	\$15,617,460
2045	\$486,935	\$5,499,072	\$9,640,381	\$15,626,388
2046	\$492,423	\$5,500,875	\$9,642,183	\$15,635,482
2047	\$498,005	\$5,502,716	\$9,644,024	\$15,644,745
2048	\$503,683	\$5,504,595	\$9,645,903	\$15,654,181

8.4 BENEFIT/COST ANALYSIS

avoided costs, discount rate and line losses. Given the small number of hours impacted by DR programs, events, the analysis does not consider any energy impacts or benefits. As mentioned earlier, the costs are as well as customer pre-cooling or "snapback" that commonly increases energy usage before or after DR incentive costs. costs, enabling technology costs for purchase and installation, annual O&M costs, and participant made up of program development costs, annual program administration costs, marketing and recruitment The cost effectiveness of DR options is determined based upon the UCT test utilizing NIPSCO-specific

Table 8-16 shows the UCT ratios for all the DR program options considered.

	IABLE 8-16 COS	TABLE 8-16 COST-EFFECTIVENESS OF DR PROGRAM OPTIONS	JR PROGRAM OPIIC	JNS	
Sector	DR Program Option	NPV Benefits	NPV Costs	Net Benefits	UCT Ratio
	DLC AC	\$207,755,255	\$63,937,910	\$143,817,346	3.25
Residential	DLC Space Heating	\$36,606,272	\$68,437,475	-\$31,831,203	0.53
	DLC EWH	\$43,877,386	\$18,254,930	\$25,622,456	2.40
	DLC AC	\$19,253,739	\$3,106,474	\$16,147,265	6.20
	DLC Space Heating	\$2,110,262	\$2,806,827	-\$696,565	0.75
C&I	DLC EWH	\$9,384,198	\$2,674,703	\$6,709,495	3.51
	Interruptible Tariff	\$215,950,168	\$98,335,692	\$117,614,476	2.20
	Third Party Aggregator	\$213,654,425	\$56,084,259	\$157,570,166	3.81

TARIE 8. 2 5 j

U Scenario Analysis Results

or minus 0.7% per year range for incremental annual energy efficiency MWH savings would provide a savings attained by the top 20 DSM electric utilities in the U.S. in 2016, GDS determined that using a plus incremental annual energy efficiency MWH savings rate as a percent of forecast total MWH sales for the period (2019 to 2048). Based on a review of the results of these 37 potential studies and a review of actual NIPSCO DSM Savings Update Report ranges from 1.5% to 1.8% per year over the thirty-year planning 9-1). The average annual achievable savings rate for these 37 studies in the DOE database is 1.3%. The average annual energy efficiency potential savings rate in the range of 1.0% to 3.5% per year (See Figure to develop the high and low case energy efficiency plan scenarios. Twenty of these 37 studies show an GDS examined the results of 37 energy efficiency potential studies that have been collected by the DOE reasonable bandwidth for this scenario analysis.

Energy Efficiency Potential Studies, 2007-2017

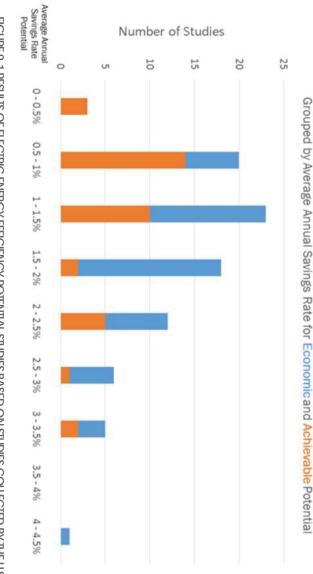


FIGURE 9-1 RESULTS OF ELECTRIC ENERGY EFFICIENCY POTENTIAL STUDIES BASED ON STUDIES COLLECTED BY THE U.S. DOE

9.1 RESIDENTIAL ENERGY EFFICIENCY

applying that cost per MWH saved to the high and low case incremental annual MWH savings estimates. efficiency potential for the NIPSCO service area. The high and low cases assume incremental annual MWH Table 9-1 and Table 9-2 present the residential sector MWH and MW savings and annual budgets for the programs are estimated based on the base case annual acquisition cost per first year MWH saved, and residential sector MWH sales forecast, respectively. Annual utility costs for NIPSCO's energy efficiency savings rates that are higher or lower than the base case percent savings by plus or minus 0.7% of the This section provides estimates of the high and low case residential sector achievable electric energy high and low energy efficiency case scenarios

¢0 017 /0/	17	בט סעב	2010
Cumulative Annual Energy Savings (MWH)	Cumulative Annual Demand Savings (MW)	Cumulative Annual Energy Savings (MWH)	Year
Low Case - Residential Sector	Low Case - Residential Sector	Low Case - Residential Sector	
ETS	TABLE 9-2 RESIDENTIAL LOW CASE SAVINGS AND BUDGETS	TABLE 9-2 RESIDE	
\$40,937,221	220	886,983	2048
\$40,479,191	219	882,730	2047
\$40,031,332	218	878,329	2046
\$39,593,390	217	873,780	2045
\$39,165,117	216	869,168	2044
\$38,746,275	215	864,374	2043
\$38,336,627	211	859,042	2042
\$37,935,948	208	853,144	2041
\$37,544,015	205	844,192	2040
\$37,160,613	221	834,861	2039
\$36,791,963	219	824,906	2038
\$36,427,831	215	811,287	2037
\$36,073,100	209	794,762	2036
\$35,702,561	203	789,913	2035
\$35,312,834	198	783,539	2034
\$34,946,964	193	768,475	2033
\$34,593,301	179	718,376	2032
\$34,275,264	166	666,740	2031
\$33,972,423	152	614,430	2030
\$33,633,869	139	560,859	2029
\$33,290,367	125	507,732	2028
\$32,977,013	112	452,122	2027
\$32,656,034	66	396,915	2026
\$32,363,656	86	342,145	2025
\$32,084,839	73	287,476	2024
\$29,241,497	60	232,026	2023
\$26,128,099	46	181,289	2022
\$9,809,937	34	133,111	2021
\$9,815,341	25	92,051	2020
\$9,817,485	17	50,975	2019
Hign Case - Kesidential Sector Annual Budgets	Cumulative Annual Demand Savings (MW)	Cumulative Annual Energy Savings (MWH)	Year
	High Case - Residential Sector	High Case - Residential Sector	
SEIS	TABLE 9-1 RESIDENTIAL HIGH CASE SAVINGS AND BUDGETS	IABLE 9-1 RESIDED	

