IN THE INDIANA COURT OF APPEALS

Case No. 22A-EX-00187

NIPSCO INDUSTRIAL GROUP and	Appeal from the Indiana Utility
OFFICE OF THE UTILITY	Regulatory Commission
CONSUMER COUNSELOR,	
	Cause No. 45557
Appellants,	
v.	Hon. James F. Huston, Chair
	Hon. Sarah E. Freeman,
NORTHERN INDIANA PUBLIC	Hon. Stefanie Krevda,
SERVICE CO.,	Hon. David L. Ober,
)	Hon. David E. Ziegner,
Appellee.	Commissioners
	Hon. David Veleta,
	Chief Administrative Law Judge

SUPPLEMENTAL APPENDIX TO BRIEF OF APPELLEE NORTHERN INDIANA PUBLIC SERVICE CO.

Volume III of III (Pages 1 to 239)

Robert E Heidorn, #14264-49 Bryan Michael Likins, #29996-49 NISOURCE, INC. 150 West Market Street Indianapolis, IN 46204

P: 317-684-4922 F: 317-684-4918

E: RHeidorn@NiSource.com BLikins@NiSource.com Brian J. Paul, #22501-29

FAEGRE DRINKER BIDDLE & REATH LLP 300 North Meridian Street, Suite 2500

Indianapolis, IN 46204

P: (317) 237-0300 F: (317) 237-1000

E: Brian.Paul@FaegreDrinker.com

Confidential Attachment 6-R-B

PETITIONER'S
EXHIBIT NO. 6-C
DATE REPORTER

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

Indiana and U.S. Impacts from NIPSCO's T&D Construction Expenditures

Prepared for

NIPSCO°

Northern Indiana Public Service Company LLC

Prepared by Sargent & Lundy

Report SL-016205
Final
May 2021
Project 13941.001

55 East Monroe Street Chicago, IL 60603-5780 USA 312-269-2000 www.sargentlundy.com

Sargent & Lundy

000086

Confidential - Excluded from public access per A.R. 9(G)

Confidential Attachment of RLB

Northern Indiana Public Service Company LLC Project 13941.001

May 2021

LEGAL NOTICE

This deliverable was prepared by Sargent & Lundy, L.L.C. (S&L) expressly for the sole use of Northern Indiana Public Service Company L.L.C. (Client) in accordance with the contract agreement between S&L and Client. This deliverable was prepared using the degree of skill and care ordinarily exercised by engineers practicing under similar circumstances. Client acknowledges: (1) S&L prepared this deliverable subject to the particular scope limitations, budgetary and time constraints, and business objectives of Client; (2) information and data provided by others, including Client, may not have been independently verified by S&L; and (3) the information and data contained in this deliverable are time-sensitive and changes in the data, applicable codes, standards, and acceptable engineering practices may invalidate the findings of this deliverable. Any use or reliance upon this deliverable by third parties shall be at their sole risk.

Confidential Attachment 66R4B

Final

May 2021

Sargent & Lundy is one of the oldest and most experienced full-service architect engineering firms in the world. Founded in 1891, the firm is a global leader in power and energy with expertise in grid modernization, renewable energy, energy storage, nuclear power, and fossil fuels. Sargent & Lundy delivers comprehensive project services—from consulting, design, and implementation to construction management, commissioning, and operations/maintenance—with an emphasis on quality and safety. The firm serves public and private sector clients in the power and energy, gas distribution, industrial, and government sectors.

55 East Monroe Street • Chicago, IL 60603-5780 USA • 312-269-2000

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021-2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L COpyright S&L 2021; all rights reserved.

Sargent & Lundy ii

Confidential Attachment@6RPB

Final

May 2021

VERSION LOG

Version	Issue Date	Sections Modified
Final	May 27, 2021	Final

Confidential Attachment 66R5B

Final

May 2021

ISSUE SUMMARY AND APPROVAL PAGE

This is to certify that this document has been prepared, reviewed, and approved in accordance with Sargent & Lundy's Standard Operating Procedure SOP-0405, which is based on ANSI/ISO/ASSQC Q9001 Quality Management Systems.

Contributors

Prepared by:

Name	Title	Section(s) Prepared	Signature	Date
Evan Giacchino	Consultant	All	ECE	5/27/2021

Reviewed by:

Name	Title Section(s) Reviewed		Signature	Date
Shafique Khan	Project Manger	Ali	Shafique R-Klan	5/27/2021

Approved by:

Matthew Q. Thibalear

May 27, 2021

Matthew Thibodeau

Date

Senior Vice President

Confidential Attachment 66R4B

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1. INTRODUCTION	1
2. PROJECT DESCRIPTIONS	2
3. MULTIPLIER IMPACTS AND THE IMPLAN MODEL	4
3.1 IDENTIFICATION OF THE PROJECT STUDY AREAS	5
4. ECONOMIC IMPACTS OF NIPSCO T&D EXPENDITURES	7
4.1. INDUSTRY ALLOCATION OF CONSTRUCTION EXPENDITURES	7
4.1.1. TRANSFORMER REPLACEMENT EXAMPLE	11
4.2. IMPLAN MODEL RESULTS	12
4.3. YEAR-BY-YEAR EXPENDITURE IMPACTS	15

Confidential Attachment of RPB

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

TABLES

TABLE ES-1 — NIPSCO T&D INVESTMENT EXPENDITURES BREAKDOWN, 2021–2026II
TABLE ES-2 — NIPSCO CONSTRUCTURE EXPENDITURE IMPACTS OF INDIANA, REMAINING
UNITED STATES, AND ENTIRE UNITED STATES
TABLE ES-3 — IMPACTS ASSOCIATED WITH YEAR-BY-YEAR T&D EXPENDITURE IMPACTSIV
TABLE 2-1 — NIPSCO T&D INVESTMENT EXPENDITURES, 2021–2026
TABLE 2-2 - NIPSCO T&D INVESTMENT EXPENDITURES, 2021-2026 (INCLUDING ECONOMIC
DEVELOPMENT) 3
TABLE 4-1 — PROJECT GROUPS FOR NIPSCO'S DISTRIBUTION PROJECT EXPENDITURES 8
TABLE 4-2 — PROJECT GROUPS FOR NIPSCO'S TRANSMISSION PROJECT EXPENDITURES9
TABLE 4-3 — IMPLAN EXPENDITURE SECTORS AND INDUSTRIES
TABLE 4-4 — PROJECT DSTU15 – DISTRIBUTION SUBSTATION TRANSFORMER UPGRADE COSTS
11
TABLE 4-5 — NIPSCO TRANSFORMER UPGRADE IMPACTS FOR UNITED STATES AS A WHOLE 12
TABLE 4-6 NIPSCO CONSTRUCTION EXPENDITURE IMPACTS FOR INDIANA, REMAINING
UNITED STATES, AND ENTIRE UNITED STATES
TABLE 4-7 — IMPACTS ASSOCIATED WITH YEAR-BY-YEAR T&D EXPENDITURE IMPACTS

APPENDIXES

APPENDIX A. IMPLAN INDUSTRY AND REGIONAL BREAKDOWN BY PROJECT GROUP

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy vi

Confidential Attachment 66RB

Final

May 2021

ACRONYMS AND ABBREVIATIONS

Acronym/Abbreviation	Definition/Clarification
GDP	Gross Domestic Product
IMPLAN	impact analysis for planning
NIPSCO	Northern Indiana Public Service Company
T&D	transmission and distribution

Confidential Attachment 66R B

Final

May 2021

EXECUTIVE SUMMARY

Northern Indiana Public Service Company LLC (NIPSCO) contracted Sargent & Lundy to study and evaluate the economic impact of their projected expenditures during the six-year period from 2021 to 2026. The majority of this study is limited to capital expenses and investment relating to transmission and distribution (T&D) systems. It does not include the economic impact of operation and maintenance expenditures. Only grid modernization/advanced metering infrastructure project expenditures include costs incurred through operations and maintenance activities.

NIPSCO is an investor-owned utility under the jurisdiction of the Indiana Utility Regulatory Commission, and it is the largest natural gas provider and second largest electricity provider in the State of Indiana. Because the majority of NIPSCO'S economic impact is expected to occur within Indiana, this analysis focuses on the economic impact within Indiana and the United States but contains three geographic regions total: Indiana, the remaining United States, and outside of the United States. When combined, the Indiana and remaining United States regions are assumed to be the total economic impact on the United States. The impact analysis for planning (IMPLAN) software, which uses an impact analysis model, was used to estimate the economic benefit of NIPSCO's expenditures and investment. These benefits are categorized as net employment, income, value added to the market, wages injected into the economy, and federal, state, and local taxes. IMPLAN is a widely used software, particularly in the electric industry.

Sargent & Lundy estimated the total capital expenditures required by NIPSCO's six-year plan to be \$1.39 billion (direct dollars) or \$1.67 billion (direct and indirect dollars). This total investment is analyzed in the study by dividing it into three categories: 1) transmission, 2) distribution, and 3) overhead and economic development (indirect dollars). Each category is then subsequently divided into individual projects. The projects included in the analysis as an input in the IMPLAN software are shown in Table ES-1. The total (direct and indirect) for each category over the next six years is as follows:

transmission projects \$526.9 million

distribution projects \$908.8 million

projected overhead / economic development projects
 \$233.9 million

Where applicable, the projects are further divided into the three geographical regions (Indiana, the remaining United States, or outside of the United States) according to the locations of assumed industries from which direct project purchases would be made; note that this is not represented in Table ES-1.

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy

¹ The total amount of capital expenditure assumes approval of all project categories at the estimated cost included in the Plan for each project category.

Confidential Attachment 66R B

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

Table ES-1 — NIPSCO T&D Investment Expenditures Breakdown, 2021–2026

Transmissi	sion Projects Distribution Projects Overhe		ssion Projects Distribution Projects Overhead and Development		
Transmission Lines	\$236.2 Million	Distribution Lines	\$460.9 Million	Overhead	\$233.9 Million
Transmission	COO 7 Million	Distribution Substation	\$335.4 Million	Economic	
Substation	\$290.7 Million	Distribution UG Cable	\$112.5 Million	Development	None
Total	\$526.9 Million	Total	\$908.8 Million	Total	\$233.9 Million

In general, IMPLAN assumes three types of economic impact: 1) direct, 2) indirect, and 3) induced. Once the IMPLAN models are run, all three impacts are derived. Direct impact, sometimes referred to as the "initial change to the economy," is the result solely of the expenditures between a producer and consumer relating to the project. An indirect impact is the result of the purchases and contracts with the third parties providing the goods, inputs, and services to the project. An induced impact is the result of project laborers spending wages they acquired while working on the project.

The results of the IMPLAN model are shown in Table ES-2 for both Indiana and the remaining United States. The impact on the entire United States (the sum of the two regions) is also provided. Each economic impact includes the following types:

- Supported Employment: This type of economic impact describes the full-time and part-time employment required/supported by the project over the given period. Based on the model, NIPSCO's current plan is projected to support 18,252 total jobs in the entire United States. Of these total jobs, 11,137 of them exist within Indiana and 7,137 jobs are created or supported in the rest of the United States.²
 - These employment figures equate to 16.8 jobs created or supported in Indiana per \$1 million dollars spent in Indiana.
 - These employment figures equate to 16.1 jobs created or supported within the entire United States per \$1 million dollars spent within the entire United States.
- Labor Income: This type of economic impact describes the sum of employee compensation and proprietor income. Labor income is dependent on the employment requirement within each industry and the typical wages for that industry. Based on the model, NIPSCO's current plan is projected to generate \$1,226 million in labor income within the entire United States. Of the total labor income, \$757.4 million in labor income will occur in Indiana and \$508.8 million will occur in the remaining United States. During the study period, the average wage in Indiana is projected to be \$68,146 per job in Indiana and \$71,295 per job in the remaining United States.

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L copyright S&L 2021; all rights reserved.

Sargent & Lundy ||

² These are not necessarily new jobs but are more accurately defined as the total jobs required by the projects.

Confidential Attachment 6 R-B

Northern Indiana Public Service Company LLC Project 13941.001

May 2021

Value Added: This type of economic impact describes the sum of labor income, production taxes, and property income. It is often referred to as the Gross Domestic Product (GDP). Based on the model, NIPSCO's current plan is projected to add nearly \$2.10 billion in value added (GDP) to the entire United States. Of this value-added (GPD), approximately \$1.28 billion is projected to be added in Indiana and \$816 million projected to be added to the remaining United States.

Total Economic Output: This type of economic impact describes the sum of the value added and
the intermediate expenditures. Intermediate expenditures are the goods and services used as
inputs into production or development. Based on the model, NIPSCO's current plan is projected
to result in approximately \$4.18 billion in entire United States output. Of this total, approximately
\$2.61 billion is from Indiana and \$1.57 billion is from the remaining United States.

Table ES-2 — NIPSCO Constructure Expenditure Impacts of Indiana, Remaining United States, and Entire United States

Impact Type	Employment	Labor Income	Value Added	Output	State/Local	Federal			
Total Economic Impact from NIPSCO T&D Construction Expenditures in Indiana (2021–2026)									
Direct Effect	5,707	\$446,029,390	\$671,828,968	\$1,398,677,214	\$70,316,868	\$88,792,316			
Indirect Effect	2,244	\$155,110,746	\$335,119,962	\$730,644,266	\$46,953,297	\$35,526,593			
Induced Effect	3,163	\$156,292,808	\$273,589,155	\$477,425,157	\$25,929,595	\$32,977,077			
Total Effect	11,115	\$757,432,944	\$1,280,538,085	\$2,606,746,637	\$143,199,759	\$157,295,986			
		•		Construction Exp Idiana (2021–2020					
Direct Effect	2,688	\$217,603,322	\$318,056,146	\$600,865,429	\$13,319,482	\$44,432,078			
Indirect Effect	1,651	\$128,935,382	\$209,969,820	\$454,406,770	\$18,177,507	\$28,144,480			
Induced Effect	2,798	\$162,289,009	\$287,966,822	\$513,551,345	\$27,584,359	\$36,329,388			
Total Effect	7,137	\$508,827,713	\$815,992,788	\$1,568,823,544	\$59,081,348	\$108,905,945			
	Total Economic Impact from NIPSCO T&D Construction Expenditures in the US (2021–2026)								
Direct Effect	8,395	\$663,632,712	\$989,885,114	\$1,999,542,643	\$83,636,350	\$133,224,394			
Indirect Effect	3,895	\$284,046,128	\$545,089,782	\$1,185,051,036	\$65,130,804	\$63,671,073			
Induced Effect	5,962	\$318,581,817	\$561,555,977	\$990,976,502	\$53,513,954	\$69,306,465			
Total Effect	18,252	\$1,266,260,657	\$2,096,530,873	\$4,175,570,181	\$202,281,107	\$266,201,932			

The impacts from NIPSCO's T&D investment expenditures can also be presented on a year-by-year basis according to the same impact and type methodology outlines above, as shown in Table ES-3. Consistent with the yearly project expenditure pattern, the economic impacts rise significantly after 2021 and generally peak in the final year of the plan.

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021: all rights reserved.

Sargent & Lundy III

Confidential Attachment of RPB

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

Table ES-3 — Impacts Associated with Year-by-Year T&D Expenditure Impacts³

Year	Employment	Labor Income	Value Added	Output	State/Local Taxes	Federal Taxes					
	Year-by-Year Impact of T&D Expenditures in Indiana										
2021	1,051	\$70,101,837	\$108,627,196	\$217,656,808	\$11,522,341	\$14,162,153					
2022	1,606	\$108,545,648	\$182,904,035	\$370,920,421	\$20,067,801	\$22,490,106					
2023	1,920	\$131,019,048	\$218,546,570	\$444,107,667	\$24,573,969	\$27,112,748					
2024	2,191	\$150,568,300	\$261,377,047	\$535,941,326	\$29,838,147	\$31,567,166					
2025	2,207	\$151,879,840	\$263,451,052	\$540,022,640	\$30,095,815	\$31,830,903					
2026	2,140	\$145,318,271	\$245,632,185	\$498,097,774	\$27,101,687	\$30,132,910					
	Year-by-Yea	r Impact of T&D E	xpenditures in th	e United States a	nd Outside of Ind	liana					
2021	708	\$50,254,275	\$81,549,697	\$158,170,420	\$5,866,421	\$10,780,611					
2022	1,081	\$76,243,254	\$122,739,542	\$235,589,738	\$8,843,475	\$16,295,673					
2023	1,142	\$81,556,538	\$129,605,696	\$249,587,213	\$9,372,260	\$17,415,365					
2024	1,355	\$97,057,761	\$155,263,548	\$297,807,714	\$11,279,105	\$20,781,585					
2025	1,353	\$97,121,630	\$155,485,568	\$298,819,096	\$11,266,229	\$20,806,070					
2026	1,499	\$106,594,255	\$171,348,738	\$328,849,362	\$12,453,857	\$22,826,642					
	Total	Year-by-Year Imp	oact of T&D Expe	nditures in Entire	United States						
2021	1,759	\$120,356,111	\$190,176,892	\$375,827,229	\$17,388,762	\$24,942,764					
2022	2,687	\$184,788,902	\$305,643,577	\$606,510,159	\$28,911,276	\$38,785,780					
2023	3,061	\$212,575,586	\$348,152,266	\$693,694,880	\$33,946,229	\$44,528,113					
2024	3,546	\$247,626,060	\$416,640,595	\$833,749,041	\$41,117,252	\$52,348,751					
2025	3,560	\$249,001,470	\$418,936,621	\$838,841,737	\$41,362,044	\$52,636,973					
2026	3,639	\$251,912,526	\$416,980,922	\$826,947,136	\$39,555,545	\$52,959,553					

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy |V | 000097

³ Impacts for 2021 are substantially lower than other years, as the Plan includes 7 months of 2021 (June-December).