2021 2020 2019

133,111 92,051 50,975

34 25 17

41

\$18,443,364 \$9,809,938 \$9,815,339 \$9,817,494

164,223

2022

TABLE 9-1 RESIDENTIAL HIGH CASE SAVINGS AND BUDGETS

2048	2047	2046	2045	2044	2043	2042	2041	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027	2026	2025	2024	2023	Year
260,129	262,938	265,445	267,640	269,477	270,965	272,582	274,186	273,545	272,696	271,515	273,178	277,440	302,192	328,333	348,359	334,887	320,554	306,481	290,969	275,520	257,208	239,044	221,105	203,121	188,330	Low Case - Residential Sector Cumulative Annual Energy Savings (MWH)
65	65	66	67	67	67	67	67	66	72	72	72	73	79	84	88	84	81	77	72	68	64	60	56	51	48	Low Case - Residential Sector Cumulative Annual Demand Savings (MW)
\$10,658,689	\$10,749,993	\$10,838,668	\$10,924,814	\$11,008,526	\$11,089,895	\$11,169,011	\$11,245,956	\$11,320,814	\$11,393,663	\$11,458,148	\$11,524,371	\$11,587,320	\$11,533,445	\$11,522,511	\$11,498,561	\$11,367,293	\$11,251,995	\$11,131,720	\$11,061,616	\$10,979,846	\$10,905,531	\$10,773,154	\$10,626,184	\$10,448,021	\$15,390,051	Low Case - Residential Sector Cumulative Annual Energy Savings (MWH)

TABLE 9-3 HIGH CASE -- ACHIEVABLE C&I SECTOR ENERGY EFFICIENCY POTENTIAL AND ANNUAL BUDGETS

energy savings rates of \pm .7%, respectively. Annual costs are estimated based on the base case annual %/MWH.

Table 9-3 and Table 9-4 provide estimates of the high and low case achievable electric energy efficiency

9.2 C&I SECTOR ENERGY EFFICIENCY

	ואסוב 2-3 חושרו כאשב - אכרוובע אסוב כמו שבכוסג בואבגש ברויטובועכד רסובועוואב אווע אווועטאב סטספרש	CIOR EINERGY EFFICIENCY POTEINITAL F	AIND AININDAL DUDGEIS
	Cumulative Annual Energy	Cumulative Annual Demand	
Year	Savings (MWH)	Savings (MW)	Annual Cost (\$)
2019	72,000	16.6	\$9,047,188
2020	152,000	35.0	\$10,052,432
2021	240,000	55.3	\$11,057,675
2022	335,241	77.7	\$13,053,061

NIPSCO 2018 IRP AttachAppatorx Page 212

Vor	Cumulative Annual Energy	Cumulative Annual Demand	Applied Cost (¢)
2023	450,661	103.3	\$14,946,278
2024	575,905	131.0	\$16,880,533
2025	702,217	158.8	\$17,262,039
2026	830,682	186.9	\$17,711,294
2027	954,700	214.2	\$18,096,642
2028	1,074,211	241.1	\$18,484,068
2029	1,192,320	267.9	\$18,866,688
2030	1,309,871	294.7	\$19,247,681
2031	1,420,007	319.8	\$19,716,789
2032	1,528,217	344.7	\$20,115,111
2033	1,636,760	369.8	\$20,531,228
2034	1,694,855	382.0	\$20,869,325
2035	1,745,799	392.6	\$21,187,131
2036	1,789,230	401.3	\$21,480,444
2037	1,826,180	409.7	\$21,773,581
2038	1,854,145	416.0	\$22,073,344
2039	1,871,001	419.9	\$22,286,880
2040	1,886,184	423.3	\$22,509,741
2041	1,900,049	426.8	\$22,737,292
2042	1,912,385	429.7	\$22,969,633
2043	1,923,231	432.4	\$23,206,870
2044	1,932,874	434.5	\$23,449,106
2045	1,941,336	436.7	\$23,696,450
2046	1,948,151	438.4	\$23,949,013
2047	1,953,897	439.8	\$24,206,907
2048	1,958,662	440.9	\$24,470,248

2023 2021 2026 2025 2024 2022 2020 2019 Year TABLE 9-4 LOW CASE - ACHIEVABLE C& SECTOR ENERGY EFFICIENCY POTENTIAL AND ANNUAL BUDGETS **Cumulative Annual Energy** Savings (MWH) 558,181 498,555 440,630 383,377 312,939 240,000 152,000 72,000 **Cumulative Annual Demand** Savings (MW) 113 100 126 88 73 щ 17 ភូ Annual Cost (\$) \$10,187,597 \$11,057,675 \$10,052,432 \$8,288,910 \$8,009,429 \$9,121,486 \$9,047,188 \$8,616,159

NIPSCO 2018 IRP AttachAppatorx Page 213

Year	Cumulative Annual Energy Savings (MWH)	Cumulative Annual Demand Savings (MW)	Annual Cost (\$)
2027	614,404	138	\$8,859,834
2028	668,096	150	\$9,112,954
2029	722,554	163	\$9,372,458
2030	779,053	176	\$9,617,508
2031	829,918	187	\$9,981,578
2032	881,003	199	\$10,260,772
2033	932,678	211	\$10,557,567
2034	936,415	211	\$10,780,062
2035	935,328	210	\$10,962,322
2036	929,423	208	\$11,134,577
2037	931,913	209	\$11,316,075
2038	940,468	211	\$11,499,615
2039	953,230	214	\$11,599,805
2040	964,466	216	\$11,697,258
2041	974,213	219	\$11,796,748
2042	982,964	221	\$11,898,315
2043	990,682	223	\$12,002,000
2044	997,543	224	\$12,107,844
2045	1,003,340	226	\$12,215,890
2046	1,007,523	227	\$12,326,180
2047	1,010,665	227	\$12,438,759
2048	1,012,783	228	¢10 553 671