Confidential Attachment 66RB

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

1. INTRODUCTION

Northern Indiana Public Service Company (NIPSCO) contracted Sargent & Lundy to study and evaluate the economic impact of their projected construction and development expenditures during the six-year period from 2021 to 2026. The majority of this study is limited to capital expenses and investment relating to transmission and distribution (T&D) systems. It does not include the economic impact of operation and maintenance expenditures. Only grid modernization/advanced metering infrastructure project expenditures include costs incurred through operations and maintenance activities. The analysis in this report estimates the direct, indirect, and induced impacts of these expenditures on two different geographic regions—Indiana and the remaining United States—and a third region being equal to their sum—the entire United States. Each impact is broken down into the following types: supported employment, labor income, value added (Gross Domestic Product [GDP]), and total economic output. From these types, estimates of wages, federal taxes, and state and local taxes can be calculated.

This analysis requires the input of annual cost estimations, which are categorized by specific industries. The input for these estimates was derived from data provided by NIPSCO that was further developed internally by Sargent & Lundy. Once categorized annual costs were developed, they were input in the impact analysis for planning (IMPLAN) software, which is widely used in the energy industry. The general methodology used in the analysis is the "analysis by parts" method which involved inputting NIPSCO's project expenditures by the categorized industry and location from which the major materials, equipment, and services are expected to be purchased. This approach provided more precise estimates of impacts compared to simply modeling all project expenditures as a single utility sector expenditure.

Confidential Attachment 86RB

Final

May 2021

2. PROJECT DESCRIPTIONS

NIPSCO is an investor-owned electric and gas utility headquartered in Merrillville, Indiana, that operates exclusively within Indiana. NIPSCO serves more than 475,000 electric customers across more than 30 counties in the northern third portion of Indiana, making it the largest natural gas distribution company and the second largest electric distribution company in Indiana. NIPSCO is also one of six energy distribution entities of NiSource, which provides services to more than four million customers across six states.

NIPSCO provides electric service to parts of the following Indiana counties: Lake, Newton, Benton, Warren, Porter, Jasper, La Porte, Starke, Pulaski, White, Carroll, St Joseph, Marshall, Fulton, Cass, Elkhart, Kosciusko, Wabash, Lagrange, Noble, Steuben, and Dekalb. NIPSCO's primary generation facilities and their location include the Michigan City Station (Michigan City), the R.M. Schahfer Station (Wheatfield), and the Sugar Creek plant (West Terre Haute). The company also has two hydroelectric generation facilities near Monticello, Indiana and receives the energy produced from several wind farms under long-term power purchase agreements.⁴

Connecting NIPSCO's electric customers to their generating facilities requires an extensive network of high-voltage transmission lines and lower-voltage distribution lines, known as the "interconnection." Over the six-year period from 2021 to 2026, NIPSCO will be undertaking significant new capital investments in the construction, development, and refurbishment of transmission and distribution (T&D) facilities across their network in order to provide continued reliable and efficient electric services to its customers. These investments are projected to amount to approximately \$1.39 billion in nominal (direct) dollars over the period of the study. Nominal dollars are the measure of the dollar value of a product at the time it was produced and appropriately inflated thereafter.⁵

This total investment is analyzed in the study by dividing it into three categories: 1) transmission, 2) distribution, and 3) overhead and economic development. The T&D categories are then subsequently divided into either line or substation work. Subcategories are then populated with individual projects over the six-year period of the study. The categories included in the analysis as an input in the IMPLAN software are shown in Table 2-1. The total for each category (in direct and indirect dollars) over the next six years is as follows:

· transmission projects

\$526.9 million

distribution projects

\$908.8 million

⁵ Sargent & Lundy assumed an inflation rate of 3% per year for this analysis.

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all piths reserved.

Sargent & Lundy 2

⁴ Later in 2021 and throughout 2022 and 2023, NIPSCO will also have additional wind, solar, and solar plus storage generation assets coming online to serve its customers.

Confidential Attachment of RUB

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

• projected overhead / economic development projects

\$233.9 million

Where applicable, the projects are further divided into the three geographical regions (Indiana, the remaining United States, and outside of the United States) according to the locations of assumed industries from which direct project purchases would be made; note that this is not represented in Table 2-1.

Table 2-1 — NIPSCO T&D Investment Expenditures, 2021-2026

Transmission Projects		Distribution Projects		Overhead and Development	
Transmission Lines	\$236.2 Million	Distribution Lines	\$460.9 Million	Overhead	\$233.9 Million
Transmission	2000 7 14:11:	Distribution Substation	" \$335.4 Million	Economic	
Substation	\$290.7 Million	Distribution UG Cable	\$112.5 Million	Development	None
Total	\$526.9 Million	Total	\$908.8 Million	Total	\$233.9 Million

The NIPSCO T&D expenditures are expected to exhibit a degree of interannual variability over the 2021 to 2026 period. Table 2-2 lists the expected value of expenditures, by either transmission or distribution projects, for each year during the six-year investment timeframe. As seen in Table 2-2, expected T&D expenditures will be below \$200 million in the first year (June-December 2021), are expected to be over \$200 million and increasing each year thereafter, and will peak at approximately \$300 million in the final year of the plan. In all years in the analysis, distribution project expenditures are expected to be higher than expenditures on transmission projects.

Table 2-2 — NIPSCO T&D Investment Expenditures, 2021–2026 (Including Economic Development)

2021	2022	2023	2024	2025	2026	Total		
	Transmission Project Expenditures							
\$33,769,038	\$81,683,777	\$80,334,999	\$106,324,726	\$103,903,732	\$120,880,434	\$526,896,707		
		Distribu	tion Project Exp	enditures				
\$82,810,040	\$138,589,431	\$149,914,458	\$173,746,073	\$184,973,619	\$178,738,163	\$908,771,785		
	Total Project Expenditures (Excluding Overhead)							
\$116,579,078	\$220,273,209	\$230,249,457	\$280,070,799	\$288,877,352	\$299,618,597	\$1,435,668,492		

Confidential Attachment 66R B

Northern Indiana Public Service Company LLC Project 13941.001

May 2021

3. MULTIPLIER IMPACTS AND THE IMPLAN MODEL

Based on NIPSCO's plan to construct, develop, and upgrade its T&D system, NIPSCO's projected capital expenditure is \$1.39 billion (direct). This investment will have a significant impact on Indiana's economy and will additionally impact the rest of the United States. Each investment has primary and secondary impacts. To fully capture the economic impact of a project investment and operating expenditure, it is necessary to follow these expenditures as they work their way through the economy over a period of a few years after expenditures are first made. The primary impacts, or the direct impacts, are the result solely of the initial expenditures between a producer and consumer relating to the project or investment. The secondary impacts are in the form of indirect and induced benefits to the economy. An indirect impact is the result of the purchases and contracts with third parties providing the goods, inputs, and services to the project. An induced impact is the result of project laborers spending wages they acquired while working on the project.

For example, firms that are hired to construct a new 34-kV distribution substation will purchase breakers, switches, transformers, metal structures, wires, and other materials from their suppliers. The "direct impact" is the immediate exchange of goods and services between those entities. The suppliers then use the revenue from these goods and services to pay employees and to purchase their own inputs to meet their contractual obligations. This process of the receiving then spending, or passing along, of expenditures which arises from the business to business purchases ripples through the economy, repeating the process through multiple exchanges. The "indirect impact" is the total economic impact of this rippling business spending that is a multiple of the original purchase of material and service inputs by the firms hired to construct the substation.

Aside from subsequent business-to-business transactions there is a significant portion of the direct expenditure that will be paid to the laborers and employees who perform the work. Through what is called the "induced impact," these workers use their earned income to pay for living expenses such as food, rent, clothing, and automobile payments or services and leisure activities such as home renovations or vacations. Establishments that receive the workers' income will, in turn, use the revenue received to pay their own expenses, including their own workers' income, general business expenses, and supplies needed to provide additional goods and services. Just like indirect impact, the process of work and employee income passing through the economy will continue through multiple rounds of spending, creating the same ripple effect. The "induced impact" is the total economic impact of the rippling income spending that is a multiple of the original wages received by those working directly on the project.

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy 4

Confidential Attachment 6 R-B

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

For both the induced impact and the indirect impact, through each round of spending, the impact will lessen because not all of the expenditures are spent within the areas of study. Areas outside of the study include imported goods, worker savings, taxes, etc. Thus, just as a stone thrown into water creates ripples that lessen with time and distance, the economic "ripple effect" with project expenditures will lessen with time, as the successive rounds of spending work through the economy. In general, it takes two to three years after a project is completed for the majority of the economic impact to take effect.

3.1. IMPLAN MODELING SOFTWARE

While the successive rounds of spending in an economy is conceptually intuitive, manually tracing the actual spending patterns of even a single construction project would be difficult, expensive, and time consuming. Fortunately, estimating the economic impact of an investment on the economy can be done using mathematical methods and complex economic models. One commonly-used technique for estimating the economic impact uses input-output models. These types of models were first developed in the 1930s by Dr. Wassily Leontief. Decades later, they were applied to computerized commercial software. The software uses a new investment or other change in economic activity as input to generate impact estimates for employment, income, value added, output, and taxes as the output. These models are based upon detailed databases, including survey and reporting data from the government and other public and private sources. The data was collected to track historical economic patterns and interrelationships among industries, households, and regions. Two widely used input-output models are the RIMS II Input-Output model and the IMPLAN (IMpact analysis for PLANning) model. IMPLAN is the more widely used model for energy sector investment studies and was therefore used in this analysis.

The IMPLAN model was developed initially in the 1970s by the U.S. Forest Service with the intention of determining the impacts of certain forestry policy and management decisions. In the mid-1980s, the U.S. Forest Service contracted with the University of Minnesota to support and further develop the model data sets. In 1993, Minnesota IMPLAN Group, Inc. was founded as an independent organization through a technology transfer agreement with the University of Minnesota. Minnesota IMPLAN Group, Inc. was subsequently given rights to all future IMPLAN development. In 1995, Minnesota IMPLAN Group, Inc. began to develop the first Microsoft Windows version and the following year IMPLAN Version 1 was released. This was followed by Version 2 in 1999 and Version 3 in 2009. Version 3 was used in this study since it can perform multi-regional impact analysis.

3.2. IDENTIFICATION OF THE PROJECT STUDY AREAS

Due to the wide range of specific cultures and laws between states, or even counties within each state, one of the first assumptions that must be made is the study area for the model. Because the majority of NIPSCO's T&D investment impact will be felt in the state of Indiana, this study viewed impacts at the state

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021, all rights reserved.

Sargent & Lundy 5

Supplemental Appendix to Brief of Appellee NIPSCO - Vol. III

Northern Indiana Public Service Company LLC Project 13941.001

Confidential Attachment 66R5B

Final

May 2021

level rather than county or country level. Additionally, local policy decisions may depend, in part, on a view of the economic impacts in the state. To understand the broader impact of state expenditures, it is also beneficial to track the impacts of Indiana project expenditures on the remaining United States and impacts outside of the United States. Therefore, three geographic regions were chosen for the analysis: Indiana, the remaining United States, and outside of the United States.

To assess the isolated state and national level impacts of the expenditures each year, two models, one for Indiana and one for the remaining United States, were created in IMPLAN for each year of the study. With the establishment of the two models, the total United States impact can then be estimated by summing the results of both models. No sub-state regions comprised of several counties where the expenditures will be concentrated was developed for the study. One can assume that the greatest impact will be realized in the northern Indiana area, where much of the workforce for the project will live (as permanent residents or as temporary residents during construction) and spend a significant amount of their income.

Confidential Attachment & RB

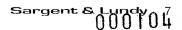
Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

4. ECONOMIC IMPACTS OF NIPSCO T&D EXPENDITURES

4.1. INDUSTRY ALLOCATION OF CONSTRUCTION EXPENDITURES

The \$1.39 billion (direct) of NIPSCO T&D expenditures are listed in Table 2-1 and arranged chronologically for only T&D expenditures in Table 2-2. To construct the economic impact model using IMPLAN, the next step required the development of NIPSCO T&D project categories with more economically significant expenditure assumptions. Economically significant assumptions include which region expenditures are paid to, if the expenditures are to people or businesses, and what industry sector each expenditure is attributed to.


While using the general IMPLAN power T&D sector (Sector 47) to model the T&D construction investment expenditures is possible, this sector is widely defined and would not include the specific goods and services outside of T&D such as transportation and engineering services. IMPLAN calls the method to develop more precise impact estimates an "analysis by parts" approach (or a "bill of goods" approach), and it was used in this analysis. This approach involves identifying the sector or industry, region, and recipient of project investment expenditures that will be made.

Expenditure patterns were developed by mapping individual line items within the cost estimate for each project to a specific industry or sector. Each project is subsequently grouped together according to expected vendors in order to assess the regional breakdown for each sector within that project group. Table 4-1shows the selected groups, including the corresponding category and subcategory, that was used in the analysis for the distribution projects. Table 4-2 shows the same information for the NIPSCO transmission projects. Each project across the entire six-year plan was respectively assigned one of these project groups and the corresponding regional breakdown shown in Appendix A. For projects that did not have a detailed cost breakdown, the average sector breakdown of all other projects in that group were applied to total cost for the project.

To fully capture the economic impact of each projects, 30 sectors and industries were used to map individual cost line items. These sectors and their description can be found in Table 4-1.

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Confidential Attachment 6 R B

Final

May 2021

Table 4-1 — Project Groups for NIPSCO'S Distribution Project Expenditures

Category	Sub-Category	Project
Distribution	UG Cable	Underground Cable Replacement
Distribution	Line	Advanced Metering Infrastructure
Distribution	Line	Circuit Performance
Distribution	Line	Arrestors
Distribution	Line	Engineering
Distribution	Line	LED Streetlights
Distribution	Line	Maintenance Engineering
Distribution	Line	Maintenance Pre-Construction
Distribution	Line	New/Rebuild Line
Distribution	Line	Pre-Construction
Distribution	Line	Switches
Distribution	Line	Wood Poles
Distribution	Substation	Arrestors
Distribution	Substation	Batteries
Distribution	Substation	Breakers
Distribution	Substation	Communication
Distribution	Substation	Engineering
Distribution	Substation	Feeders
Distribution	Substation	Maintenance Engineering
Distribution	Substation	Maintenance Pre-Construction
Distribution	Substation	New/Rebuild Substation
Distribution	Substation	Pre-Construction
Distribution	Substation	Potential Transformer
Distribution	Substation	Relay Upgrades
Distribution	Substation	Substation Automation
Distribution	Substation	Switches
Distribution	Substation	Transformer Upgrades

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L) It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy 8 000105

Confidential Attachment®®®®

Northern Indiana Public Service Company LLC Project 13941.001

May 2021

Table 4-2 — Project Groups for NIPSCO's Transmission Project Expenditures

Category	Sub-Category	Project
Transmission	Line	Engineering
Transmission	Line	Fiber
Transmission	Line	Maintenance Engineering
Transmission	Line	Maintenance Pre-Construction
Transmission	Line	New/Rebuild Line
Transmission	Line	Pre-Construction
Transmission	Line	Steel Structures
Transmission	Line	Switches
Transmission	Substation	Arrestors
Transmission	Substation	Batteries
Transmission	Substation	Breakers
Transmission	Substation	Communication
Transmission	Substation	Engineering
Transmission	Substation	Maintenance Engineering
Transmission	Substation	Maintenance Pre-Construction
Transmission	Substation	New/Rebuild Substation
Transmission	Substation	Pre-Construction
Transmission	Substation	Potential Transformers
Transmission	Substation	Relay Upgrades
Transmission	Substation	Substation Automation
Transmission	Substation	Switches
Transmission	Substation	Transformer Upgrades

Confidential Attachment@RB

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

Table 4-3 — IMPLAN Expenditure Sectors and Industries

IMPLAN Index	Sector/Industry Description
47	Electric power transmission and distribution
52	Construction of new power and communication structures
132	Sawmills
204	Ready-mix concrete manufacturing
236	Fabricated structural metal manufacturing
298	Electronic computer manufacturing
302	Broadcast and wireless communications equipment
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing
329	Power, distribution, and specialty transformer manufacturing
331	Switchgear and switchboard apparatus manufacturing
332	Relay and industrial control manufacturing
333	Storage battery manufacturing
336	Other communication and energy wire manufacturing
337	Wiring device manufacturing
428	Software publishers
447	Other real estate
457	Architectural, engineering, and related services
463	Environmental and other technical consulting services
470	Office administrative services
514	Electronic and precision equipment repair and maintenance

Confidential Attachment 66R B

Northern Indiana Public Service Company LLC Project 13941.001

May 2021

4.1.1. Transformer Replacement Example

To better understand the process behind this analysis, this section will serve as a specific example of the economic impact that results from a single project. The project that is described is a transmission substation transformer replacement in totaling \$3,117,043. A breakdown of the costs and corresponding economic industry can be found in Table 4-4.

Table 4-4 — Transmission Substation Transformer Upgrade Cost Breakdown

	T-4-1	IMPLAN	Indicate Breakfills	0/ 151	0/ 110	O/ NUA
Expense	Total	Index	Industry Description	% IN	% US	% N/A
NIPSCO Direct Employee Labor	\$256,450	47	Electronic Power Transmission and Distribution (Labor)	100%	0%	0%
Contracted Construction Labor	\$267,600	52	Construction of New Power and Communication Structures (Labor)	100%	0%	0%
Total Labor	\$524,050		<u> </u>	_	_	
Sales Tax	\$130,000	N/A	Sales Tax excluded from analysis	0%	0%	100%
Project Handling & Commissioning	\$85,000	47	Electric Power Transmission and Distribution	90%	10%	0%
Support Steel	\$5,806	236	Fabricated Structural Metal Manufacturing	40%	45%	15%
138/69 kV Transformer	\$1,409,720	329	Power, Distribution, and Specialty Transformer Manufacturing	0%	15%	85%
Switches & Panel	\$54,870	331	Switchgear and Switchboard Manufacturing	0%	80%	20%
Interrupting Device	\$112,234	332	Relay and Industrial Control Manufacturing	0%	75%	25%
Battery Monitoring	\$28,252	337	Wiring Device Manufacturing	0%	85%	15%
Environmental Services	\$35,000	463	Environmental and Other Technical Consulting Services	90%	10%	0%
Total Direct Costs	\$1,860,882	_		_	_	_
Contingency	\$52,405	470	Office Administrative Services	100%	0%	0%
Project Management	\$83,473	47	Electric Power Transmission and Distribution	90%	10%	0%
Cost Control	\$166,945	470	Office Administrative Services	100%	0%	0%
Construction Management	\$238,493	52	Construction of New Power and Communication Structures	65%	35%	0%
Engineering	\$190,795	457	Architectural, Engineering, and Related Services	90%	10%	0%
Total Indirect Cost	\$732,111		_	_		
Total Project Costs	\$3,117,043	_		_	_	_

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L) It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Confidential Attachment®®®

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

Based on the regional breakdown, 40% of the total project cost (\$1,255,584) is being spent within Indiana and 16% (\$489,056) is being spent within the remaining United States. The project expenditures in Indiana directly results in the employment of 15 people, \$1,192,526 of labor income, \$2,999,956 of value added to the Indiana economy, and \$4,351,879 of economic output. The project expenditures in Indiana has a total (including indirect and induced effects) impact of employing 65 people, producing \$4,754,153 of labor income, \$8,904,464 of value added to the Indiana economy, and \$17,822,810 of economic output. Additionally, the project results in \$1,024,384 in state and local taxes and \$1,053,920 in federal taxes.