9.3 DEMAND RESPONSE

2029 2027 2026 2025 2023 2021 2020 2030 2028 2024 2022 2019 Year TABLE 9-5 RESIDENTIAL DEMAND RESPONSE HIGH CASE PARTICIPANTS BY BUNDLE Bundle 1 0 0 0 0 0 0 0 0 0 0 0 0 Bundle 2 1,385 1,426 1,419 1,412 1,405 1,399 1,392 1,120 1,433 858 597 340 Bundle 3 106,462 105,833 105,201 104,495 103,440 100,890 92,628 33,069 10,137 107,731 107,097 69,138

NIPSCO 2018 IRP AttachAppatdix Page 214

1,482 $111,935$ $1,489$ $112,527$ $1,496$ $112,527$ $1,504$ $112,527$ $1,511$ $112,527$ $1,518$ $112,527$ $1,525$ $112,527$ $1,533$ $112,527$ $1,540$ $112,527$ $1,548$ $112,527$ $1,555$ $112,527$	2038 0 2039 0 2040 0 2041 0 2042 0 2043 0 2044 0 2045 0 2046 0 2047 0
	2038 0 2039 0 2040 0 2041 0 2042 0 2043 0 2044 0 2043 0 2044 0 2045 0
	2038 0 2039 0 2040 0 2041 0 2042 0 2043 0 2043 0 2044 0 2043 0 2044 0
	2038 0 2039 0 2040 0 2041 0 2042 0 2043 0 2043 0 2044 0
	2038 0 2039 0 2040 0 2041 0 2042 0 2043 0
	2038 0 2039 0 2040 0 2041 0 2042 0
	2038 0 2039 0 2040 0 2041 0
	2038 0 2039 0 2040 0
	2038 0 2039 0
	2038 0
)
	2037 0
1,475 111,339	2036 0
1,468 110,741	2035 0
1,461 110,146	2034 0
1,454 109,558	2033 0
1,447 108,970	2032 0
1,440 108,361	2031 0
Bundle 2 Bundle 3	Year Bundle 1

TABLE 9--6 RF ⊵ _ 5 7 0 ⊳ 5 j >

37,312	7,055	0	2037
37,113	7,017	0	2036
36,914	6,979	0	2035
36,715	6,942	0	2034
36,519	6,905	0	2033
36,323	6,868	0	2032
36,120	6,829	0	2031
35,910	6,790	ο	2030
35,699	6,750	0	2029
35,487	6,710	0	2028
35,278	6,670	0	2027
35,067	6,630	0	2026
34,832	6,586	0	2025
34,480	6,519	0	2024
33,630	6,359	0	2023
30,876	5,838	0	2022
23,046	4,357	0	2021
11,023	2,084	0	2020
3,379	639	0	2019
Bundle 3	Bundle 2	Bundle 1	
YBUNDLE	TABLE 9-6 RESIDENTIAL DEMAND RESPONSE LOW CASE PARTICIPANTS BY BUNDLE	TABLE 9-6 RESIDENTIAL DEMAND	

NIPSCO 2018 IRP AttachAppatdix Page 215

	Bundle 1	Bundle 2	Bundle 3
2038	0	7,092	37,509
2039	0	7,092	37,509
2040	0	7,092	37,509
2041	0	7,092	37,509
2042	0	7,092	37,509
2043	0	7,092	37,509
2044	0	7,092	37,509
2045	0	7,092	37,509
2046	0	7,092	37,509
2047	0	7,092	37,509
2048	0	7,092	37,509

388	374	4,837	2044
388	374	4,814	2043
388	374	4,791	2042
388	374	4,768	2041
388	374	4,745	2040
387	374	4,722	2039
387	374	4,699	2038
387	374	4,677	2037
387	374	4,654	2036
387	374	4,632	2035
387	374	4,609	2034
387	374	4,587	2033
387	374	4,565	2032
387	374	4,543	2031
387	374	4,521	2030
387	374	4,500	2029
387	374	4,478	2028
387	374	4,457	2027
387	374	4,435	2026
387	374	4,414	2025
387	374	4,393	2024
387	373	4,372	2023
318	303	3,535	2022
249	233	2,706	2021
180	163	1,885	2020
111	93	1,072	2019
Bundle 3	Bundle 2	Bundle 1	

NIPSCO 2018 IRP Attach Apptdar A Page 216

388	G	375	4,931	2048
388	5	375	4,908	2047
388	G	375	4,884	2046
388	4	374	4,861	2045
Bundle 3		L Bundle 2	Bundle 1	

621	C7T	1,044	0402
170	175	1 644	2048
129	125	1,636	2047
129	125	1,628	2046
129	125	1,620	2045
129	125	1,612	2044
129	125	1,605	2043
129	125	1,597	2042
129	125	1,589	2041
129	125	1,582	2040
129	125	1,574	2039
129	125	1,566	2038
129	125	1,559	2037
129	125	1,551	2036
129	125	1,544	2035
129	125	1,536	2034
129	125	1,529	2033
129	125	1,522	2032
129	125	1,514	2031
129	125	1,507	2030
129	125	1,500	2029
129	125	1,493	2028
129	125	1,486	2027
129	125	1,478	2026
129	125	1,471	2025
129	125	1,464	2024
129	124	1,457	2023
106	101	1,178	2022
83	78	902	2021
60	54	628	2020
37	31	357	2019
Bundle 3	Bundle 2	Bundle 1	
DLE	TABLE 9-8 C&I DEMAND RESPONSE LOW CASE PARTICIPANTS BY BUNDLE	TABLE 9-8 C&I DEMAND RESPC	

		2048	2047	2046	2045	2044	2043	2042	2041	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027	2026	2025	2024	2023	2022	2021	2020	2019	
Bundle 1	TABLE 9-10 RESIDENTIAL DEMAND R	0	ο	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Bundle 1
Bundle 2	TABLE 9-10 RESIDENTIAL DEMAND RESPONSE LOW CASE MW SAVINGS BY BUNDLE	38	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	37	37	36	36	36	36	36	35	34	32	24	11	З	Bundle 1 Bundle 2
Bundle 3	BY BUNDLE	109	109	109	109	109	109	109	109	109	109	109	109	108	108	107	106	106	105	105	104	103	103	102	102	101	86	06	67	32	10	Bundle 3