Table 4-5 — NIPSCO Transformer Upgrade Impacts for United States as a Whole

Impact Type	Employment	Labor Income	Value Added	Output	State/Local Taxes	Federal Taxes
Direct Effect	15	\$1,192,526	\$2,000,956	\$4,351,879	\$186,230	\$246,522
Indirect Effect	21	\$1,971,952	\$4,131,282	\$8,492,342	\$581,770	\$458,542
Induced Effect	28	\$1,589,675	\$2,772,226	\$4,978,589	\$256,384	\$348,855
Total Effect	65	\$4,754,153	\$8,904,464	\$17,822,810	\$1,024,384	\$1,053,920

4.1.2. Advanced Metering Infrastructure Example

As an example, for more macro scaled TDSIC initiatives, this section will describe a specific breakdown for the total Advanced Metering Infrastructure (AMI) expenses in 2024. A breakdown of the costs and corresponding economic industry can be found below in Table 4-6.

Table 4-6 — 2024 Advanced Meting Infrastructure Expenses Breakdown

Expense	Expense Total		IMPLAN Industry Description		% US	% N/A
Installation Labor	\$5,821,898	47	Electronic Power Transmission and Distribution (Labor)	100%	0%	0%
Operation & Maintenance Labor	\$2,309,640	52	Construction of New Power and Communication Structures (Labor)	70%	30%	0%
Total Labor	\$8,131,538	_		_	_	
Sales tax on materials	\$1,446,351	N/A	Sales Tax excluded from analysis	0%	0%	100%
Line & Socket Repairs, Meter Deployment	\$3,759,880	47	Electric Power Transmission and Distribution	100%	0%	0%
Equipment Deployment and Tower Construction	\$448,677	52	Construction of New Power and Communication Structures	100%	0%	0%
Hardware (Cyber Security)	\$0	298	Electronic Computer Manufacturing	0%	50%	50%

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy 12

Confidential - Excluded from public access per A.R. 9(G)

Confidential Attachment 66RB

Northern Indiana Public Service Company LLC Project 13941.001

Final May 2021

Expense	Total	IMPLAN Index	Industry Description	% IN	% US	% N/A
Meter, Access Point, Relay, Batteries, Ancillary Equipment	\$22,045,976	302	302 Broadcast and Wireless Communications Equipment		50%	50%
Licensing, Customer portal, etc.	\$562,063	428	Software Publishers		100%	0%
Real Estate	\$264,000	447	Other Real Estate	100%	0%	0%
Engineering	\$640,967	457	Architectural, Engineering, and Related Services	50%	50%	0%
Integrations	\$5,511,710	463	Environmental and Other Technical Consulting Services	45%	50%	5%
Total Direct Costs	\$1,860,882	_		_	_	_
Overhead	\$275,000	470	Office Administrative Services	100%	0%	0%
Total Indirect Cost	\$275,000	_				
Total AMI Costs			_	-	_	_

Based on the regional breakdown, 35% of the total project cost (\$14,986,956) is being spent within Indiana and 36% (\$15,354.281) is being spent within the remaining United States. The project expenditures in Indiana directly results in the employment of 163 people, \$16,917,637 of labor income, \$35,987,058 of value added to the Indiana economy, and \$79,841,768 of economic output. The project expenditures in Indiana has a total (including indirect and induced effects) impact of employing 960 people, producing \$78,276,588 of labor income, \$159,891,030 of value added to the Indiana economy, and \$322,707,196 of economic output. Additionally, the project results in \$19,983,660 in state and local taxes and \$18,069,964 in federal taxes.

Table 4-7 — NIPSCO 2024 AMI Impacts for United States as a Whole

Impact Type	Employment	Labor Income	Value Added	Output	State/Local Taxes	Federal Taxes
Direct Effect	163	\$16,917,637	\$35,987,058	\$79,841,768	\$4,080,941	\$3,931,616
Indirect Effect	340	\$35,071,748	\$77,887,948	\$160,112,423	\$11,616,148	\$8,340,603
Induced Effect	457	\$26,287,203	\$46,016,023	\$82,753,005	\$4,286,571	\$5,797,746
Total Effect	960	\$78,276,588	\$159,891,030	\$322,707,196	\$19,983,660	\$18,069,964

4.2. IMPLAN MODEL RESULTS

IMPLAN models were constructed with the inputs from Appendix A for each year and region. The two regions were linked using the IMPLAN multi-regional approach such that interregional secondary effects could be captured.

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy 13

Confidential - Excluded from public access per A.R. 9(G)

Final May 2021

The results of the IMPLAN model are shown in Table 4-8 for both Indiana and the remaining United States. The impact on the entire United States (the sum of the Indiana and remaining United States geographic regions) is also provided. Each economic impact includes the following types

- Supported Employment: This type of economic impact describes the full-time and part-time
 employment required/supported by the project over the given period. These are not necessarily
 new jobs but are more accurately defined as the total jobs required by the projects. Based on the
 model, NIPSCO's current plan is projected to support 18,252 total jobs in the entire United States.
 Of these total jobs, 11,115 of them exist within Indiana and 7,137 jobs are created or supported in
 the rest of the United States.
 - These employment figures equate to 16.8 jobs created or supported in Indiana per \$1 million dollars spent in Indiana.
 - These employment figures equate to 16.1 jobs created or supported within the entire United States per \$1 million dollars spent within the entire United States.
- Labor Income: This type of economic impact describes the sum of employee compensation and proprietor income. Labor income is dependent on the employment requirement within each industry and the typical wages for that industry. Based on the model, NIPSCO's current plan is projected to generate \$1,266 million in labor income within the entire United States. Of the total labor income, \$767.4 million in labor income will occur in Indiana and \$508.8 million will occur in the remaining United States. During the study period, the average wage in Indiana is projected to be \$68,146 per job in Indiana and \$71,295 per job in the remaining United States.
- Value Added: This type of economic impact describes the sum of labor income, production taxes, and property income. It is often referred to as the Gross Domestic Product (GDP). Based on the model, NIPSCO's current plan is projected to add nearly \$2.10 billion in value added (GDP) to the entire United States. Of this value-added (GPD), approximately \$1.28 billion is projected to be added in Indiana and \$816.0 million projected to be added to the remaining United States.
- Total Economic Output: This type of economic impact describes the sum of the value added and
 the intermediate expenditures. Intermediate expenditures are the goods and services used as
 inputs into production or development. Based on the model, NIPSCO's current plan is projected
 to result in approximately \$4.18 billion in entire United States output. Of this total, approximately
 \$2.61 billion is from Indiana and \$1.57 billion is from the remaining United States.

Table 4-8 — NIPSCO Construction Expenditure Impacts for Indiana, Remaining United States, and Entire United States

Impact Type	Employment	Labor Income	Value Added	Output	State/Local Taxes	Federal Taxes			
Total Economic Impact from NIPSCO T&D Construction Expenditures in Indiana (2021–2026)									
Direct Effect	5,707	\$446,029,390	\$671,828,968	\$1,398,677,214	\$70,316,868	\$88,792,316			
Indirect Effect	2,244	\$155,110,746	\$335,119,962	\$730,644,266	\$46,953,297	\$35,526,593			
Induced Effect	3,163	\$156,292,808	\$273,589,155	\$477,425,157	\$25,929,595	\$32,977,077			

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L) It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy 14

Confidential Attachment 86RB

Northern Indiana Public Service Company LLC Project 13941.001

May 2021

Impact Type	Employment	Labor Income	Value Added	Output	State/Local Taxes	Federal Taxes				
Total Effect	11,115	\$757,432,944	\$1,280,538,085	\$2,606,746,637	\$143,199,759	\$157,295,986				
Total Economic Impact from NIPSCO T&D Construction Expenditures in the United States and Outside Indiana (2021–2026)										
Direct Effect	2,688	\$217,603,322	\$318,056,146	\$600,865,429	\$13,319,482	\$44,432,078				
Indirect Effect	1,651	\$128,935,382	\$209,969,820	\$454,406,770	\$18,177,507	\$28,144,480				
Induced Effect	2,798	\$162,289,009	\$287,966,822	\$513,551,345	\$27,584,359	\$36,329,388				
Total Effect	7,137	\$508,827,713	\$815,992,788	\$1,568,823,544	\$59,081,348	\$108,905,945				
	Total Eco		om NIPSCO T&D the US (2021–20	Construction Exp 26)	enditures					
Direct Effect	8,395	\$663,632,712	\$989,885,114	\$1,999,542,643	\$83,636,350	\$133,224,394				
Indirect Effect	3,895	\$284,046,128	\$545,089,782	\$1,185,051,036	\$65,130,804	\$63,671,073				
Induced Effect	5,962	\$318,581,817	\$561,555,977	\$990,976,502	\$53,513,954	\$69,306,465				
Total Effect	18,252	\$1,266,260,657	\$2,096,530,873	\$4,175,570,181	\$202,281,107	\$266,201,932				

4.3. YEAR-BY-YEAR EXPENDITURE IMPACTS

The impacts from NIPSCO's T&D investment expenditures can also be presented on a year by year basis according to the same impact and type methodology outlined previously, as shown in Table 4.7. Consistent with the yearly project expenditure pattern, the economic impacts rise significantly after 2021 and generally peak in the final year of the plan.

Table 4-9 — Impacts Associated with Year-by-Year T&D Expenditure Impacts

Year	Employment	Labor Income	Value Added	Output	State/Local Taxes	Federal Taxes					
	Year-by-Year Impact of T&D Expenditures in Indiana										
2021	1,051	\$70,101,837	\$108,627,196	\$217,656,808	\$11,522,341	\$14,162,153					
2022	1,606	\$108,545,648	\$182,904,035	\$370,920,421	\$20,067,801	\$22,490,106					
2023	1,920	\$131,019,048	\$218,546,570	\$444,107,667	\$24,573,969	\$27,112,748					
2024	2,191	\$150,568,300	\$261,377,047	\$535,941,326	\$29,838,147	\$31,567,166					
2025	2,207	\$151,879,840	\$263,451,052	\$540,022,640	\$30,095,815	\$31,830,903					
2026	2,140	\$145,318,271	\$245,632,185	\$498,097,774	\$27,101,687	\$30,132,910					
	Year-by-Year Impact of T&D Expenditures in the United States and Outside of Indiana										
2021	708	\$50,254,275	\$81,549,697	\$158,170,420	\$5,866,421	\$10,780,611					
2022	1,081	\$76,243,254	\$122,739,542	\$235,589,738	\$8,843,475	\$16,295,673					

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L) It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy 15

Confidential Attachment 66REB

Final

May 2021

Year	Employment	Labor Income	Value Added	Output	State/Local Taxes	Federal Taxes
2023	1,142	\$81,556,538	\$129,605,696	\$249,587,213	\$9,372,260	\$17,415,365
2024	1,355	\$97,057,761	\$155,263,548	\$297,807,714	\$11,279,105	\$20,781,585
2025	1,353	\$97,121,630	\$155,485,568	\$298,819,096	\$11,266,229	\$20,806,070
2026	1,499	\$106,594,255	\$171,348,738	\$328,849,362	\$12,453,857	\$22,826,642
	Tota	l Year-by-Year Im	pact of T&D Expe	nditures in Entire	United States	·
2021	1,759	\$120,356,111	\$190,176,892	\$375,827,229	\$17,388,762	\$24,942,764
2022	2,687	\$184,788,902	\$305,643,577	\$606,510,159	\$28,911,276	\$38,785,780
2023	3,061	\$212,575,586	\$348,152,266	\$693,694,880	\$33,946,229	\$44,528,113
2024	3,546	\$247,626,060	\$416,640,595	\$833,749,041	\$41,117,252	\$52,348,751
2025	3,560	\$249,001,470	\$418,936,621	\$838,841,737	\$41,362,044	\$52,636,973
2026	3,639	\$251,912,526	\$416,980,922	\$826,947,136	\$39,555,545	\$52,959,553

Confidential Attachment 6 RPB

Final

May 2021

APPENDIX A. IMPLAN INDUSTRY AND REGIONAL BREAKDOWN BY PROJECT GROUP

Economic Impacts of Projected NIPSCO T&D Expenditures, 2021–2026

This document contains information that is confidential and proprietary to Sargent & Lundy, L.L.C. (S&L). It shall not be reproduced in whole or in part or released to any third party without the prior written consent of S&L. Copyright S&L 2021; all rights reserved.

Sargent & Lundy

				1		2				
ID#	Description	1.a	1.b	1.c	1.d	2.a	2.b	2.c	2.d	
Ž.		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	3.0%	0%	0%	100%	3.3%	0%	0%	100%	
47	Electric power transmission and distribution	8.0%	100%	0%	0%	2.8%	90%	10%	0%	
47.1	NIPSCO Direct Labor	15.1%	100%	0%	0%	0.0%	100%	0%	0%	
52	Construction of new power and communication structures	0.6%	100%	0%	0%	17.8%	65%	35%	0%	
	Sawmills	0.0%	0%	0%	100%	2.2%	100%	0%	0%	
204 236 en 298 302	Ready-mix concrete manufacturing	0.0%	0%	0%	100%	0.0%	100%	0%	0%	
236	Fabricated structural metal manufacturing	0.0%	0%	0%	100%	9.8%	40%	45%	15%	
<u>ප</u> 298	Electronic computer manufacturing	1.1%	0%	50%	50%	0.0%	0%	50%	50%	
302	Broadcast and wireless communications equipment	42.3%	0%	50%	50%	0.0%	0%	50%	50%	
1 308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	0%	100%	0.0%	0%	60%	40%	
329 329 331 HO 332 333 336 337 428	Power, distribution, and specialty transformer manufacturing	0.0%	0%	0%	100%	0.0%	0%	15%	85%	
<u>م</u> 331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	0%	100%	0.0%	0%	80%	20%	
332	Relay and industrial control manufacturing	0.0%	0%	0%	100%	20.4%	0%	75%	25%	
333	Storage battery manufacturing	0.0%	0%	0%	100%	0.0%	0%	50%	50%	
<u>්</u> ව 336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	1.6%	0%	70%	30%	
337	Wiring device manufacturing	0.0%	0%	60%	40%	12.5%	0%	85%	15%	
	Software publishers	2.7%	0%	100%	0%	0.0%	0%	100%	0%	
20 447 Ces 457	Other real estate	0.7%	100%	0%	0%	0.0%	100%	0%	0%	
G 457	Architectural, engineering, and related services	0.8%	50%	50%	0%	4.4%	90%	10%	0%	
	Environmental and other technical consulting services	19.0%	45%	50%	5%	9.9%	90%	10%	0%	
470	Office administrative services	0.2%	100%	0%	0%	1.3%	100%	0%	0%	
₩.	Electronic and precision equipment repair and maintenance	6.5%	70%	30%	0%	14.0%	90%	10%	0%	
9(Distribution			Distribution				
O- Boxed p	ercentage in lower right indicates percentage of total TDsic	Adv anced Metering		0	0%	Line		1	10/	
Plan costs	Plan costs are attributed to the respective project type.		ire 0.0%		U /0	Circuit Performance		1.1%		
		DLAMI				DLCP				

				3		4				
ID#	Description	3.a	3.b	3.c	3.d	4.a	4.b	4.c	4.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	2.9%	0%	0%	100%	0.0%	0%	0%	100%	
47	Electric power transmission and distribution	3.6%	90%	10%	0%	0.0%	90%	10%	0%	
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	6.6%	100%	0%	0%	
52	Construction of new power and communication structures	19.1%	65%	35%	0%	0.0%	65%	35%	0%	
132	Sawmills	1.7%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
236	Fabricated structural metal manufacturing	7.7%	40%	45%	15%	0.0%	40%	45%	15%	
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.1%	0%	60%	40%	0.0%	0%	60%	40%	
329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%	
331	Switchgear and switchboard apparatus manufacturing	0.1%	0%	80%	20%	0.0%	0%	80%	20%	
332	Relay and industrial control manufacturing	19.4%	0%	75%	25%	0.0%	0%	75%	25%	
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
336	Other communication and energy wire manufacturing	1.4%	0%	70%	30%	0.0%	0%	70%	30%	
337	Wiring device manufacturing	10.0%	0%	85%	15%	0.0%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
447	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
457	Architectural, engineering, and related services	4.8%	90%	10%	0%	73.6%	90%	10%	0%	
463	Environmental and other technical consulting services	10.4%	90%	10%	0%	15.4%	90%	10%	0%	
470	Office administrative services	1.4%	100%	0%	0%	4.3%	100%	0%	0%	
514	Electronic and precision equipment repair and maintenance	17.4%	90%	10%	0%	0.0%	90%	10%	0%	
		Distribution				Distribution				
· · · · · · · · · · · · · · · · · · ·		Line Arrestors DLDA		2.9%		Line Engineering DLE		0.9%		