TABLE 9-9 RESIDENTIAL DEMAND RESPONSE HIGH CASE MW SAVINGS BY BUNDLE

22	∞	0	2021
11	4	0	2020
ω	1	0	2019
Bundle 3	Bundle 2	Bundle 1	
m	TABLE 9-10 RESIDENTIAL DEMAND RESPONSE LOW CASE MW SAVINGS BY BUNDLE	TABLE 9-10 RESIDENTIAL DEMAND RESPC	
109	38	0	2048
109	38	0	2047
109	38	0	2046
109	38	0	2045
109	38	0	2044
109	38	0	2043
109	38	ο	2042
109	38	0	2041
109	38	0	2040
109	38	0	2039
109	38	o	2038
109	38	0	2037
108	38	0	2036
108	38	0	2035
107	37	0	2034
106	37	0	2033
106	37	0	2032
105	37	0	2031
105	37	0	2030

2023

ω ω

NIPSCO 2018 IRP AttachAppatdix Page 218

36	13	0	2048
36	13	0	2047
36	13	0	2046
36	13	0	2045
36	13	0	2044
36	13	0	2043
36	13	0	2042
36	13	0	2041
36	13	0	2040
36	13	0	2039
36	13	0	2038
36	13	0	2037
36	13	0	2036
36	13	0	2035
36	12	0	2034
35	12	0	2033
35	12	0	2032
35	12	0	2031
35	12	0	2030
35	12	0	2029
34	12	0	2028
34	12	0	2027
34	12	0	2026
34	12	0	2025
Bundle 3	Bundle 2	Bundle 1	

TABLE 9-11 C&I DEM AND RESPONSE HIGH CASE MW SAVINGS BY BUNDLE

2031	2030	2029	2028	2027	2026	2025	2024	2023	2022	2021	2020	2019		
14	14	14	14	14	14	14	14	14	11	9	7	4	Bundle 1	TABLE 9-11 C&I DEMIAND RE
116	115	115	114	113	112	111	110	107	86	73	35	11	Bundle 2	TABLE 9-11 C&I DEMAND RESPONSE HIGH CASE MW SAVINGS BY BUNDLE
116	115	115	114	113	112	111	110	107	86	73	35	11	Bundle 3	BY BUNDLE

NIPSCO 2018 IRP AttachAppendix Page 219

40	40	6	2038
40	40	σ	2037
40	40	6	2036
39	39	6	2035
39	39	თ	2034
39	39	б	2033
39	39	σ	2032
39	39	σ	2031
38	38	σ	2030
38	38	σ	2029
38	38	σ	2028
38	38	σ	2027
37	37	თ	2026
37	37	6	2025
37	37	6	2024
36	36	6	2023
33	33	5	2022
24	24	З	2021
12	12	2	2020
4	4	1	2019
Bundle 3	Bundle 2	Bundle 1	
	TABLE 9-12 C&I DEMAND RESPONSE LOW CASE MW SAVINGS BY BUNDLE	TABLE 9-12 C&I DEMAND RESPC	
119	119	16	2048
119	119	16	2047
119	119	15	2046
119	119	15	2045
119	119	15	2044
119	119	15	2043
119	119	15	2042
119	119	15	2041
119	119	15	2040
119	119	15	2039
119	119	15	2038
119	119	15	2037
119	119	15	2036
118	118	15	2035
118	118	15	2034
117	117	15	2033
117	117	14	2032
Bundle 3	Bundle 2	Bundle 1	

TABLE 9-12 C&I DEMAND RESPONSE LOW CASE MW SAVINGS BY BUNDLE

2019 2020 2021 2021 2022	Bundle 1 2 3 5 6	Bundle 1 Bundle 2 1 4 2 12 3 24 5 33 6 36	Bundle 3 4 12 24 33 36
2024	6	37	37
2025	n 61	37	37
2027	6 0	38	38
2028	6	38	38
2029	6	38	38
2030	6	38	38
2031	6	39	39
2032	6	39	39
2033	6	39	39
2034	6	39	39
2035	6	39	39
2036	6	40	40
2037	6	40	40
2038	б	40	40

AttachAppatara Page 220

Bundle 2

\$5,915,869	\$2,215,730	\$0	2045
\$5,906,908	\$2,213,265	\$0	2044
\$5,901,130	\$2,211,086	\$0	2043
\$5,902,053	\$2,209,548	\$0	2042
\$5,903,133	\$2,208,030	\$0	2041
\$5,898,678	\$2,206,103	\$0	2040
\$5,892,805	\$2,204,042	\$0	2039
\$6,111,278	\$2,233,408	\$0	2038
\$6,074,474	\$2,220,047	\$0	2037
\$6,057,515	\$2,208,425	\$0	2036
\$6,119,807	\$2,203,707	\$0	2035
\$6,509,455	\$2,228,155	\$0	2034
\$8,084,843	\$2,358,229	\$0	2033
\$12,251,701	\$2,719,056	\$0	2032
\$15,521,324	\$2,999,822	\$0	2031
\$11,771,817	\$2,656,159	\$0	2030
\$8,264,490	\$2,345,776	\$0	2029
\$5,565,331	\$2,083,325	\$0	2028
\$5,529,741	\$2,069,806	\$0	2027
\$5,515,040	\$2,059,239	\$0	2026
\$5,576,138	\$2,058,378	\$0	2025
\$5,943,424	\$2,096,101	\$0	2024
\$7,399,782	\$2,268,065	\$0	2023
\$11,115,475	\$2,687,826	\$0	2022
\$13,189,725	\$2,699,587	\$0	2021
\$7,734,842	\$1,513,734	\$0	2020
\$3,255,010	\$698,881	\$0	2019
Bundle 3	Bundle 2	Bundle 1	

NIPSCO 2018 IRP AttachApptdax Page 221

\$5,933,994	\$2,222,653	\$0	2048
\$5,929,283	\$2,220,419	\$0	2047
\$5,923,287	\$2,218,139	\$0	2046
Bundle 3	Bundle 2	Bundle 1	

,040,421	νεο,4υος	ŶĊ	2040
¢2 NAN 421	C58 1/185	¢D	2010
\$2,037,567	\$802,771	0\$	2047
\$2,034,311	\$800,722	\$0	2046
\$2,030,607	\$798,658	\$0	2045
\$2,026,414	\$796,600	\$0	2044
\$2,023,306	\$794,663	\$0	2043
\$2,022,457	\$792,965	\$0	2042
\$2,021,683	\$791,299	\$0	2041
\$2,019,088	\$789,519	\$0	2040
\$2,016,043	\$787,718	\$0	2039
\$2,087,803	\$796,416	\$0	2038
\$2,074,491	\$790,894	\$0	2037
\$2,067,817	\$785,973	\$0	2036
\$2,087,580	\$783,376	\$0	2035
\$2,216,483	\$790,521	\$0	2034
\$2,740,653	\$832,896	\$0	2033
\$4,128,665	\$952,209	\$0	2032
\$5,217,619	\$1,044,854	\$0	2031
\$3,966,881	\$929,376	\$0	2030
\$2,801,056	\$833,344	\$0	2029
\$1,896,304	\$736,640	\$0	2028
\$1,883,594	\$731,266	\$0	2027
\$1,877,864	\$726,894	\$0	2026
\$1,897,417	\$725,774	\$0	2025
\$2,019,049	\$737,533	\$0	2024
\$2,503,722	\$794,055	\$0	2023
\$3,741,523	\$933,194	\$0	2022
\$4,432,192	\$936,348	\$0	2021
\$2,613,165	\$540,313	\$0	2020
\$1,176,670	\$329,627	\$0	2019
Bundle 3	Bundle 2	Bundle 1	
Ξ	TABLE 9-14 RESIDENTIAL DEMAND RESPONSE LOW CASE BUDGETS BY BUNDLE	TABLE 9-14 RESIDENTIAL DEMAI	

	TABLE 9-15 C&I DEMAND RESPONS	TABLE 9-15 C&I DEMAND RESPONSE HIGH CASE BUDGETS BY BUNDLE	
	Bundle 1	Bundle 2	Bundle 3
2019	\$596,003	\$838,465	\$1,396,091
2020	\$553,710	\$2,422,601	\$4,229,333
2021	\$639,584	\$5,017,046	\$8,805,735
2022	\$726,481	\$6,725,781	\$11,819,446
2023	\$814,416	\$7,347,385	\$12,915,043
2024	\$525,107	\$7,539,437	\$13,264,948
2025	\$529,668	\$7,639,617	\$13,440,855
2026	\$534,294	\$7,713,536	\$13,570,408
2027	\$538,988	\$7,773,777	\$13,675,805
2028	\$543,750	\$7,833,350	\$13,780,005
2029	\$735,366	\$7,881,110	\$13,863,334
2030	\$683,603	\$7,930,288	\$13,949,146
2031	\$692,588	\$7,978,251	\$14,032,792
2032	\$701,767	\$8,016,323	\$14,098,959
2033	\$711,146	\$8,054,054	\$14,164,504
2034	\$577,503	\$8,092,794	\$14,231,806
2035	\$582,879	\$8,132,297	\$14,300,433
2036	\$588,338	\$8,159,957	\$14,348,134
2037	\$593,880	\$8,176,998	\$14,377,068
2038	\$599,508	\$8,194,071	\$14,406,033
2039	\$605,195	\$8,195,630	\$14,407,592
2040	\$610,991	\$8,197,221	\$14,409,184
2041	\$616,876	\$8,198,846	\$14,410,808
2042	\$622,853	\$8,200,505	\$14,412,467
2043	\$628,924	\$8,202,199	\$14,414,161
2044	\$635,090	\$8,203,928	\$14,415,890
2045	\$641,353	\$8,205,694	\$14,417,656
2046	\$647,716	\$8,207,496	\$14,419,459
2047	\$654,180	\$8,209,337	\$14,421,300
2048	\$660,747	\$8,211,216	\$14,423,179
	TABLE 9-16 C&I DEMIAND RESPONS	TABLE 9-16 C&I DEMAND RESPONSE LOW CASE BUDGETS BY BUNDLE	
	Bundle 1	Bundle 2	Bundle 3
2019	\$293,668	\$346,155	\$534,354

2024 2023 2022 2021 2020

\$251,776 \$346,634 \$315,777

> \$2,485,351 \$2,277,405 \$1,707,097

\$2,550,129

\$4,458,654 \$4,341,327 \$3,975,650 \$2,971,141 \$1,446,175

\$255,189 \$285,297

\$841,567

TABLE 9-15 C&I DEMAND RESPONSE HIGH CASE BUDGETS BY BUNDLE

AttachAppahdarA Page 223

4,000,740		10000	2047
54 866 748	42 796 N94	¢371 831	2047
\$4,864,908	\$2,794,254	\$337,130	2046
\$4,863,105	\$2,792,451	\$332,516	2045
\$4,861,340	\$2,790,686	\$327,986	2044
\$4,859,611	\$2,788,957	\$323,539	2043
\$4,857,917	\$2,787,263	\$319,173	2042
\$4,856,258	\$2,785,604	\$314,886	2041
\$4,854,634	\$2,783,980	\$310,677	2040
\$4,853,043	\$2,782,388	\$306,544	2039
\$4,851,484	\$2,780,830	\$302,492	2038
\$4,840,811	\$2,774,122	\$298,505	2037
\$4,830,170	\$2,767,445	\$294,590	2036
\$4,813,294	\$2,757,248	\$290,745	2035
\$4,789,462	\$2,743,125	\$286,969	2034
\$4,766,091	\$2,729,275	\$329,573	2033
\$4,743,326	\$2,715,781	\$324,544	2032
\$4,720,372	\$2,702,192	\$319,620	2031
\$4,691,610	\$2,685,324	\$314,800	2030
\$4,662,145	\$2,668,070	\$342,766	2029
\$4,633,524	\$2,651,306	\$264,643	2028
\$4,597,965	\$2,630,622	\$261,340	2027
\$4,562,024	\$2,609,732	\$258,096	2026
\$4,518,050	\$2,584,299	\$254,908	2025
ounde o	2 DUIND		