				5		J		3	
ID#	Description	5.a	5.b	5.c	5.d	6.a	6.b	6.c	6.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	4.4%	0%	0%	100%	0.0%	0%	0%	100%
47	Electric power transmission and distribution	0.8%	90%	10%	0%	0.0%	90%	10%	0%
47.1	NIPSCO Direct Labor	5.3%	100%	0%	0%	6.6%	100%	0%	0%
52	Construction of new power and communication structures	0.0%	65%	35%	0%	0.0%	65%	35%	0%
132	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	18.1%	40%	45%	15%	0.0%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
329	Power, distribution, and specialty transformer manufacturing	53.6%	0%	15%	85%	0.0%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	0.0%	0%	70%	309
337	Wiring device manufacturing	0.0%	0%	85%	15%	0.0%	0%	85%	15%
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
447	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%
457	Architectural, engineering, and related services	0.0%	90%	10%	0%	73.6%	90%	10%	0%
463	Environmental and other technical consulting services	13.0%	90%	10%	0%	15.4%	90%	10%	0%
470	Office administrative services	4.9%	100%	0%	0%	4.3%	100%	0%	0%
514	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
		Distribution				Distribution			
		Line Street Light DLED	0.2%		2%	Line Maint. Engineering DLME		0.2%	

Supp. App. 33

1				7	8				
ID#	Description	7.a	7.b	7.c	7.d	8.a	8.b	8.c	8.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	2.1%	0%	0%	100
47	Electric power transmission and distribution	0.0%	90%	10%	0%	3.4%	90%	10%	0%
47.1	NIPSCO Direct Labor	25.2%	100%	0%	0%	5.6%	100%	0%	0%
52	Construction of new power and communication structures	7.6%	65%	35%	0%	28.2%	65%	35%	0%
132	Sawmills	0.0%	100%	0%	0%	7.4%	100%	0%	0%
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	3.6%	40%	45%	159
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	509
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	509
200	Capacitor, resistor, coil, transformer, and other inductor	1	0%	000/	400/		0%	600/	409
308	manufacturing	0.0%	0%	60%	40%	0.2%	U%	60%	40
		1	00/	4 ~ 0 /	050/		20/	2 ma/	0.50
329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.2%	0%	15%	859
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	3.1%	0%	80%	209
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.4%	0%	75%	25
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50'
336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	9.7%	0%	70%	30'
337	Wiring device manufacturing	0.0%	0%	85%	15%	4.4%	0%	85%	159
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
447	Other real estate	0.0%	100%	0%	0%	5.4%	100%	0%	0%
457	Architectural, engineering, and related services	8.3%	90%	10%	0%	9.9%	90%	10%	0%
463	Environmental and other technical consulting services	42.4%	90%	10%	0%	13.3%	90%	10%	0%
	Office administrative services	16.5%	100%	0%	0%	3.2%	100%	0%	0%
		1	000/	400/	00/		000/	400/	0.00
514	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
		Distribution		· · · · · · · · · · · · · · · · · · ·	<u> </u>	Distribution			<u> </u>
Boxed pe	ercentage in lower right indicates percentage of total TDsic	Line			00/	Line			40/
Plan costs are attributed to the respective project type.		Maint. Pre-C	Constructio	0.	0%	New/Rebuild	d	11.	.1%
		DLMPC				DLNRL			
(~)			· · · · · · · · · · · · · · · · · · ·						
(20)									
Com									
randah.									

 \bigcirc

		9				10			
ID#	Description	9.a	9.b	9.c	9.d	10.a	10.b	10.c	10.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	3.6%	0%	0%	100%
47	Electric power transmission and distribution	0.0%	90%	10%	0%	1.4%	90%	10%	0%
47.1	NIPSCO Direct Labor	25.2%	100%	0%	0%	9.9%	100%	0%	0%
52	Construction of new power and communication structures	7.6%	65%	35%	0%	4.9%	65%	35%	0%
132	Sawmills	0.0%	100%	0%	0%	5.2%	100%	0%	0%
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%
	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	14.7%	40%	45%	15%
	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
329	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	26.7%	0%	80%	20%
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	0.9%	0%	70%	30%
336 337	Wiring device manufacturing	0.0%	0%	85%	15%	3.6%	0%	85%	15%
	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
447 457	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%
457	Architectural, engineering, and related services	8.3%	90%	10%	0%	8.0%	90%	10%	0%
463	Environmental and other technical consulting services	42.4%	90%	10%	0%	13.6%	90%	10%	0%
470	Office administrative services	16.5%	100%	0%	0%	7.5%	100%	0%	0%
514	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
2		Distribution				Distribution			
- Boxed pe	ercentage in lower right indicates percentage of total TDsic	Line	Line		8%	Line		0.1	2%
	are attributed to the respective project type.	Pre-Constru	uction	otion 0.8%				U. 4	_ /0
						DLSW			

(_) (_)

S

					11			1	<u>)</u>	
	ID#	Description	11.a	11.b_	11.c	11.d_	12.a	12.b	12.c	12.d
			IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
	0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	2.1%	0%	0%	100%
	47	Electric power transmission and distribution	0.0%	90%	10%	0%	4.4%	90%	10%	0%
	47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	0.0%	100%	0%	0%
	52	Construction of new power and communication structures	0.0%	65%	35%	0%	44.2%	65%	35%	0%
ď	132	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
ontidential -	204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%
fid	236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	1.8%	40%	45%	15%
es_	298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
TI A	302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
	308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
Excluded	329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
à	331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%
from	332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%
ğ_	333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
	336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	1.0%	0%	70%	30%
public access	337	Wiring device manufacturing	0.0%	0%	85%	15%	27.9%	0%	85%	15%
77 <u></u>	428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
ac	447	Other real estate	0.0%	100%	G%	0%	0.0%	100%	0%	0%
<u> </u>	457	Architectural, engineering, and related services	14.3%	90%	10%	0%	2.1%	90%	10%	0%
Š	463	Environmental and other technical consulting services	56.9%	90%	10%	0%	8.6%	90%	10%	0%
e <u>l</u>	470	Office administrative services	28.8%	100%	0%	0%	7.9%	100%	0%	0%
per A.R.	514	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
0			Distribution				Distribution			
$\overline{}$	Plan costs are attributed to the respective project type.		Line Wood Pole DLWP	6.5%		5%	Substation Arrestors DSA		0.0%	

*			1	3		14			
ID#	Description	13.a	13.b	13.c	13.d	14.a	14.b	14.c	14.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	2.9%	0%	0%	100%	3.8%	0%	0%	100%
47	Electric power transmission and distribution	2.9%	90%	10%	- 0%	1.7%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	5.8%	100%	0%	0%
52	Construction of new power and communication structures	29.0%	65%	35%	0%	6.5%	65%	35%	0%
_	Sawmills	0.0%	100%	0%	0%	0.1%	100%	0%	0%
204 236 298 302	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	2.9%	100%	0%	0%
236	Fabricated structural metal manufacturing	2.1%	40%	45%	15%	4.8%	40%	45%	15%
C 298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.5%	0%	60%	40%
329 0 0 0 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	1.0%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	38.8%	0%	80%	20%
332	Relay and industrial control manufacturing	19.5%	0%	75%	25%	2.7%	0%	75%	25%
332 333	Storage battery manufacturing	16.4%	0%	50%	50%	0.0%	0%	50%	50%
<u>ප</u> 336	Other communication and energy wire manufacturing	3.2%	0%	70%	30%	5.8%	0%	70%	30%
	Wiring device manufacturing	0.0%	0%	85%	15%	0.8%	0%	85%	15%
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
OL	Other real estate	0.0%	100%	0%	0%	3.1%	100%	0%	0%
G 457	Architectural, engineering, and related services	4.5%	90%	10%	0%	10.0%	90%	10%	0%
403	Environmental and other technical consulting services	10.8%	90%	10%	0%	6.6%	90%	10%	0%
470	Office administrative services	8.7%	100%	0%	0%	4.6%	100%	0%	0%
$\sqrt{}$	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.6%	90%	10%	0%
. 9(Distribution				Distribution			
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.	Substation Battery		0.:	2%	Substation Breaker		3.	1%
		DSB				DSBRU			

\$			1	5		16			
ID#	Description	15.a	15.b	15.c	15.d	16.a	16.b	16.c	16.d
1. 1.		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	1.9%	0%	0%	100%	0.0%	0%	0%	100%
47	Electric power transmission and distribution	4.0%	90%	10%	0%	0.0%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	6.6%	100%	0%	0%
52	Construction of new power and communication structures	5.1%	65%	35%	0%	0.0%	65%	35%	0%
\. P	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
204 236 P 298 11 302	Ready-mix concrete manufacturing	4.3%	100%	0%	0%	0.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	17.8%	40%	45%	15%	0.0%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
1 308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
329 0 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%
H 332	Relay and industrial control manufacturing	3.7%	0%	75%	25%	0.0%	0%	75%	25%
332 333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
336	Other communication and energy wire manufacturing	0.8%	0%	70%	30%	0.0%	0%	70%	30%
336 337 428	Wiring device manufacturing	8.0%	0%	85%	15%	0.0%	0%	85%	15%
	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
2CCes 457 457	Other real estate	0.9%	100%	0%	0%	0.0%	100%	0%	0%
G 457	Architectural, engineering, and related services	30.4%	90%	10%	0%	73.6%	90%	10%	0%
	Environmental and other technical consulting services	11.0%	90%	10%	0%	15.4%	90%	10%	0%
Pe 470	Office administrative services	7.5%	100%	0%	0%	4.4%	100%	0%	0%
N	Electronic and precision equipment repair and maintenance	4.7%	90%	10%	0%	0.0%	90%	10%	0%
9(Distribution				Distribution			
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.	Substation Communica	ıtion	3.	9%	Substation Engineering		2.	7%
		DSC	_			DSE			

			1	7		18			
ID#	Description	17.a	17.b	17.c	17.d	18.a	18.b	18.c	18.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	2.3%	0%	0%	100%	0.0%	0%	0%	100%
47	Electric power transmission and distribution	3.4%	90%	10%	0%	0.0%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	6.6%	100%	0%	0%
52	Construction of new power and communication structures	34.5%	65%	35%	0%	0.0%	65%	35%	0%
132	Sawmills	0.5%	100%	0%	0%	0.0%	100%	0%	0%
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	2.0%	40%	45%	15%	0.0%	40%	45%	15%
204 236 298 302	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.3%	0%	60%	40%	0.0%	0%	60%	40%
329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
	Switchgear and switchboard apparatus manufacturing	12.6%	0%	80%	20%	0.0%	0%	80%	20%
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%
332 333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
336	Other communication and energy wire manufacturing	16.1%	0%	70%	30%	0.0%	0%	70%	30%
336 337 428	Wiring device manufacturing	1.1%	0%	85%	15%	0.0%	0%	85%	15%
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%
457	Architectural, engineering, and related services	0.0%	90%	10%	0%	73.6%	90%	10%	0%
	Environmental and other technical consulting services	16.2%	90%	10%	0%	15.4%	90%	10%	0%
470	Office administrative services	11.0%	100%	0%	0%	4.3%	100%	0%	0%
1	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
2		Distribution				Distribution			
	ercentage in lower right indicates percentage of total TDsic s are attributed to the respective project type.	Substation Feeder		0.	0%	Substation Maint. Engir	neering	0.2	2%
		DSFC				DSME			

, , , , , , , , , , , , , , , , , , ,			1	9			2	20	1)	
ID#	Description	19.a	19.b	19.c	19.d	20.a	20.b	20.c	20.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	4.4%	0%	0%	100%	
47	Electric power transmission and distribution	0.0%	90%	10%	0%	1.3%	90%	10%	0%	
47.1	NIPSCO Direct Labor	25.2%	100%	0%	0%	5.3%	100%	0%	0%	
52	Construction of new power and communication structures	7.6%	65%	35%	0%	5.4%	65%	35%	0%	
132	Sawmills	0.0%	100%	0%	0%	0.1%	100%	0%	0%	
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	2.1%	100%	0%	0%	
236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	2.5%	40%	45%	15%	
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.4%	0%	60%	40%	
329 0 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	25.7%	0%	15%	85%	
	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	27.8%	0%	80%	20%	
332 333	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.8%	0%	75%	25%	
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
336 337	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	4.4%	0%	70%	30%	
337	Wiring device manufacturing	0.0%	0%	85%	15%	0.8%	0%	85%	15%	
	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
447 457 463	Other real estate	0.0%	100%	0%	0%	2.1%	100%	0%	0%	
457	Architectural, engineering, and related services	8.3%	90%	10%	0%	11.2%	90%	10%	0%	
403	Environmental and other technical consulting services	42.4%	90%	10%	0%	3.8%	90%	10%	0%	
470	Office administrative services	16.5%	100%	0%	0%	2.1%	100%	0%	0%	
514	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.1%	90%	10%	0%	
9		Distribution				Distribution				
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.	Substation Maint. Pre-0	Constructio	0.	0%	Substation New/Rebuild	d	10.	8%	
	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	DSMPC				DSNRS				

			2	21		22				
ID#	Description	21.a	21.b	21.c	21.d	22.a	22.b	22.c	22.d	
*		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	2.6%	0%	0%	100%	
47	Electric power transmission and distribution	0.0%	90%	10%	0%	3.6%	90%	10%	0%	
47.1	NIPSCO Direct Labor	25.2%	100%	0%	0%	0.0%	100%	0%	0%	
52	Construction of new power and communication structures	7.6%	65%	35%	0%	26.5%	65%	35%	0%	
132	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	9.9%	100%	0%	0%	
236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	8.5%	40%	45%	15%	
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	8.0%	0%	60%	40%	
329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	18.9%	0%	85%	15%	
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%	
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%	
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	1.5%	0%	70%	30%	
	Wiring device manufacturing	0.0%	0%	85%	15%	0.0%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
447	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
447	Architectural, engineering, and related services	8.3%	90%	10%	0%	4.3%	90%	10%	0%	
	Environmental and other technical consulting services	42.4%	90%	10%	0%	8.4%	90%	10%	0%	
470	Office administrative services	16.5%	100%	0%	0%	7.7%	100%	0%	0%	
514	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%	
2		Distribution				Distribution				
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.	Substation Pre-Constru DSPC	uction	0.8	8%	Substation Potential Tra DSPT	ansformer	0. ′	1%	

3			2	!3		24				
ID#	Description	23.a	23.b	23.c	23.d	24.a	24.b	24.c	24.d	
2		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	3.2%	0%	0%	100%	1.7%	0%	0%	100%	
47	Electric power transmission and distribution	2.0%	90%	10%	0%	4.0%	90%	10%	0%	
47.1	NIPSCO Direct Labor	14.3%	100%	0%	0%	0.0%	100%	0%	0%	
52	Construction of new power and communication structures	5.6%	65%	35%	0%	39.7%	65%	35%	0%	
132	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
236	Fabricated structural metal manufacturing	0.6%	40%	45%	15%	0.6%	40%	45%	15%	
204 236 298 302	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.9%	0%	60%	40%	1.6%	0%	60%	40%	
329	Power, distribution, and specialty transformer manufacturing	30.6%	0%	15%	85%	0.3%	0%	15%	85%	
331	Switchgear and switchboard apparatus manufacturing	5.8%	0%	80%	20%	2.9%	0%	80%	20%	
332	Relay and industrial control manufacturing	4.7%	0%	75%	25%	17.5%	0%	75%	25%	
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	0.0%	0%	70%	30%	
337	Wiring device manufacturing	3.0%	0%	85%	15%	0.9%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
457 463	Architectural, engineering, and related services	9.2%	90%	10%	0%	11.4%	90%	10%	0%	
	Environmental and other technical consulting services	10.6%	90%	10%	0%	10.3%	90%	10%	0%	
470	Office administrative services	9.7%	100%	0%	0%	9.1%	100%	0%	0%	
514	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%	
Q		Distribution				Distribution				
- Boxed pe	ercentage in lower right indicates percentage of total TDsic	Substation		0.6		Substation		0.4	1%	
Plan costs	are attributed to the respective project type.	Relay Upgrade			Substation Automation 0.476 DSSA					

				25		26				
ID#	Description	25.a	25.b	25.c	25.d	26.a	26.b	26.c	26.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	2.1%	0%	0%	100%	4.4%	0%	0%	100%	
47	Electric power transmission and distribution	1.7%	90%	10%	0%	1.2%	90%	10%	0%	
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	5.4%	100%	0%	0%	
52	Construction of new power and communication structures	13.5%	65%	35%	0%	9.2%	65%	35%	0%	
_ _	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	3.0%	100%	0%	0%	3.0%	100%	0%	0%	
236	Fabricated structural metal manufacturing	4.1%	40%	45%	15%	3.3%	40%	45%	15%	
<u>G</u> 298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	1.9%	0%	60%	40%	
329 XCluded 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	41.1%	0%	15%	85%	
331	Switchgear and switchboard apparatus manufacturing	25.1%	0%	80%	20%	3.3%	0%	80%	20%	
332 333	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.2%	0%	75%	25%	
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
<u>ත</u> 336	Other communication and energy wire manufacturing	1.3%	0%	70%	30%	1.7%	0%	70%	30%	
336 5 337 6 428	Wiring device manufacturing	0.0%	0%	85%	15%	0.7%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
2 447 CC 457	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
ලි <u>457</u>	Architectural, engineering, and related services	8.3%	90%	10%	0%	9.4%	90%	10%	0%	
	Environmental and other technical consulting services	21.4%	90%	10%	0%	6.1%	90%	10%	0%	
Per 470	Office administrative services	19.6%	100%	0%	0%	8.9%	100%	0%	0%	
\sim	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.2%	90%	10%	0%	
9(Distribution				Distribution				
()- Boxed p	ercentage in lower right indicates percentage of total TDsic	Substation		0	2%	Substation		3.8	20/	
	s are attributed to the respective project type.	Switch		L	Z /0	Transforme	r	3.0	J /0	
		DSSW				DSTU				