Energy Efficiency Bundles

Integrated Resource Plan. An overview of demand response bundles is in Section 9. For energy efficiency cost of saved energy over its measure life to model energy efficiency programs in NIPSCO's 2018 measures, three bundle categories were created: GDS grouped DSM Plan energy efficiency measures into bundles according to each measure's incentive

- Bundle 1: Measures with an incentive cost ranging from \$.00 to \$.01 per lifetime kWh saved
- Bundle 2: Measures with an incentive cost ranging from \$.011 to \$.05 per lifetime kWh saved
- Bundle 3: Measures with an incentive cost over \$.05 per lifetime kWh saved

cumulative annual MWH savings, MW savings and annual utility budgets for these three bundles for the included when calculating cost effectiveness at the measure level. Tables 10-1 through 10-9 show the Efficiency guide titled "Understanding Cost Effectiveness of Energy Efficiency Programs: Best Practices, the incentive cost per lifetime kWh saved for each measure. Program administrative costs were not energy efficiency base, high and low case scenarios. Technical Methods and Emerging Issues for Policy-Makers", program administrative costs are typically not included in this cost calculation. According to the November 2008 National Action Plan for Energy measure and divided the equivalent annual payment by the measure's first-year kWh savings to calculate GDS converted the measure incentive costs into an equivalent annual payment spread over the life of the

TABLE 10-1 RESIDENTIAL ENERGY EFFICIENCY BASE CASE BUNDLES

	Bund	dle 1		Bund	lle 2			Bundle 3		Total Cumulative
	Cumulative	Cumulative		Cumulative	Cumulative		Cumulative	Cumulative		MWH - All
Year	MWH	MW	Budget	MWH	MW	Budget	MWH	MW	Budget	Bundles
2019	23,198	9.8	\$3,120,947	27,435	6.6	\$6,363,684	341	0.2	\$332,842	50,975
2020	36,586	12.0	\$3,118,788	54,867	13.1	\$6,363,871	599	0.3	\$332,467	92,051
2021	49,961	14.5	\$3,115,234	82,295	19.5	\$6,362,402	856	0.5	\$332,085	133,111
2022	70,521	18.9	\$4,169,756	85,776	20.4	\$1,216,278	13,208	3.5	\$15,436,140	169,506
2023	91,166	23.8	\$4,300,842	89,311	22.2	\$1,256,494	24,414	6.8	\$15,482,175	204,891
2024	112,136	28.3	\$4,429,560	92,947	23.3	\$1,306,866	35,635	9.7	\$15,529,778	240,718
2025	133,511	32.8	\$4,569,988	96,669	24.5	\$1,350,188	46,866	12.6	\$15,574,511	277,045
2026	154,843	37.4	\$4,699,753	100,471	25.8	\$1,393,143	58,108	15.5	\$15,621,458	313,423
2027	176,419	41.8	\$4,836,631	104,351	26.8	\$1,433,990	69,363	18.1	\$15,670,403	350,132
2028	198,232	46.6	\$4,970,286	108,258	28.1	\$1,446,694	80,604	21.0	\$15,717,871	387,093
2029	217,377	50.9	\$5,106,871	112,152	29.6	\$1,474,239	91,853	24.2	\$15,766,369	421,381
2030	236,744	55.2	\$5,247,332	116,069	31.1	\$1,486,926	103,112	27.4	\$15,817,541	455,925
2031	254,732	59.2	\$5,394,368	120,002	32.5	\$1,497,348	114,383	30.5	\$15,871,633	489,118
2032	272,757	63.3	\$5,544,922	123,910	34.0	\$1,509,677	125,665	33.7	\$15,925,409	522,331
2033	289,720	67.5	\$5,698,959	127,644	35.4	\$1,545,193	136,952	36.9	\$15,978,312	554,315
2034	299,459	69.8	\$5,823,060	104,256	30.4	\$1,561,017	148,249	40.3	\$16,033,291	551,963
2035	309,001	71.9	\$5,952,395	80,868	25.9	\$1,574,207	152,798	42.1	\$16,091,088	542,667
2036	318,770	74.4	\$6,099,762	57,136	22.7	\$1,584,608	157,352	44.0	\$16,145,518	533,259
2037	322,404	75.3	\$6,198,431	58,371	23.3	\$1,596,027	159,923	44.8	\$16,181,313	540,698
2038	325,688	76.2	\$6,299,172	59,561	23.9	\$1,607,685	162,493	45.6	\$16,217,860	547,742
2039	328,471	76.6	\$6,402,029	60,161	24.1	\$1,619,588	164,753	46.0	\$16,255,174	553,384
2040	330,848	75.3	\$6,507,046	60,694	18.7	\$1,631,741	166,995	42.1	\$16,293,272	558,537
2041	332,963	75.9	\$6,614,269	61,159	19.1	\$1,644,149	169,223	43.0	\$16,332,170	563,346
2042	334,771	76.4	\$6,723,743	61,501	19.6	\$1,656,818	169,385	43.5	\$16,371,885	565,657

NIPSCO 2018 IRP AttachAppendix B Page 226

	Bund	dle 1		Bund	lle 2			Bundle 3		Total Cumulative
Year	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	MWH - All Bundles
2043	336,350	76.8	\$6,835,516	61,769	20.1	\$1,669,753	169,537	44.2	\$16,412,433	567,657
2044	337,757	77.1	\$6,949,636	61,932	20.2	\$1,682,960	169,620	44.2	\$16,453,834	569,310
2045	338,978	77.4	\$7,066,152	62,022	20.2	\$1,696,443	169,698	44.2	\$16,496,103	570,698
2046	340,018	77.6	\$7,185,116	62,086	20.2	\$1,710,210	169,770	44.3	\$16,539,261	571,874
2047	340,876	77.8	\$7,306,578	62,120	20.3	\$1,724,267	169,832	44.3	\$16,583,324	572,828
2048	341,548	78.0	\$7,430,590	62,126	20.3	\$1,738,618	169,882	44.3	\$16,628,313	573 <i>,</i> 556

TABLE 10-2 C&I ENERGY EFFICIENCY BASE CASE BUNDLES

	Bundle 1			Bund	lle 2			Total		
Year	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative Annual MWH
2019	57,477	13.7	\$7,093,091	14,523	2.1	\$1,954,097	0	0.0	\$0	72,000
2020	121,341	28.9	\$7,881,212	30,659	4.5	\$2,171,219	0	0.0	\$0	152,000
2021	191,591	45.6	\$8,669,334	48,409	7.1	\$2,388,341	0	0.0	\$0	240,000
2022	258,294	62.0	\$9,025,573	67,310	10.0	\$2,703,163	192	0.1	\$110,756	325,796
2023	332,676	78.7	\$9,252,548	86,487	12.9	\$2,770,426	387	0.1	\$117,760	419,550
2024	408,406	95.7	\$9,484,921	101,802	15.2	\$2,835,287	590	0.2	\$124,773	510,798
2025	485,669	113.0	\$9,752,695	116,455	17.3	\$2,890,234	783	0.2	\$132,546	602,907
2026	564,928	130.5	\$10,033,029	130,997	19.5	\$2,979,807	1,023	0.3	\$150,891	696,948
2027	645,287	148.4	\$10,273,287	140,435	21.0	\$3,046,937	1,249	0.3	\$158,013	786,971
2028	722,917	166.1	\$10,524,231	149,037	22.5	\$3,107,737	1,491	0.4	\$166,543	873,445
2029	801,264	184.1	\$10,777,543	156,678	23.8	\$3,168,288	1,740	0.5	\$173,742	959,682
2030	880,358	202.4	\$11,027,368	164,258	25.1	\$3,224,944	1,971	0.5	\$180,283	1,046,587
2031	953,821	219.3	\$11,348,675	170,944	26.3	\$3,311,363	2,254	0.6	\$189,145	1,127,019
2032	1,026,654	236.3	\$11,619,566	177,521	27.5	\$3,372,494	2,461	0.6	\$195,882	1,206,636
2033	1,099,943	253.4	\$11,900,715	184,094	28.7	\$3,440,787	2,696	0.7	\$202,895	1,286,733

	Bun	dle 1		Bundle 2				Bundle 3			
Year	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative Annual MWH	
2034	1,126,736	258.8	\$12,151,635	187,755	29.4	\$3,482,137	2,975	0.8	\$190,921	1,317,466	
2035	1,148,291	262.9	\$12,362,496	190,813	30.0	\$3,520,890	3,203	0.8	\$191,340	1,342,307	
2036	1,164,268	265.7	\$12,559,119	193,394	30.6	\$3,556,600	3,408	0.9	\$191,791	1,361,070	
2037	1,180,955	269.5	\$12,759,892	195,172	30.9	\$3,592,662	3,532	0.9	\$192,274	1,379,659	
2038	1,196,990	273.1	\$12,964,294	196,719	31.3	\$3,629,416	3,655	0.9	\$192,769	1,397,364	
2039	1,210,329	276.2	\$13,090,516	198,059	31.5	\$3,659,638	3,777	1.0	\$193,188	1,412,165	
2040	1,222,254	279.1	\$13,219,389	199,222	31.8	\$3,690,495	3,896	1.0	\$193,616	1,425,373	
2041	1,232,984	281.7	\$13,350,967	200,180	32.0	\$3,722,000	4,014	1.0	\$194,052	1,437,179	
2042	1,242,596	284.0	\$13,485,309	200,985	32.1	\$3,754,167	4,111	1.0	\$194,498	1,447,692	
2043	1,251,057	286.0	\$13,622,472	201,698	32.3	\$3,787,009	4,205	1.0	\$194,953	1,456,960	
2044	1,258,590	287.8	\$13,762,516	202,318	32.4	\$3,820,541	4,304	1.1	\$195,418	1,465,211	
2045	1,265,087	289.4	\$13,905,500	202,853	32.5	\$3,854,778	4,400	1.1	\$195,892	1,472,341	
2046	1,270,045	290.7	\$14,051,487	203,300	32.6	\$3,889,733	4,495	1.1	\$196,377	1,477,839	
2047	1,274,014	291.7	\$14,200,540	203,681	32.7	\$3,925,422	4,588	1.1	\$196,871	1,482,283	
2048	1,277,052	292.5	\$14,352,723	203,993	32.8	\$3,961,861	4,680	1.1	\$197,376	1,485,725	

TABLE 10-3 COMBINED RESIDENTIAL AND C/I ENERGY EFFICIENCY BASE CASE BUNDLES

	Bun	dle 1		Bund	lle 2			Total		
Year	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative Annual MWH
2019	80,676	20.5	\$10,214,038	41,958	8.4	\$8,317,781	341	0.2	\$332,842	122,975
2020	157,927	35.8	\$11,000,000	85,526	16.8	\$8,535,090	599	0.3	\$332,467	244,051
2021	241,552	53.2	\$11,784,567	130,704	25.4	\$8,750,744	856	0.5	\$332,085	373,111
2022	328,815	71.9	\$13,195,329	153,086	28.9	\$3,919,442	13,401	3.5	\$15,546,896	495,302
2023	423,842	91.1	\$13,553,390	175,798	33.5	\$4,026,920	24,801	6.9	\$15,599,935	624,441
2024	520,542	110.3	\$13,914,481	194,749	37.1	\$4,142,153	36,225	9.8	\$15,654,551	751,516