8)		<u> </u>	2	27		28				
ID#	Description	27.a	27.b	27.c	27.d	28.a	28.b	28.c	28.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	1.7%	0%	0%	100%	0.0%	0%	0%	100%	
47	Electric power transmission and distribution	5.2%	90%	10%	0%	0.0%	90%	10%	0%	
47.1	NIPSCO Direct Labor	0.9%	100%	0%	0%	6.6%	100%	0%	0%	
52	Construction of new power and communication structures	52.5%	65%	35%	0%	0.0%	65%	35%	0%	
132	Sawmills	0.3%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	0.8%	100%	0%	0%	0.0%	100%	0%	0%	
204 236 298 302	Fabricated structural metal manufacturing	0.1%	40%	45%	15%	0.0%	40%	45%	15%	
<u>P</u> 298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.1%	0%	60%	40%	0.0%	0%	60%	40%	
329 0 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%	
	Switchgear and switchboard apparatus manufacturing	3.6%	0%	80%	20%	0.0%	0%	80%	20%	
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%	
332 333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
336	Other communication and energy wire manufacturing	9.2%	0%	70%	30%	0.0%	0%	70%	30%	
	Wiring device manufacturing	8.7%	0%	35%	15%	0.0%	0%	85%	15%	
` 1	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
447 Cec 457	Other real estate	2.1%	100%	0%	0%	0.0%	100%	0%	0%	
457	Architectural, engineering, and related services	4.8%	90%	10%	0%	73.6%	90%	10%	0%	
403	Environmental and other technical consulting services	9.4%	90%	10%	0%	14.8%	90%	10%	0%	
470	Office administrative services	0.5%	100%	0%	0%	4.9%	100%	0%	0%	
$\sqrt{}$	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%	
_	ercentage in lower right indicates percentage of total TDsic	Distribution Undergroun		8.	 8%	Transmissio Line	n	1.4	4%	
Plan costs	s are attributed to the respective project type.	Cable DUG		L		Engineering TLE		L		

			2	9		30			
ID#	Description	29.a	29.b	29.c	29.d	30.a	30.b	30.c	30.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	0.8%	0%	0%	100%	0.0%	0%	0%	100%
47	Electric power transmission and distribution	5.6%	90%	10%	0%	0.0%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	6.6%	100%	0%	0%
52	Construction of new power and communication structures	26.9%	65%	35%	0%	0.0%	65%	35%	0%
	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	0.0%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
I 308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
329 0. 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%
332 333	Relay and industrial control manufacturing	0.3%	0%	75%	25%	0.0%	0%	75%	25%
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
336	Other communication and energy wire manufacturing	2.3%	0%	70%	30%	0.0%	0%	70%	30%
336 337 6 428	Wiring device manufacturing	0.6%	0%	85%	15%	0.0%	0%	85%	15%
A28	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
2 447 CCC 457	Other real estate	0.1%	100%	0%	0%	0.0%	100%	0%	0%
ල <u>ි</u> 457	Architectural, engineering, and related services	13.6%	90%	10%	0%	73.6%	90%	10%	0%
	Environmental and other technical consulting services	11.0%	90%	10%	0%	15.4%	90%	10%	0%
470	Office administrative services	2.8%	100%	0%	0%	4.3%	100%	0%	0%
\sim	Electronic and precision equipment repair and maintenance	36.0%	90%	10%	0%	0.0%	90%	10%	0%
9(Transmissio	on			Transmissio	n		
	ercentage in lower right indicates percentage of total TDsic sare attributed to the respective project type.	Line Fiber		6.0	0%	Line Maint. Engir	neering	0.1	1%
		TLF	<u>.</u> .			TLME			

			3	1		32			
ID#	Description	31.a	31.b	31.c	31.d	32.a	32.b	32.c	32.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	1.8%	0%	0%	100%
47	Electric power transmission and distribution	0.0%	90%	10%	0%	3.5%	90%	10%	0%
47.1	NIPSCO Direct Labor	25.2%	100%	0%	0%	1.0%	100%	0%	0%
52	Construction of new power and communication structures	7.6%	65%	35%	0%	35.0%	65%	35%	0%
132	Sawmills	0.0%	100%	0%	0%	4.3%	100%	0%	0%
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.3%	100%	0%	0%
204 236 298 302	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	6.2%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
329 0 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
	Switchgear and switchboard apparatus manufacturing	0.0%	0%	%08	20%	2.3%	0%	80%	20%
332 333	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	8.2%	0%	70%	30%
336 337 428 20 447 60 457	Wiring device manufacturing	0.0%	0%	85%	15%	4.1%	0%	85%	15%
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
a 447	Other real estate	0.0%	100%	0%	0%	5.5%	100%	0%	0%
G 457	Architectural, engineering, and related services	8.3%	90%	10%	0%	9.3%	90%	10%	0%
463	Environmental and other technical consulting services	42.4%	90%	10%	0%	16.8%	90%	10%	0%
470 470	Office administrative services	16.5%	100%	0%	0%	1.5%	100%	0%	0%
\sim	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
9(ercentage in lower right indicates percentage of total TDsic	Transmissi	on			Transmissio	n		
_	ercentage in lower right indicates percentage of total TDsic s are attributed to the respective project type.	Line Maint. Pre-0	Constructio	0.	1%	Line New/Rebuild	t	8.	1%
<i>(</i> >		TLMPC				TLNRL			
\bigcirc					-				
()									
617, 827, 9									
C)									

¥			3	3		34				
ID#	Description	33.a	33.b	33.c	33.d	34.a	34.b	34.c	34.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	0.0%	0%	0%	100%	
47	Electric power transmission and distribution	0.0%	90%	10%	0%	5.3%	90%	10%	0%	
47.1	NIPSCO Direct Labor	25.2%	100%	0%	0%	0.9%	100%	0%	0%	
52	Construction of new power and communication structures	7.6%	65%	35%	0%	71.2%	65%	35%	0%	
	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
204 236 CP 298 302	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	15.1%	40%	45%	15%	
<u>පු</u> 298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%	
329 Cluded 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%	
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%	
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%	
332 OB 333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
ك 336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	0.0%	0%	70%	30%	
336 337 6 428	Wiring device manufacturing	0.0%	0%	85%	15%	0.0%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
a 447	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
20 447 Ces 457	Architectural, engineering, and related services	8.3%	90%	10%	0%	7.5%	90%	10%	0%	
	Environmental and other technical consulting services	42.4%	90%	10%	0%	0.0%	90%	10%	0%	
Per 470	Office administrative services	16,5%	100%	0%	0%	0.0%	100%	0%	0%	
\sim	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%	
9		Transmissio	on			Transmissio	on			
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.	Line Pre-Constru	uction	0.	7%	Line Steel Struct	ure	1.8	3%	
	TLPC	LPC				TLST				

ထ တ တ

Supp. App. 47

	<u> </u>		3	35			3	36	
ID#	Description	35.a	35.b	35.c	35.d	36.a	36.b	36.c	36.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	3.2%	0%	0%	100%	2.6%	0%	0%	100%
47	Electric power transmission and distribution	2.9%	90%	10%	0%	3.8%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.3%	100%	0%	0%	0.0%	100%	0%	0%
52	Construction of new power and communication structures	28.6%	65%	35%	0%	37.6%	65%	35%	0%
	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
204 236 298 302	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	15.3%	40%	45%	15%	4.9%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
308 329 331	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing	28.8%	0%	80%	20%	0.0%	0%	80%	20%
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%
332 333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
	Other communication and energy wire manufacturing	0.5%	0%	70%	30%	4.2%	0%	70%	30%
337	Wiring device manufacturing	0.8%	0%	85%	15%	28.0%	0%	85%	15%
	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
447 457 463	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%
457	Architectural, engineering, and related services	3.9%	90%	10%	0%	2.6%	90%	10%	0%
	Environmental and other technical consulting services	10.0%	90%	10%	0%	8.6%	90%	10%	0%
470	Office administrative services	5.6%	100%	0%	0%	7.8%	100%	0%	0%
1 1	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
2		Transmissio	on		,	Transmissio	n		
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.	Line Switch		0.	2%	Substation Arrestors		0.0)%
	TLSW				TSA				

Y Y			37				38			
ID#	Description	37.a	37.b	37.c	37.d	38.a	38.b	38.c	38.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	3.3%	0%	0%	100%	2.8%	0%	0%	100%	
47	Electric power transmission and distribution	2.4%	90%	10%	0%	3.0%	90%	10%	0%	
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	3.5%	100%	0%	0%	
52	Construction of new power and communication structures	23.6%	65%	35%	0%	17.1%	65%	35%	0%	
132	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	4.6%	100%	0%	0%	
236	Fabricated structural metal manufacturing	1.6%	40%	45%	15%	6.6%	40%	45%	15%	
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
1 30X	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	1.4%	0%	60%	40%	
329 e 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	7.3%	0%	15%	85%	
331	Switchgear and switchboard apparatus manufacturing Relay and industrial control manufacturing	0.0%	0%	80%	20%	18.2%	0%	80%	20%	
332		22.9%	0%	75%	25%	7.9%	0%	75%	25%	
332 0 333	Storage battery manufacturing	20.4%	0%	50%	50%	0.2%	0%	50%	50%	
<u>්</u> ටු 336	Other communication and energy wire manufacturing	2.5%	0%	70%	30%	2.5%	0%	70%	30%	
336 337 428	Wiring device manufacturing	0.0%	0%	85%	15%	1.0%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
2C 447 Ces 457	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
e 457	Architectural, engineering, and related services	4.1%	90%	10%	0%	14.4%	90%	10%	0%	
	Environmental and other technical consulting services	10.3%	90%	10%	0%	5.5%	90%	10%	0%	
Per 470	Office administrative services	9.0%	100%	0%	0%	3.7%	100%	0%	0%	
M	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.3%	90%	10%	0%	
9		Transmissio	on			Transmissio	n			
①- Boxed percentage in lower right indicates percentage of total TDsic Plan costs are attributed to the respective project type.		Substation Battery		0	2%	Substation Breaker		4.	1%	
		TSB				TSBRU				

			3	9		40			
ID#	Description	39.a	39.b	39.c	39.d	40.a	40.b	40.c	40.d
***		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	1.8%	0%	0%	100%	0.0%	0%	0%	100%
47	Electric power transmission and distribution	3.7%	90%	10%	0%	0.0%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	6.6%	100%	0%	0%
52	Construction of new power and communication structures	5.9%	65%	35%	0%	0.0%	65%	35%	0%
	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
204	Ready-mix concrete manufacturing	5.2%	100%	0%	0%	0.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	12.6%	40%	45%	15%	0.0%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
308 329 331	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%
329	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%
332	Relay and industrial control manufacturing	2.4%	0%	75%	25%	0.0%	0%	75%	25%
332 333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
336	Other communication and energy wire manufacturing	1.4%	0%	70%	30%	0.0%	0%	70%	30%
336 337 428	Wiring device manufacturing	14.9%	0%	85%	15%	0.0%	0%	85%	15%
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
447 457	Other real estate	1.1%	100%	0%	0%	0.0%	100%	0%	0%
457	Architectural, engineering, and related services	30.8%	90%	10%	0%	73.6%	90%	10%	0%
	Environmental and other technical consulting services	8.4%	90%	10%	0%	15.4%	90%	10%	0%
470	Office administrative services	6.0%	100%	0%	0%	4.3%	100%	0%	0%
1	Electronic and precision equipment repair and maintenance	5.8%	90%	10%	0%	0.0%	90%	10%	0%
2		Transmissio	on			Transmissio	on		
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.	Substation Communica	ation	3.6	3%	Substation Engineering	& Pre-Cor	2.4	4%
		TSC			-	TSE			

3			41				42			
ID#	Description	41.a	41.b	41.c	41.d	42.a	42.b	42.c	42.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	0.0%	0%	0%	100%	0.0%	0%	0%	100%	
47	Electric power transmission and distribution	0.0%	90%	10%	0%	0.0%	90%	10%	0%	
47.1	NIPSCO Direct Labor	6.6%	100%	0%	0%	25.2%	100%	0%	0%	
52	Construction of new power and communication structures	0.0%	65%	35%	0%	7.6%	65%	35%	0%	
	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	0.0%	40%	45%	15%	
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
1 301X	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0%	0%	60%	40%	0.0%	0%	60%	40%	
329 331 332 333	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%	
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	0.0%	0%	80%	20%	
332	Relay and industrial control manufacturing	0.0%	0%	75%	25%	0.0%	0%	75%	25%	
333	Storage battery manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
336	Other communication and energy wire manufacturing	0.0%	0%	70%	30%	0.0%	0%	70%	30%	
336 337 428	Wiring device manufacturing	0.0%	0%	85%	15%	0.0%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
447 457 463	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
457	Architectural, engineering, and related services	73.6%	90%	10%	0%	8.3%	90%	10%	0%	
	Environmental and other technical consulting services	15.4%	90%	10%	0%	42.4%	90%	10%	0%	
470	Office administrative services	4.3%	100%	0%	0%	16.5%	100%	0%	0%	
Ν.	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%	
٥		Transmissio	on			Transmissio	n			
	ercentage in lower right indicates percentage of total TDsic	Substation		0.2	2%	Substation		0.	1%	
Plan costs	s are attributed to the respective project type.	Maint. Engii TSME	ineering			Maint. Pre-Constructio				

			2	13			44			
ID#	Description	43.a	43.b	43.c	43.d	44.a	44.b	44.c	44.d	
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A	
0	Not applicable (Sales Tax)	3.2%	0%	0%	100%	0.0%	0%	0%	100%	
47	Electric power transmission and distribution	3.3%	90%	10%	0%	0.0%	90%	10%	0%	
47.1	NIPSCO Direct Labor	4.2%	100%	0%	0%	25.2%	100%	0%	0%	
52	Construction of new power and communication structures	13.1%	65%	35%	0%	7.6%	65%	35%	0%	
132	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%	
204	Ready-mix concrete manufacturing	6.7%	100%	0%	0%	0.0%	100%	0%	0%	
204 236 298 302	Fabricated structural metal manufacturing	8.4%	40%	45%	15%	0.0%	40%	45%	15%	
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%	
1 308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	1.0%	0%	60%	40%	0.0%	0%	60%	40%	
29 0 0 0 0 0 0 329	Power, distribution, and specialty transformer manufacturing	17.2%	0%	15%	85%	0.0%	0%	15%	85%	
331	Switchgear and switchboard apparatus manufacturing	12.8%	0%	80%	20%	0.0%	0%	80%	20%	
332 333	Relay and industrial control manufacturing	9.5%	0%	75%	25%	0.0%	0%	75%	25%	
333	Storage battery manufacturing	0.5%	0%	50%	50%	0.0%	0%	50%	50%	
<u>ਰ</u> 336	Other communication and energy wire manufacturing	3.1%	0%	70%	30%	0.0%	0%	70%	30%	
336 5 337 428	Wiring device manufacturing	1.8%	0%	85%	15%	0.0%	0%	85%	15%	
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%	
	Other real estate	1.5%	100%	0%	0%	0.0%	100%	0%	0%	
ලි <u>45</u> 7	Architectural, engineering, and related services	9.8%	90%	10%	0%	8.3%	90%	10%	0%	
	Environmental and other technical consulting services	2.6%	90%	10%	0%	42.4%	90%	10%	0%	
470	Office administrative services	1.1%	100%	0%	0%	16.5%	100%	0%	0%	
$\overline{}$	Electronic and precision equipment repair and maintenance	0.2%	90%	10%	0%	0.0%	90%	10%	0%	
9(Transmissio	on			Transmissio	on			
_	ercentage in lower right indicates percentage of total TDsic sare attributed to the respective project type.	Substation New/Rebuil	d	9.:	2%	Substation Pre-Constru	ıction	0.6	3%	
		TSNRS				TSPC				

(C) (C)

(J)

Supp. App. 52

			45			46			
ID#	Description	45.a	45.b	45.c	45.d	46.a	46.b	46.c	46.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	3.0%	0%	0%	100%	2.4%	0%	0%	100%
47	Electric power transmission and distribution	3.0%	90%	10%	0%	2.5%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	9.8%	100%	0%	0%
52	Construction of new power and communication structures	30.4%	65%	35%	0%	14.0%	65%	35%	0%
_ <u> </u>	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
204 236 298 302	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	1.2%	100%	0%	0%
236	Fabricated structural metal manufacturing	1.0%	40%	45%	15%	2.4%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
308	acitor, resistor, coil, transformer, and other inductor sufacturing	4.7%	0%	60%	40%	0.8%	0%	60%	40%
329 C 331	Power, distribution, and specialty transformer manufacturing	35.8%	0%	15%	85%	10.7%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing Relay and industrial control manufacturing Storage battery manufacturing	0.0%	0%	80%	20%	8.8%	0%	80%	20%
332 333		0.0%	0%	75%	25%	5.9%	0%	75%	25%
		0.0%	0%	50%	50%	0.0%	0%	50%	50%
336 337 428	Other communication and energy wire manufacturing	2.1%	0%	70%	30%	2.5%	0%	70%	30%
337	Wiring device manufacturing	0.0%	0%	85%	15%	2.8%	0%	85%	15%
428	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
447 Ces 457	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%
G 457	Architectural, engineering, and related services	3.7%	90%	10%	0%	19.3%	90%	10%	0%
	Environmental and other technical consulting services	8.5%	90%	10%	0%	9.3%	90%	10%	0%
e 470	Office administrative services	7.8%	100%	0%	0%	7.6%	100%	0%	0%
N	Electronic and precision equipment repair and maintenance	0.0%	90%	10%	0%	0.0%	90%	10%	0%
9(Transmissio	n			Transmissio	n		
ြ- Boxed pe	ercentage in lower right indicates percentage of total TDsic	Substation		^	10/	Substation			20/
Plan costs are attributed to the respective project type.		Potential Transformer 0.1% TSPT		Relay TSRU		1.3%			