	Bundle 1		Bundle 2					Total		
Year	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative Annual MWH
2025	619,180	129.9	\$14,322,683	213,124	40.5	\$4,240,422	47,649	12.7	\$15,707,057	879,952
2026	719,772	149.7	\$14,732,782	231,469	43.9	\$4,372,950	59,130	15.7	\$15,772,349	1,010,371
2027	821,705	169.6	\$15,109,918	244,786	46.3	\$4,480,928	70,612	18.4	\$15,828,416	1,137,103
2028	921,148	189.7	\$15,494,517	257,295	49.0	\$4,554,431	82,095	21.4	\$15,884,414	1,260,538
2029	1,018,641	209.7	\$15,884,414	268,830	51.9	\$4,642,527	93,593	24.5	\$15,940,111	1,381,064
2030	1,117,102	230.0	\$16,274,700	280,327	55.0	\$4,711,870	105,083	27.8	\$15,997,824	1,502,512
2031	1,208,553	248.7	\$16,743,044	290,946	57.8	\$4,808,711	116,638	30.9	\$16,060,778	1,616,137
2032	1,299,411	267.6	\$17,164,488	301,431	60.7	\$4,882,171	128,125	34.2	\$16,121,291	1,728,968
2033	1,389,662	286.6	\$17,599,674	311,738	63.6	\$4,985,981	139,648	37.5	\$16,181,207	1,841,048
2034	1,426,195	293.0	\$17,974,695	292,010	61.6	\$5,043,153	151,224	40.9	\$16,224,212	1,869,429
2035	1,457,292	298.1	\$18,314,890	271,681	59.5	\$5,095,098	156,000	42.7	\$16,282,428	1,884,974
2036	1,483,039	302.1	\$18,658,881	250,530	58.1	\$5,141,208	160,760	44.7	\$16,337,309	1,894,329
2037	1,503,359	306.3	\$18,958,323	253,544	59.0	\$5,188,689	163,455	45.5	\$16,373,587	1,920,357
2038	1,522,678	310.3	\$19,263,467	256,280	59.9	\$5,237,101	166,148	46.3	\$16,410,629	1,945,106
2039	1,538,800	313.7	\$19,492,545	258,220	60.2	\$5,279,226	168,530	46.8	\$16,448,362	1,965,550
2040	1,553,102	315.6	\$19,726,435	259,917	55.2	\$5,322,236	170,891	42.8	\$16,486,888	1,983,910
2041	1,565,948	318.5	\$19,965,236	261,340	55.9	\$5,366,150	173,237	43.8	\$16,526,222	2,000,524
2042	1,577,368	321.0	\$20,209,052	262,486	56.5	\$5,410,985	173,495	44.3	\$16,566,383	2,013,349
2043	1,587,407	323.3	\$20,457,988	263,467	57.2	\$5,456,763	173,742	45.0	\$16,607,387	2,024,616
2044	1,596,347	325.2	\$20,712,151	264,250	57.4	\$5,503,501	173,924	45.0	\$16,649,251	2,034,521
2045	1,604,065	326.9	\$20,971,653	264,875	57.5	\$5,551,221	174,098	45.1	\$16,691,996	2,043,038
2046	1,610,063	328.3	\$21,236,603	265,385	57.6	\$5,599,943	174,265	45.1	\$16,735,637	2,049,714
2047	1,614,891	329.4	\$21,507,118	265,801	57.7	\$5,649,688	174,420	45.1	\$16,780,196	2,055,112
2048	1,618,600	330.2	\$21,783,313	266,119	57.8	\$5,700,478	174,562	45.2	\$16,825,690	2,059,281

TABLE 10-4 RESIDENTIAL ENERGY EFFICIENCY HIGH CASE BUNDLES

	Bundle 1			Bund	lle 2		Bundle 3			Total
Year	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative MWH	Cumulative MW	Budget	Cumulative Annual MWH
2019	23,198	9.8	\$3,120,952	27,435	6.6	\$6,363,690	341	0.2	\$332,843	50,975
2020	36,586	12.0	\$3,118,886	54,867	13.0	\$6,363,987	599	0.3	\$332,468	92,051
2021	49,961	14.5	\$3,115,332	82,295	19.4	\$6,362,519	856	0.5	\$332,086	133,111
2022	78,248	20.9	\$5,232,297	86,663	20.6	\$1,526,212	16,377	4.3	\$19,369,591	181,289
2023	108,319	28.3	\$5,977,652	91,585	22.7	\$1,746,329	32,122	9.0	\$21,517,516	232,026
2024	141,188	35.4	\$6,683,189	97,082	24.3	\$1,971,708	49,205	13.4	\$23,429,942	287,476
2025	173,338	42.5	\$6,881,050	102,697	26.0	\$2,032,929	66,111	17.7	\$23,449,677	342,145
2026	205,479	49.5	\$7,068,133	108,421	27.7	\$2,095,143	83,015	22.0	\$23,492,758	396,915
2027	237,938	56.4	\$7,269,600	114,255	29.3	\$2,155,272	99,929	26.0	\$23,552,141	452,122
2028	270,753	63.3	\$7,475,436	120,131	31.0	\$2,175,805	116,848	30.4	\$23,639,126	507,732
2029	301,040	70.3	\$7,686,281	126,029	33.1	\$2,218,797	133,790	35.2	\$23,728,791	560,859
2030	331,700	77.2	\$7,904,910	131,966	35.2	\$2,239,938	150,764	39.9	\$23,827,575	614,430
2031	361,073	83.9	\$8,122,660	137,926	37.3	\$2,254,596	167,740	44.6	\$23,898,008	666,740
2032	389,814	90.0	\$8,347,381	143,838	39.2	\$2,272,623	184,724	49.4	\$23,973,298	718,376
2033	417,168	96.9	\$8,576,490	149,598	41.4	\$2,325,334	201,709	54.3	\$24,045,140	768,475
2034	436,588	101.5	\$8,781,296	128,202	37.4	\$2,353,984	218,749	59.3	\$24,177,554	783,539
2035	455,740	106.1	\$8,998,424	106,805	34.2	\$2,379,717	227,369	62.5	\$24,324,420	789,913
2036	474,756	110.2	\$9,233,941	84,901	33.6	\$2,398,749	235,105	65.6	\$24,440,410	794,762
2037	484,242	112.8	\$9,417,925	87,395	34.8	\$2,424,947	239,650	67.0	\$24,584,958	811,287
2038	491,356	114.6	\$9,606,981	89,509	35.8	\$2,451,845	244,041	68.3	\$24,733,137	824,906
2039	496,296	115.8	\$9,799,907	90,657	36.3	\$2,479,120	247,909	69.1	\$24,881,587	834,861
2040	500,770	113.3	\$9,999,475	91,674	28.2	\$2,507,456	251,748	63.3	\$25,037,084	844,192
2041	505,021	114.8	\$10,204,142	92,555	28.9	\$2,536,441	255,569	64.8	\$25,195,365	853,144
2042	508,926	115.9	\$10,414,046	93,281	29.6	\$2,566,091	256,836	65.9	\$25,356,490	859,042