			4	7		48			
ID#	Description	47.a	47.b	47.c	47.d	48.a	48.b	48.c	48.d
		IMPLAN	IN	USA	N/A	IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	3.8%	0%	0%	100%	2.0%	0%	0%	100%
47	Electric power transmission and distribution	2.1%	90%	10%	0%	2.3%	90%	10%	0%
47.1	NIPSCO Direct Labor	0.0%	100%	0%	0%	0.0%	100%	0%	0%
52	Construction of new power and communication structures	7.8%	65%	35%	0%	19.3%	65%	35%	0%
	Sawmills	0.0%	100%	0%	0%	0.0%	100%	0%	0%
204	Ready-mix concrete manufacturing	0.0%	100%	0%	0%	3.2%	100%	0%	0%
236	Fabricated structural metal manufacturing	0.0%	40%	45%	15%	6.9%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%	0.0%	0%	50%	50%
204 236 298 302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%	0.0%	0%	50%	50%
1 308	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.0% 60% 40%	0.0%	0%	60%	40%			
329 Cluded 331	Power, distribution, and specialty transformer manufacturing	0.0%	0%	15%	85%	0.0%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing	0.0%	0%	80%	20%	18.9%	0%	80%	20%
332 333	Relay and industrial control manufacturing Storage battery manufacturing	52.3%	0%	75%	25%	0.0%	0%	75%	25%
333		0.0%	0%	50%	50%	0.0%	0%	50%	50%
9 336 337	Other communication and energy wire manufacturing	1.7%	0%	70%	30%	2.3%	0%	70%	30%
337	Wiring device manufacturing	0.0%	0%	85%	15%	0.0%	0%	85%	15%
` '	Software publishers	0.0%	0%	100%	0%	0.0%	0%	100%	0%
acces 447 Ces 457	Other real estate	0.0%	100%	0%	0%	0.0%	100%	0%	0%
G 457	Architectural, engineering, and related services	6.9%	90%	10%	0%	10.7%	90%	10%	0%
	Environmental and other technical consulting services	6.4%	90%	10%	0%	19.1%	90%	10%	0%
per 470	Office administrative services	5.6%	100%	0%	0%	15.3%	100%	0%	0%
7	Electronic and precision equipment repair and maintenance	13.3%	90%	10%	0%	0.0%	90%	10%	0%
. 9(Transmissio	n			Transmission			
	ercentage in lower right indicates percentage of total TDsic are attributed to the respective project type.		tion 0.1% tion Automation		1%	Substation Switch		0.4%	
	TSSA					TSSW			

			4	9	
ID#	Description	49.a	49.b	49.c	49.d
		IMPLAN	IN	USA	N/A
0	Not applicable (Sales Tax)	4.2%	0%	0%	100%
47	Electric power transmission and distribution	0.8%	90%	10%	0%
47.1	NIPSCO Direct Labor	6.9%	100%	0%	0%
52	Construction of new power and communication structures	7.2%	65%	35%	0%
132	Sawmills	0.0%	100%	0%	0%
204	Ready-mix concrete manufacturing	2.0%	100%	0%	0%
236	Fabricated structural metal manufacturing	1.9%	40%	45%	15%
298	Electronic computer manufacturing	0.0%	0%	50%	50%
302	Broadcast and wireless communications equipment	0.0%	0%	50%	50%
308 329	Capacitor, resistor, coil, transformer, and other inductor manufacturing	0.2%	0%	60%	40%
329	Power, distribution, and specialty transformer manufacturing	49.2%	0%	15%	85%
331	Switchgear and switchboard apparatus manufacturing	4.6%	0%	80%	20%
332	Relay and industrial control manufacturing	0.6%	0%	75%	25%
333	Storage battery manufacturing	0.0%	0%	50%	50%
336	Other communication and energy wire manufacturing	0.9%	0%	70%	30%
337	Wiring device manufacturing	1.0%	0%	85%	15%
428	Software publishers	0.0%	0%	100%	0%
447	Other real estate	0.0%	100%	0%	0%
457	Architectural, engineering, and related services	8.0%	90%	10%	0%
463	Environmental and other technical consulting services	4.6%	90%	10%	0%
470	Office administrative services	7.8%	100%	0%	0%
514	Electronic and precision equipment repair and maintenance	0.1%	90%	10%	0%
		Transmissio	on		
•	ercentage in lower right indicates percentage of total TDsic s are attributed to the respective project type.	Substation Transforme	۲	0.6	3%
		TSTU			

IURC PETITIONER'S

. — . r . r . r . r . r . r . r . r . r	
EXHIBIT NO. \supset	
	_
10 2 -21	7
DATE	1
REPORTER	ł

Table of Contents

Introduction	2
Summary of NIPSCO's 2021-2026 Electric Plan	12
Development of the 2021-2026 Electric Plan	19
Risk Reduction	23
Flexible Investment Plan	28
Plan Update Process	36
Cost Estimates and Estimate Development	38
Contingency As a Component of Estimation	49
Aging Infrastructure Investments	53
Aging Infrastructure Projects	60
System Deliverability Projects	78
Grid Modernization Projects	84
Economic Development Projects	92
Execution of the 2021-2026 Electric Plan	93
Eligible Improvements	95
Conducion	00

VERIFIED DIRECT TESTIMONY OF CHARLES A. VAMOS

1	INTR	<u>ODUCTION</u>
2	Q1.	Please state your name, business address, and job title.
3	A1.	My name is Charles A. Vamos. My business address is 801 E. 86 th Avenue,
4		Merrillville, Indiana 46410. I am Director, Electric T&D (Transmission and
5		Distribution) Engineering for Northern Indiana Public Service Company
6		LLC ("NIPSCO" or "Company").
7	Q2.	Please briefly describe your educational and business experience.
8	A2.	I received a Bachelor of Science degree in Electric Engineering Technology
9		from Purdue University in Hammond, Indiana in 1992. I received an
10		M.B.A. from Indiana University in Gary, Indiana in 1996 and an M.S. in
11		Electricity Markets from the Illinois Institute of Technology in Chicago,
12		Illinois in 2010. I am a Registered Professional Engineer in the State of
13		Indiana (2000) and a certified Project Management Professional (2012). I
14		began my employment with NIPSCO in 1993 and have more than 25 years'
15		experience in electric generation, transmission, and distribution as follows:
16		Electrical Engineer (1993-2000), Asset Manager (2000-2003), Manager
17		Electric Substations (2003-2011), Manager Electric Engineering (2011-2014),

- 1 Manager Electric Asset Management (2014-2018) and Director, Electric
- 2 T&D Engineering (2018 to present).

3 Q3. What are your responsibilities as Director of Electric T&D Engineering?

- 4 A3. As Director of Electric T&D Engineering, I am responsible for directing the
 Transmission and Distribution Engineering functions for NIPSCO's line,
- 6 substation, and protective relaying groups. I currently oversee NIPSCO
- 7 engineering departments to ensure the safe, reliable, and constructible
- 8 designs for over \$200 million in transmission and distribution projects
- 9 yearly.

10 Q4. What are your responsibilities with respect to NIPSCO's electric TDSIC

11 projects?

12 A4. I was responsible for development of NIPSCO's Electric TDSIC Plan for the

period January 2016 through December 2022 ("Electric Plan 1")¹ including

the development of detailed asset registers defining the projects included

15 in Electric Plan 1. This responsibility also includes maintaining the risk

model and updates to the condition-based assessment of assets in the

NIPSCO's Electric Plan 1 is set to expire December 31, 2022. In accordance with Ind. Code § 8-1-39-10(d), NIPSCO provided the Commission with a notice on April 1, 2021 that Electric Plan 1 will terminate on May 31, 2021.

1		Electric Plan 1 and making future updates as appropriate. I was also
2		responsible for developing the project cost estimates and supporting the
3		financial performance of the projects included in Electric Plan 1. I have been
4		responsible for coordinating the preparation of NIPSCO's Electric TDSIC
5		Plan for the period June 1, 2021 through December 31, 2026 (the "2021-2026
6		Electric Plan" or "Plan"), attached hereto as Confidential Attachment 2-A.
7		In that role, I have worked with engineers under my supervision, including
8		those in a consulting role, as well as with others within the Company to
9		compile, review, prioritize and analyze projects for incorporation into the
10		Plan.
11	Q5.	Have you previously testified before this or any other regulatory
12		commission?
13	A5.	Yes. I previously submitted testimony before the Indiana Utility
14		Regulatory Commission ("Commission") in NIPSCO's electric TDSIC
15		tracker filings in Cause Nos. 44733-TDSIC-X (beginning in TDSIC-4).
16	Q6.	What is the purpose of your direct testimony in this proceeding?
17	A6.	The purpose of my direct testimony is to (1) provide a summary of the 2021-
18		2026 Electric Plan, (2) explain how NIPSCO developed its 2021-2026 Electric
19		Plan, (3) explain the reduction of risks after executing Electric Plan 1, (4)

explain the proposed plan update process; (5) explain the cost estimates associated with the 2021-2026 Electric Plan, (6) discuss contingency as a component of estimating, (7) explain the various components of projects included in the 2021-2026 Electric Plan, (8) discuss NIPSCO's proposed execution of the 2021-2026 Electric Plan, (9) explain why the 2021-2026 Electric Plan constitutes eligible transmission, distribution, and storage system improvements ("eligible improvements"),² including the expected benefits from certain projects.

9 Q7. Are you sponsoring any attachments to your direct testimony?

10 A7. Yes. I am sponsoring the following documents, all of which were prepared
 11 by me or under my direction and supervision.

12

1

2

3

4

5

6

7

[&]quot;Eligible transmission, distribution, and storage system improvements' means new or replacement electric or gas transmission, distribution, or storage utility projects that: (1) a public utility undertakes for purposes of safety, reliability, grid modernization, or economic development, including the extension of gas service to rural areas; (2) were not included in the public utility's rate base in its most recent general rate case; and (3) either were (A) described in the public utility's TDSIC plan and approved by the commission under section 10 of this chapter and authorized for TDSIC treatment; (B) described in the public utility's update to the public utility's TDSIC plan under section 9 of this chapter and authorized for TDSIC treatment by the commission; or (C) approved as a targeted economic development project under section 11 of this chapter. The term includes (1) projects that do not include specific locations or an exact number of inspections, repairs, or replacements, including inspection based projects such as pole or pipe inspection projects, and pipe or pipe replacement projects; and (2) projects involving advanced technology investments to support the modernization of a transmission, distribution, or storage system, such as advanced metering infrastructure, information technology systems, or distributed energy resource management systems." Ind. Code § 8-1-39-2.

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 6

Attachment No.	Description
Confidential Attachment 2-A	NIPSCO's 2021-2026 Electric Plan
Confidential Attachment 2-B	2021–2026 TDSIC Investment Plan Business Case dated May 2021 prepared by Sargent & Lundy
Confidential Attachment 2-C	2021-2026 TDSIC Investment Plan Cost Analysis dated May 2021 prepared by Sargent & Lundy
Attachment 2-D	NIPSCO's Transmission Planning System Assessment Methodology and Planning Criteria dated January 14, 2021
Confidential Attachment 2-E	Distribution Automation Program Business Case dated April 2020 prepared by Leidos Engineering, LLC
Confidential Attachment 2-F	Long-Term Communications Plan dated May 2021 prepared by Sargent & Lundy
Attachment 2-G	Execution and Management of the Plan

- Q8. Please describe the reports prepared by Sargent & Lundy.
- 3 A8. Sargent & Lundy, L.L.C. ("S&L") prepared four reports: (1) 2021–2026
- 4 TDSIC Investment Plan Business Case ("Long-Term Investment Plan"),
- 5 which is attached hereto as Confidential Attachment 2-B; (2) 2021–2026
- 6 TDSIC Investment Plan Cost Analysis, which is attached hereto as
- 7 <u>Confidential Attachment 2-C</u>; (3) Long-Term Communications Plan, which
- 8 is attached hereto as Confidential Attachment 2-F; and (4) Economic
- 9 Impacts of Projected NIPSCO T&D Expenditures, 2021–2026 ("Economic

1		Impact Report"), which is sponsored by Witness Becker as Confidential
2		Attachment 1-D.
3	Q9.	Please explain the Long-Term Investment Plan (Confidential Attachment
4		<u>2-B</u>).
5	A9.	The Long-Term Investment Plan explains the three main objectives of
6		NIPSCO's 2021-2026 Electric Plan: (1) maintaining safe and reliable
7		performance while proactively replacing aging, high risk equipment across
8		the system; (2) maintaining adequate system capacity to reliably serve
9		customer loads; and (3) modernizing NIPSCO's electric grid with
10		technologies that support improved reliability, asset health and condition,
11		and preparing for future customer expectations.
12		To develop this document, NIPSCO (with support from S&L) outlined the
13		long term plan to address aging assets and documented NIPSCO's risk-
14		based approach to evaluating its transmission and distribution system.
15		That approach is used to focus long term capital investment (and, by
16		extension, TDSIC funds) towards the highest-risk assets on the system.
17		These capital investments also include a one-time recouping of the
18		operation and maintenance ("O&M") expenses associated with the
19		installation of advanced metering infrastructure ("AMI").

1 The Long-Term Investment Plan includes three appendices: (1)2 Confidential Appendix A, which provides the NIPSCO T&D Risk Model 3 Results ("TDSIC Risk Model"), (2) Confidential Appendix B, which 4 provides the NIPSCO Effective Age Methodology; and (3) Confidential 5 Appendix C, which provides the 2021-2026 NIPSCO Electric AMI Business 6 Case developed by West Monroe Partners. 7 The Long-Term Investment Plan was developed through the process of 8 evaluating risk-based projects, programmatic minor asset projects, 9 deliverability-based projects, and strategic grid modernization initiatives to 10 support customer experience and system reliability. 11 The first process is evaluating risk-based projects in the Long-Term 12 Investment Plan. This approach prioritizes the major assets that should be 13 included in the 2021-2026 project portfolio based on the consequence of an 14 asset failing and likelihood of an asset failing. Through the proactive 15 replacing of the highest risk assets, the overall risk of failure is reduced, as 16 compared to simply replacing assets as they deteriorate and fail.³ This

 $^{^{\}rm 3}$ Replacing assets as they fail is sometimes referred to as a "break/fix" approach to asset replacement.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 9

dynamic risk assessment considers age, condition, and prioritization of assets that are approaching or have met end of life. Additionally, programmatic minor asset projects⁴ are included in the category of Aging Infrastructure. Like major equipment, minor assets are vital to the safe and reliable operation of the electric system. These assets include annunciators, arresters, protective relays, insulators, line and substation switches, potential transformers, steel structures, substation batteries and chargers, substation capacitors, and wood poles. While these minor assets are critical, they are not assigned a risk score within the Long-Term Investment Plan. The increased quantity included through the electrical system would make assigning these individual assets a risk score overly burdensome. Instead, the aged and/or damaged minor assets go through inspection and analysis processes that result in either mitigation or replacement. These investments make up approximately 54% of the capital expenditures included in the 2021-2026 Electric Plan. The second process is focused on increasing the deliverability of power to

"Major equipment" and "minor asset" are accounting terms. Reference to an asset or asset category as minor or major does not imply it is more or less important to NIPSCO's system.

meet customer load, which in turn maintains and improves reliability for

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 10

customers, especially when load grows. These projects increase the system's ability to provide power to increasing customer demand, as well as providing versatility as load demands become more diverse. These investments make up approximately 20% of the capital expenditures included in the 2021-2026 Electric Plan. The third process is deploying strategic grid modernization initiatives to enhance customer service, improve reliability, and enable new technologies to improve NIPSCO's ability to meet customers' evolving operability expectations. The technologies proposed are AMI, intelligent sensing equipment (i.e., substation automation ("SA") and distribution automation ("DA") technologies), a distribution supervisory control and data acquisition ("DSCADA") system, as well as the inclusion of communication and telecommunication infrastructure. The implementation of AMI, DA, SA, DSCADA, and communication and telecommunication infrastructure systems will together increase reliability and functionality, both of which are directly realized by NIPSCO's customers. These investments make up approximately 26% of the expenditures included in the 2021-2026 Electric Plan.

1 The process of evaluating and prioritizing the implementation of DA 2 investments is detailed in the Distribution Automation Program Business 3 Case (Confidential Attachment 2-E). The report details the methodology in 4 developing an economical implementation plan that maximizes benefits to 5 NIPSCO's customers. 6 Communications is the backbone of grid modernization functions, as it 7 provides a network for grid modernization technologies to increase system 8 visibility. NIPSCO (with the assistance of S&L) developed the Long-Term 9 Communications Plan (Confidential Attachment 2-F), which details the 10 methodology to migrate NIPSCO's antiquated system to a new, more 11 robust, and modern network. 12 Q10. Please explain how the 2021-2026 Electric Plan is presented and 13

organized.

14 A10. The 2021-2026 Electric Plan is presented and organized as follows:

Plan by Project Category	Provides a high level summary showing the breakout of investment by year for both transmission and distribution.
Plan by FERC Account	Provides a high level summary showing the breakout of investment by year for both transmission and distribution by Federal Energy Regulatory Commission

	("FERC") Uniform System of Account account number.
Project Detail by Year	Provides project detail separately for each year of the Plan (2021-2026). Each line item shows the Project ID, the project category, the driver associated with the project, the project title, and the anticipated investment for each project (in direct dollars). Detailed scopes and estimate summaries (project estimates) are provided for Year 1 (2021) and Year 2 (2022).
Project Detail Summary by Year	Matrix showing all of the projects included in the Plan by project category by year showing the total investment for each project (in direct dollars).
Confidential Appendix A	Asset Register for Risk Based Projects
Confidential Appendix B	Asset Register for Non Risk Based Projects
Confidential Appendix C	Year 1 (2021) Project Estimates
Confidential Appendix D	Year 2 (2022) Project Estimates

1

2 SUMMARY OF NIPSCO'S 2021-2026 ELECTRIC PLAN

- 3 Q11. Please explain how NIPSCO's 2021-2026 Electric Plan fits into its overall
- 4 strategy to invest in its system.
- 5 A11. The capital investment in NIPSCO's 2021-2026 Electric Plan is one of many
- 6 components within its overall investment strategy. Other components
- 7 include annual capital maintenance work, generation investments and
- 8 transition, public improvement projects, as well as investments related to

new business. As further explained below, the investments included in the 2021-2026 Electric Plan focus primarily on making necessary investments to enable NIPSCO to continue to provide safe, reliable electric service to its customers, as well as driving necessary grid modernization and deliverability advancements to meet evolving customer expectations and load.

7 Q12. Is the 2021-2026 Electric Plan NIPSCO's first TDSIC plan?

A12. No. Following passage of the TDSIC Statute by the Indiana General
Assembly, NIPSCO implemented Electric Plan 1 (for the period January 1,
2016 through December 31, 2022), which was approved by the Commission
on July 12, 2016 in Cause No. 44733. The approved total capital
expenditures under the Electric Plan 1 was approximately \$1.25 billion. On
April 1, 2021, NIPSCO filed a notice to terminate the Electric Plan 1 effective
May 31, 2021.

Q13. What has NIPSCO accomplished through its investments under Electric

16 **Plan 1?**

15

1

2

3

4

5

6

Ind. Code Ch. 8-1-39 (Transmission, Distribution, and Storage System Improvement Charges and Deferrals) was enacted as part of Senate Enrolled Act 560 and became effective on April 30, 2013, which was amended in House Enrolled Act No. 1470 and became effective on April 24, 2019 (the "TDSIC Statute").

1	A13.	Through January 31, 2021, NIPSCO had invested approximately \$781
2		million. NIPSCO focused its investment on proactively replacing aging,
3		high risk equipment across its electric system. Some of the highlights
4		include:6
5		Power Transformers Replaced - 33
6		Breakers Replaced - 319
7		Protective Relays Upgrade Projects - 47
8		• Miles of Circuit Rebuilt – 564
9		• Miles of Underground Cable Replaced – 190 Miles
10		• Number of Line Transformers Replaced – 2,029
11		• Number of Switches Replaced – 389
12		Complete update of all 4 kV distribution circuits to 12 kV
13		
14		Initial projections estimated a 30% risk reduction if all projects under
15		Electric Plan 1 were executed through 2022. In actuality, through five-and-
16		a-half years of work, NIPSCO has realized a 21% risk reduction when
17		compared to a "break/fix" replacement strategy. This is a significant
18		accomplishment, which demonstrates the efficacy of NIPSCO's proactive
19		replacement and capital investment strategy.

These are estimated statistics as of February, 2021.

- 1 Q14. Please explain why NIPSCO decided to terminate Electric Plan 1 and file
- 2 the 2021-2026 Electric Plan.

3

4

5

6

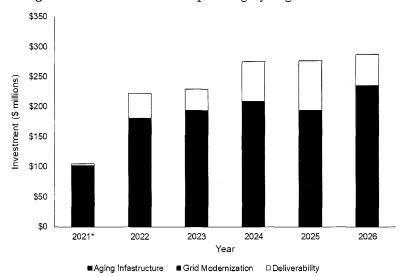
7

8

9

11

17


A14. After careful consideration, NIPSCO decided to file a new TDSIC plan for several reasons. Electric Plan 1 was successful in reducing system risk by replacing aged assets and addressing changing system demands. However, the projects originally identified in 2016 for potential execution in 2021 and 2022 required reprioritizing to NIPSCO's most recent system loading and condition information. The asset registers developed for Electric Plan 1 were developed as a snapshot in time prior to the filing and 10 do not account for changing asset health or changes in electric demand. For example, a transformer may have been in perfect health when the plan was 12 created, but a car hitting a nearby pole after the plan was filed could subject 13 the same transformer to detrimental fault currents and damage it to the 14 point where it needs replacement. Similarly, NIPSCO has realized an 15 unexpected, sudden increase in electric demand in the eastern part of its 16 service territory caused by the recent increase in new manufacturing facilities. While local manufacturing expansion and load growth are positive developments for NIPSCO and the State of Indiana, this presents 18 19 challenges for NIPSCO as it plans to address current and future load

1		growth. Wit see will also be pursuing grid inodernization enous that
2		were not previously included in Electric Plan 1.
3		Additionally, the TDSIC Statute as it existed in 2016 (as interpreted by the
4		Commission and courts) and the settlement agreement NIPSCO executed
5		for the Electric Plan 1 did not allow for the addition of new projects.
6		However, an amendment to the TDSIC Statute has expanded the categories
7		of allowable TDSIC projects. All of this in combination led NIPSCO to the
8		decision to terminate its Electric Plan 1 and develop and file the 2021-2026
9		Electric Plan, a plan that proposes projects based upon a more updated
10		view of NIPSCO's electric system and projects that will enable NIPSCO to
11		modernize its system to provide the service its customers expect and
12		deserve.
13	Q15.	Does the 2021-2026 Electric Plan require flexibility in its project
14		portfolio?
15	A15.	Yes. NIPSCO will require the ability to move projects already within the
16		plan timeline, as well as remove, adjust, or add projects. NIPSCO will
17		provide details on any updates to its Plan in its tracker filings.
18	Q16.	Please provide a summary of NIPSCO's 2021-2026 Electric Plan.

A16. NIPSCO's 2021-2026 Electric Plan is focused on electric transmission and distribution system investments made to enhance system safety and reliability, modernize its system, and improve the customer experience. The Plan also makes provision for appropriate economic development projects in the future, although none are proposed at this time. The Plan is comprised of four main segments: (1) investments that target replacement of aging assets (Aging Infrastructure), (2) investments intended to maintain the capability of NIPSCO's electric system to deliver power to customers when they need it (System Deliverability), (3) investments for modernization of NIPSCO's electric system to deliver safe and reliable service, including installation of AMI (Grid Modernization),⁷ and (4) eligible economic development projects in the future (Economic Development). Table 1 summarizes the 2021-2026 Electric Plan by investment segment.

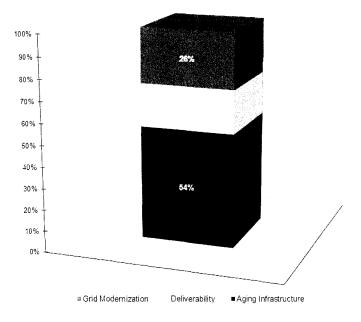

The AMI investments are discussed by Witness Holtz.

Figure 1 – Investment Plan Spending by Segment and Year

*2021 investment only includes projects associated with the 2021-2026 Electric Plan. The 2021 investments associated with Electric Plan 1 are not included here.

Figure 2 – Potential Investment Spread

1

2 3 4

5

1 2

Table 1 – Investment by Segment

Investment Segment	2021-2026 Electric Plan Projected Investment (Direct Capital Dollars)		
Aging Infrastructure	\$753,121,380		
System Deliverability	\$281,439,419		
Grid Modernization	\$362,054,616		
Economic Development	\$0		
Plan Total	\$1,396,615,415		

3 4

6

7

8

9

10

11

12

13

14

15

16

A17.

DEVELOPMENT OF THE 2021-2026 ELECTRIC PLAN

5 Q17. What is the primary goal of NIPSCO's 2021-2026 Electric Plan?

The primary goal of the Plan is to deploy a portfolio of investments in electric transmission and distribution facilities that preserves NIPSCO's ability to serve peak load, maintain system performance, ensure the safety of NIPSCO's systems, and enable evolving energy technologies, such as Distributed Energy Resources ("DERs") and electric vehicles ("EVs"). The portfolio of investments serves these goals by replacing aging assets, increasing system deliverability, and modernizing the system for future growth.

Within the four (4) categories (safety, reliability, grid modernization, and economic development), the Plan is estimated to reduce the overall system risk, increase the deliverability of electric service, and enhance system

automation to reduce customer outages and enable asset condition visibility.

3 Q18. Please describe the assets reviewed in developing the 2021-2026 Electric

4 Plan.

5 A18. In developing the 2021-2026 Electric Plan, NIPSCO focused its review to all 6 of its electric transmission and distribution assets. The NIPSCO electric 7 transmission system consists of approximately 21 circuit miles of 765 kV; 8 453 circuit miles of 345 kV; 810 circuit miles of 138 kV; and 1,679 circuit 9 miles of 69 kV transmission lines. In addition, NIPSCO has 66 transmission 10 substations. NIPSCO serves approximately 470,000 electric customers in 11 Northern Indiana, primarily through more than 900 distribution circuits. 12 These circuits operate at a nominal voltage of 34.5 kV and 12.5 kV,8 and 13 radiate from approximately 249 distribution substations. 14 approximately 7,903 miles of overhead line, with about 2,592 miles of 15 underground cable. NIPSCO's review included all substation 16 transformers, circuit breakers, system protection devices, and other 17 ancillary substation equipment in its transmission, sub-transmission, and 18 distribution substations, including the structures and the corresponding

⁸ As part of Electric Plan 1, NIPSCO successfully replaced all 4 kV distribution circuits.

overhead and underground conductors associated with the transmission,
sub-transmission, and distribution circuits. In this review, NIPSCO
confirmed the following key facts about its electric transmission and
distribution infrastructure:

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

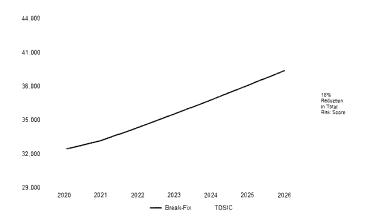
27

28

- NIPSCO owns, operates, manages and controls transmission and distribution plant and equipment within the State of Indiana that is in service and used and useful in the furnishing of electric service to the public. NIPSCO has maintained and continues to maintain its properties in a reliable state of operating conditions.
 - NIPSCO's electric system grew significantly during the 1960s and 1970s. Many assets installed during this era and before are reaching the end of their useful lives, and in many cases these assets are comprised of 1950s technology. These assets have increasing failure probabilities that will cause reliability degradation. This statistical likelihood of failure ("LOF") is increasing every day. Prior to the start of Electric Plan 1, NIPSCO began to experience increased asset failures due to deterioration. As discussed above, that plan began addressing aged major assets and minor programmatic asset projects, and the currently proposed Plan aims to continue this effort as assets continue to age and older technologies need to be replaced through grid modernization.
- There are certain asset segments that are demonstrating specific failure trends or unique reliability concerns, including a population of unjacketed underground cable that is approximately 40-50 years old. These circuits are geographically isolated with limited contingency in the event of failure.
 - Some of NIPSCO's system protection devices are outdated and cannot protect the electric system and key assets in the manner consistent with modern standards.

Ongoing investments will be required to ensure the electric system can continue to reliably deliver electric service to NIPSCO customers during periods of peak demand.

Q19. Why did NIPSCO select the transmission and distribution system


improvements included in the 2021-2026 Electric Plan?

A19. The 2021-2026 Electric Plan was developed to address risks identified and prioritized as of early 2021, and as such, the 2021-2026 Electric Plan represents the current best path forward to ensure the continued delivery of safe and reliable electric service to NIPSCO's customers. The 2021-2026 Electric Plan builds on the capital investments prioritized in Electric Plan 1. Additionally, the Plan addresses identified areas of needed modernization. In considering Plan design, NIPSCO conducted comprehensive reviews of many segments of its electric system. The Plan addresses high priority safety and operational and integrity needs. Projects were also reviewed to provide a high level of confidence that they could be executed as proposed. A broader portfolio of projects was prioritized to develop the specific improvements included in the Plan, and plan for executions in a logical and efficient manner.

1		The transmission and distribution system investments included in the 2021-
2		2026 Electric Plan are required for maintaining and improving the existing
3		NIPSCO electrical portfolio. The Plan addresses safety, reliability, grid
4		modernization, and allows for future economic development, all providing
5		incremental benefits for NIPSCO's customers.
6	<u>Risk</u>	REDUCTION
7	Q20.	Did NIPSCO achieve reduction in risk through completion of the
8		projects in Electric Plan 1?
9	A20.	Yes. Based on the TDSIC Risk Model for major assets utilized in Electric
10		Plan 1, the TDSIC electric projects completed from 2016 through 2020
11		reduced the relative NIPSCO system risk by 21% from the 2016 baseline
12		For comparison purposes only, had those projects not been completed, the
13		NIPSCO system risk would have increased 19% from the 2016 baseline
14		(assuming no other work was performed during that period).
15	Q21.	What are NIPSCO's expectations for risk reductions under the 2021-2026
16		Electric Plan?
17	A21.	One of the primary goals of the Plan is to reduce the overall system risk
18		associated with aging asset populations and asset failures. NIPSCC
19		acknowledges that the proposed investment levels in this Plan are

substantial, but, even with the 21% risk reduction realized under Electric Plan 1, which is discussed above, there are still many older, aging assets on NIPSCO's system that need to be replaced before they fail. When comparing the proactive replacement strategy under TDSIC to a "break/fix" strategy, based on the TDSIC Risk Model, NIPSCO estimates an overall risk reduction of approximately 16%, as illustrated in Figure 3 below. Even with the investments made under Electric Plan 1, there is an opportunity for further investment under the 2021-2026 Electric Plan to continue to reduce risk, thereby increasing system reliability and better serve NIPSCO's customers.

Figure 3 - Risk Score for TDSIC Plan versus Break/Fix Strategy

1	Q22.	What does the 16% risk reduction represent and are these results similar
2		to those within Electric Plan 1?
3	A22.	The 16% represents a projection of the reduced risk score calculated for the
4		specific major asset(s), (i.e., transformers, breakers, circuits), but does not
5		necessarily represent a percentage reduction in the likelihood of an issue
6		with the asset(s). For example, the Goshen Junction Substation Rebuild
7		project (Project ID TSNRS12), which includes both transformer and breaker
8		replacements, will reduce the risk score associated with the current
9		substation assets. However, it does not mean that the replacement of the
10		existing asset will eliminate all risk associated with the new substation
11	-	There are multiple reasons for the variance between the 21% realized risk
12		reduction under Electric Plan 1 and the estimated 16% risk reduction under
13		this Plan; however, two factors drive the majority of the difference. The
14		first reason is that the initial assets addressed in Electric Plan 1 were of
15		higher impact, because there were the highest risk assets of the whole
16		NIPSCO asset population, including the assets being replaced under this
17		Plan. The second reason is driven by lessons learned by NIPSCO as i
18		executed Electric Plan 1. Under this approach, NIPSCO has identified the
19		opportunity to replace some assets that are just as old as targeted assets of

the project in the same substation or the same circuit. These other assets have a finite life and will be required to be replaced in the near future. The most cost effective and least interruptive method to address all of the related assets in the Plan is to perform all of that work at the same time. For example, a typical substation includes circuit breakers for the lines entering and leaving the station, as well breakers for connecting the buses during maintenance. The line breakers are subject to harsher operating conditions than the bus breakers. Under Electric Plan 1, there were instances where just the line breakers were replaced, leaving the older bus breakers in service. Under the Plan, all the breakers at the substation would be replaced. NIPSCO's approach in this Plan is to take a more holistic approach to replacing aged assets on its system and replace them at the same time as the higher risk assets since resources are already deployed and outages are taken. Although this method is a more cost-effective and reliable method for customers in the long run, it also means that NIPSCO will be replacing some lower risk assets in conjunction with the higher risk assets identified through the TDSIC Risk Model.

Q23. Does NIPSCO anticipate that the 2021-2026 Electric Plan will change over

the plan period?

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

A23.	As stated above, the 2021-2026 Electric Plan was developed to address risks
	identified and prioritized as of early 2021, and, as such, the Plan represents
	the current best path forward to ensure the continued delivery of safe and
	reliable electric service to NIPSCO's customers, as allowed by the TDSIC
	Statute. NIPSCO performed a rigorous analysis of its current electric
	system as well as anticipated future system needs and does not expect the
	Plan to change significantly. With that said, it is certainly possible that
	projects in the Plan might change or be replaced, or that new projects might
	be proposed. This depends on a number of factors, including, but not
	limited to: (1) the continued evolution of the TDSIC Risk Model; (2)
	identification through routine and special inspection and assessment cycles
	of assets at risk for continued operability; (3) identification of risks through
	other NIPSCO process improvement and safety initiatives; (4) load growth
	and potential economic development projects; (5) the development of new
	technology to increase public safety or that offer more economical solution;
	and (6) the development of unpredicted asset failure, of which more
	expedient replacement or repair is required.

1	FLEXI	BLE INVESTMENT PLAN
2	Q24.	How will NIPSCO update the 2021-2026 Electric Plan if a project in the
3		Plan is proposed to be replaced or if a new project is proposed to be added
4		to the Plan?
5	A24.	Any project in the Plan that is proposed to be replaced or any new project
6		that is proposed to be added to the Plan would be included in a plan update
7		filing pursuant to Section 9(b) of the TDSIC Statute. If approved, NIPSCO
8		would then seek deferral of costs associated with the replaced or new
9		project and recovery of the costs associated with a replaced or new project
10		in future plan update filings, based on the reasons discussed immediately
11		above.
12	Q25.	Please describe the incremental benefit associated with the 2021-2026
13		Electric Plan.
14	A25.	The 2021-2026 Electric Plan focuses on maintaining safe, reliable service for
15		NIPSCO's customers, while incorporating system upgrades. The Plan
16		addresses eligible investments of safety, reliability, and grid modernization
17		included in the TDSIC Statute. The Plan's investments positively impact
18		electric reliability, safety, and grid modernization while resulting in
19		positive economic impact for Indiana. The Plan also provides for

appropriate economic development projects in the future, although none

1

2	are proposed at this time. Reliability drivers include the following:
3	Reducing direct customer outages;
4	Shortening customer outage durations;
5	Maintaining continuity of service (self-healing system);
6	Better managing peak system loading periods;
7	Increasing flexibility for system sourcing;
8	 Increasing system visibility and validation;
9	Enabling future technologies; and
10	• More timely notification of outages (AMI).
11	
12	Safety is of utmost importance to NIPSCO, its customers, and the broader
13	public. Maintaining safety performance is a requirement for NIPSCO's
14	workforce and its customers, and thus one of the main objectives of the
15	Plan. The continued safety of NIPSCO's employees and customers is
16	enhanced when the likelihood of violent failures (i.e., explosions, fires
17	downed power lines) are mitigated through aging infrastructure
18	replacement. The increased visibility for fault detection and system
19	modernization assists in preventing violent failures from occurring as well

1	Lastly, the extension of new facilities provides for a more robust system to
2	meet deliverability or interconnection requirements.
3	As discussed in detail above, NIPSCO has a large number of aging assets
4	on its electric transmission and distribution system. The assets have aged
5	naturally as a function of NIPSCO's service territory development during
6	the rapid build out in the 1960s and 1970s, and many assets have met or are
7	approaching their end of life. The proactive replacement of aging
8	infrastructure will help maintain the reliability of NIPSCO's electric
9	transmission and distribution systems, which are growing older, and
10	therefore riskier, with each passing year. The 2021-2026 Electric Plan
11	targets the highest risk and consequence of failure assets. In developing the
12	Plan, NIPSCO carefully prioritized the list of planned investments to
13	optimize the benefits of the investments while taking into account
14	execution resources, engineering resources, and system constraints. For
15	risk-based projects, the Plan represents an optimized risk reduction of
16	approximately 16% versus a break/fix strategy.
17	The proactive replacement of aging infrastructure also provides
18	opportunities to replace old equipment with modern technology in a
19	systematic and deliberate manner. While costs are primarily delineated by

the four asset class categories and project types (T&D Substation and T&D
Line), NIPSCO proactively evaluated the execution of projects throughout
the Plan and combined projects or project categories for efficiency. This
"combination" allows original project categories to be consolidated into
singular projects to effectively gain time and reduce overall capital costs
For example, the original driver for a transformer replacement project may
be age and condition; however, the new transformer will include substation
automation and communication components that are primarily driven by
grid modernization. Through this consolidation process, NIPSCO car
reduce mobilization, overhead, and labor costs, and potentially reduce the
number of scheduled outages.
Grid modernization benefits include optimizing NIPSCO's outage
response, reducing unplanned asset failures, improving system flexibility
and laying a groundwork for future growth to implement modern
technologies. By proactively enhancing the monitoring of asset and system
health, NIPSCO will be able to avoid increasing levels of reactive or
emergency work, which are often more expensive to perform due to
premium labor rates and expediting fees, and often introduce additional
preventable safety risks. Unplanned asset failures are also typically more

	disruptive to customer service and have the potential to damage customer
	equipment or jeopardize personnel safety. Grid modernization projects
	include modern system protection devices that provide for faster clearing
	of system faults which will protect the health of NIPSCO's assets and
	minimize the breadth of future outages.
	Finally, the 2021-2026 Electric Plan fosters economic development, a key
	benefit of the Plan that will be spurred by these investments in the electric
	system. As Witness Becker discusses more fully, the Economic Impact
	Report prepared by Sargent & Lundy shows the positive economic impact
	of these investments to Northern Indiana. The Plan also provides for
	appropriate economic development projects in the future, although none
	are proposed at this time. Additionally, to the extent a future economic
	development investment is identified, NIPSCO would present the
	proposed project in a plan update filing pursuant to Section 9(b) of the
	TDSIC Statute.
Q26.	How has NIPSCO approached the quantification of incremental benefits
	associated with the 2021-2026 Electric Plan?
A26.	NIPSCO expects to see an aggregate reduction in the risk of major asset
	failure associated with the transmission and distribution projects in the

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 33

Plan of approximately 16%, and each project included in the Plan has been chosen and designed with the intent to reduce the likelihood of failure and the attendant risk to service reliability and continuity and the availability of system capacity. The benefit to NIPSCO's customers from Aging Infrastructure and System Deliverability investments cannot be easily calculated in an actuarial calculation. While it would be convenient if the benefit of each of the Aging Infrastructure and System Deliverability projects could be quantified in monetary terms to permit some kind of a cost-benefit analysis, the value to be placed on life and property potentially at risk from the failure of one of these assets is too high to realistically contemplate. However, investments in Grid Modernization is one area where the estimated benefits can be monetized. The Distribution Automation Program Business Case (Confidential Attachment 2-E) monetizes the value of the proposed distributed automation program. NIPSCO and Leidos utilized the U.S. Department of Energy's Interruption Cost Estimation (ICE) calculator to place a value on customer interruption costs and savings that would be realized by customers as a result of NIPSCO implementing specific Grid Modernization investments.9 The

⁹ Witness Kiergan also discusses a cost-benefit analysis conducted for the AMI Project.

1 report summarizes that investments in DA grid modernization result in a 2 cost savings of approximately \$592 million over the period of twenty years, 3 compared against the investment of approximately \$52 million for DA grid 4 modernization projects over a 10-year period. The total NIPSCO DA plan 5 will not be completed within the 2021-2026 Electric Plan window. 6 Q27. Are the estimated costs of the eligible improvements included in the 7 2021-2026 Electric Plan justified by incremental benefits attributable to 8 the Plan, as required under Section 10(b)(3) of the TDSIC Statute?¹⁰ 9 A27. Yes. The estimated costs of the eligible improvements included in the 2021-10 2026 Electric Plan are justified by the incremental benefits. Some of the 11 benefits identified above are readily quantifiable, and others are more 12 qualitative in nature. The Plan contains solutions that will enhance 13 customer and employee safety, avoid outages, preserve operational and 14 planning contingencies, provide superior equipment protection, and meet 15 evolving customer demands. By virtue of achieving all of these benefits in 16 a thoughtful, planned and cost-efficient manner, the Plan provides

Section 10(b)(3) of the TDSIC Statute requires a finding that the estimated costs of the eligible improvements (i.e., projects and programs) included in a proposed TDSIC plan be justified by the incremental benefits attributable to the plan.

incremental benefit for NIPSCO's customers that outweigh the estimated
 costs.¹¹

3 Q28. How has NIPSCO incorporated process improvements and lessons

4 learned from its previous TDSIC filings?

5 A28. Over the past few years, NIPSCO has been able to make significant 6 improvements in the development of its TDSIC capital investment plan. 7 Historically, NIPSCO forecasted capital planning in a logical and planned 8 manner, but this was not based on the same level of project selection criteria 9 and project level detail as its TDISC plan has been. Based on feedback 10 received and internal learning through the plan development process, 11 NIPSCO has been able to make considerable improvement providing a 12 much greater level of detail utilizing risk modeling, condition-based 13 assessment, system constraints, resource constraints, and long-range 14 system planning to better define projects that are necessary and included in 15 the Plan. Improvements have also occurred in developing more accurate 16 project estimates, including extending Class 3 estimates out to 18 to 24 17 months. Project management and construction has also been able to build

Estimated costs for the 2021-2026 Electric Plan are discussed separately below.

- on the experience over the past several years, becoming more experienced
- 2 in project planning and execution.

3 PLAN UPDATE PROCESS

4 Q29. Will the 2021-2026 Electric Plan need to be updated?

5 A29. Yes. Section 9(b) of the TDSIC Statute states that "[t]he public utility shall update the public utility's TDSIC plan under subsection (a)(2) at least 6 7 annually." Consistent with this provision, NIPSCO proposes to update the 8 2021-2026 Electric Plan annually, but in no event more frequently than once 9 every six months.¹² In addition to the statutory requirement to file an 10 updated plan, it is prudent and necessary for NIPSCO to systematically and 11 periodically review, revise, and update its Plan to respond to the dynamic 12 nature of its transmission and distribution system, customer demand, and 13 equipment failures. While considerable analysis and thought went into the 14 development of the 2021-2026 Electric Plan, it is important to note that the 15 Plan is reflective of the characteristics of the electric system and the needs 16 of NIPSCO's customers as they exist at the time the Plan was developed. 17 As NIPSCO learns more in the upcoming years, the Plan will be updated as

As provided in Section 9(f) of the TDSIC Statute, NIPSCO will not file a petition under Section 9 more frequently than once every 6 months.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 37

necessary. Through normal operations, information is continually gathered around asset condition data. This information will be integrated into the TDSIC Risk Model and will serve to modify the probability of asset failure. Additionally, configuration of the system, connectivity of critical customers, and other system events will serve to modify the consequence of failure driver in the TDSIC Risk Model. As customer demands evolve, both from a location and utilization perspective, system deliverability requirements must evolve. Lastly, the 2021-2026 Electric Plan seeks to address risk by proactively replacing the riskiest elements in NIPSCO's system. Some elements of the system are best utilized in a "run to failure" mode, while other elements may fail before their planned replacement cycle arrives. While the models utilized to develop the Plan are sound, it is impossible to perfectly predict the future. As such, when these unanticipated events occur, the Plan will be re-prioritized. As such, a prudent 6-year plan must be dynamic. As information inputs change, the Plan will continue to be optimized to ensure the best plan possible is being deployed, and, when necessary, NIPSCO will work with all stakeholders when seeking to add new projects to the Plan.

Q30. Please describe the Plan update process proposed in this filing.

1	A30.	NIPSCO's proposed update process is similar to the process used for
2		Electric Plan 1 with the exception that NIPSCO is proposing to update its
3		Plan annually. NIPSCO proposes to continue the current process of
4		meeting with its stakeholders approximately four weeks prior to filing each
5		Plan update.
6		In its Fall filing, the Plan will be updated with NIPSCO's best estimate by
7		project for each calendar year. The risk registers (Confidential Appendices
8		A and B) will be updated as new, relevant information becomes available
9		during the Plan update process. Project Change Request ("PCR") forms
10		and testimonial explanations will be provided to support project estimate
11		changes greater than \$100,000 and greater than 20% during the current year
12		for projects. Actual costs (direct capital, indirect capital, and allowance for
13		funds used during construction ("AFUDC")) will be included in the annual
14		Plan update after a given calendar year is closed out. The annual Plan
15		update will define the detailed project scopes and update unit cost
16		estimates for the next calendar year, if needed.

COST ESTIMATES AND ESTIMATE DEVELOPMENT

- 18 Q31. Please summarize the estimated costs associated with the 2021-2026
- 19 Electric Plan.

A31. As shown in <u>Confidential Attachment 2-A</u>, the total estimated capital cost of the 2021-2026 Electric Plan is \$1,625,520,697, including direct capital of \$1,396,615,415, indirect capital of \$181,560,012, and AFUDC of \$47,345,270.

As explained by Witness Meece, indirect capital costs are incurred in performing capital projects but are not charged directly to a specific work order. As shown in <u>Confidential Attachment 2-A</u>, the total estimated O&M cost of the 2021-2026 Electric Plan is \$10,014,705. Table 2 shows the estimated costs associated with the 2021-2026 Electric Plan, by project year.

Table 2 - Annual Cost Breakdown by Type

	Year 1 2021	Year 2 2022	Year 3 2023	Year 4 2024	Year 5 2025	Year 6 2026	Total
Direct	\$105,324,448	\$222,556,740	\$229,233,442	\$275,229,152	\$276,892,422	\$287,379,211	\$1,396,615,415
Indirect	\$13,692,179	\$28,932,376	\$29,800,350	\$35,779,789	\$35,996,017	\$37,359,301	\$181,560,012
AFUDC	\$3,570,498	\$7,544,672	\$7,771,017	\$9,330,269	\$9,386,653	\$9,742,161	\$47,345,270
Total Capital	\$122,587,125	\$259,033,788	\$266,804,809	\$320,339,210	\$322,275,092	\$334,480,673	\$1,625,520,697
Total O&M	\$83,418	\$2,329,335	\$2,263,358	\$2,301,811	\$1,680,577	\$1,356,206	\$10,014,705

10

11

12

13

9

Q32. Does the total estimated capital cost of the 2021-2026 Electric Plan include plan development costs and preliminary survey and investigation ("PS&I") costs?

14 A32. Yes. Both types of costs have been included in the Plan, but are included in the project costs in different ways. As has been NIPSCO's standard practice, PS&I costs for specific projects will be included in the project's

1		land acquisition, preconstruction, environmental, and construction work
2		order (direct capital) and typically will be distributed when the work order
3		is opened based upon the type of typical project planning and sequencing
4		year of project execution. Additionally, approximately \$3 million of plan
5		development costs will be amortized over the life of the Plan as capital
6		overhead (or indirect capital).
7	Q33.	Please describe the different techniques used by NIPSCO and S&L to
8		develop a cost estimate for a project.
9	A33.	A cost estimate is developed at a point in time, and is based on the
10		information known when the estimate is developed. As the project
11		progresses, the information used as inputs into the cost estimation process
12		becomes more accurate. There are different techniques used by NIPSCO to
13		develop a cost estimate for a project. NIPSCO utilizes the following
14		standard AACE International ("AACE") class estimate definitions:
15 16 17 18		• Analogous Class 5 (the estimate is based on expert judgment and overall system factors) – these estimates have very little of the total project defined $(0-2\%)$ and require very little engineering in order to estimate.
19 20 21		• Parametric Class 4 (the estimate is developed using application of similar type estimates and specific equipment factors) – these estimates are done at about 1 – 15% of the total project being defined

- and usually have an engineering or feasibility study associated with them.
 - Semi-detailed Class 2 / 3 (the estimate is developed with unit costs and with assembly level line items) – these estimates are performed at 10 – 70% project definition, have detailed engineering nearly complete, and use bids tendered as development for the estimate.
 - Detailed Class 1 (the estimate is developed with unit costs and with detailed bill of materials) – these estimates are performed at 50 – 100% project definition with the detailed engineering complete, bids tendered and verified to develop the estimate.

Table 3 shows the AACE level of estimate for each project or program type at the time of filing. As plan years proceed the level of estimate will continue to progress. Projects three years from execution will have gone through, or are going through the scoping phase of the project and may progress to a Class 4. Projects will have updated estimates at an AACE Class 3 level 18 to 24 months from execution. Programs will have been detailed engineered by the execution year 1 and can be considered a Class 4.

Table 3 - Estimate Classes

Project Type	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	
New or Replace Transformer	Class 3	Class 3	Class 5	Class 5	Class 5	Class 5	
New or Replace Breaker	Class 3	Class 3	Class 5	Class 5	Class 5	Class 5	
Upgrade Relay	Class 3	Class 3	Class 5	Class 5	Class 5	Class 5	
New or Replace Communication Equipment	Class 3	Class 3	Class 5	Class 5	Class 5	Class 5	
New or Upgrade Substation Automation	Class 4	Class 5					
Replace Potential Transformer	Class 4	Class 5					
Replace Disconnects/Substation Switch	Class 4	Class 5					
New or Rebuild Circuit	Class 3	Class 3	Class 5	Class 5	Class 5	Class 5	
New or Replace Fiber Optic Line	Class 3	Class 3	Class 5	Class 5	Class 5	Class 5	
Replace Line Switch	Class 4	Class 5					
Life Extenstion Steel Structure	Class 4	Class 5					
Replace Underground Cable	Class 4	Class 5					
Life Extension Wood Pole	Class 4	Class 5					
New or Upgrade Disbribution Line Automation	Class 4	Class 5					
Upgrade Advanced Metering Infrastructure	Class 4	Class 5					

19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1	Q34.	Please describe the cost estimates that are provided as part of the 2021-
2		2026 Electric Plan.
3	A34.	The 2021-2026 Electric Plan (Confidential Attachment 2-A) provides a
4		summary of project level estimates by year, which includes all investments
5		represented in direct dollars. <u>Confidential Attachment 2-A</u> , Confidential
6		Appendix C includes the detailed cost estimates for the 2021 projects.
7		Confidential Attachment 2-A, Confidential Appendix D includes the
8		detailed cost estimates for the 2022 projects. <u>Confidential Attachment 2-C</u>
9		includes design basis cost estimates broken down by direct and indirect
10		costs (including labor and material) for Program Projects for 2021 and 2022,
11		and for all projects included in 2023-2026. The cycle that NIPSCO projects
12		are refined include initial scoping and estimating efforts three years in
13		advance of execution, detailed engineering two years in advance of
14		execution, and resource planning one to two years in advance of execution.
15		Other costs included in the years leading up to execution include land
16		purchases, environmental studies, and other preconstruction activities.
17	Q35.	How did NIPSCO develop the direct capital cost estimates for the Site
18		Specific Projects?
19	A35.	The direct capital cost estimates for 2021 and 2022 were developed by

NIPSCO's Project Scope and Estimate Development Team utilizing detailed site reviews, internal engineering, operations, and planning expertise and outside engineering input. All estimates were reviewed by NIPSCO's internal stakeholders. The project estimates for 2021 and 2022 are considered Class 3/4 estimates. The direct capital cost estimates for 2023-2026 were developed by S&L and NIPSCO using a modular cost estimating approach using historical unit cost data, labor rates for external contractors, labor rates for internal NIPSCO labor, vendor budgetary quotations for major substation assets, NIPSCO's Geographic Information System ("GIS") for evaluating line rebuild assets, and construction contractor per unit budgetary validations for installation. The modular estimates were then applied to each project based on type of known scope. These project estimates are considered Class 5. However, given the repetitive nature and the large number of projects, along with NIPSCO's experience with this type of work, there is a high level of confidence in these cost estimates. The estimate review process is continuous throughout the project development process.

- Q36. How did NIPSCO develop the direct capital cost estimates for the
- 19 Program Projects?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1	A36.	The direct capital cost estimates for 2021-2026 were developed by S&L and
2		NIPSCO internal stakeholders using historical unit cost data, vendor
3		quotations for typical equipment utilized for the project application, and
4		knowledge of executing projects within NIPSCO's service territory.
5	Q37.	How did NIPSCO develop the estimated indirect capital costs?
6	A37.	NIPSCO used historical data from its Electric Plan 1 update filings to
7		develop the estimated indirect percentage. The resulting percentage was
8		then applied to the direct capital cost for each year of the Plan to arrive at
9		the total indirect cost estimate. NIPSCO used 13.0% for indirect capital
10		costs in the Plan.
11	Q38.	How did NIPSCO develop the estimated AFUDC rate?
12	A38.	NIPSCO used historical data from its Electric Plan 1 update filings to
13		develop an estimated AFUDC rate. The resulting rate was then applied to
14		the sum of the direct capital cost and indirect capital cost for each year of
15		the Plan to arrive at the total AFUDC cost estimate. NIPSCO used 3.0% for
16		AFUDC in the Plan.
17	Q39.	Do indirect capital costs and AFUDC fluctuate over time and how have

they been incorporated into the project cost estimates?

1	A39.	Yes. Witness Meece discusses the origin and calculation of indirect capital
2		costs and AFUDC. Indirect capital costs fluctuate based on a variety of
3		inputs, including the level of direct capital costs and indirect labor and
4		benefit costs. The actual indirect capital and AFUDC costs will be included
5		in the Plan update when a given calendar year is closed out.
6	Q40.	How does the 2021-2026 Electric Plan provide the best estimate of the cost
7		of the transmission and distribution system investments included in the
8		Plan?
9	A40.	The 2021-2026 Electric Plan includes projects that are similar to work
10		NIPSCO performed in Electric Plan 1. NIPSCO utilized S&L to complete
11		the modular cost estimates, followed by internal stakeholder reviews of
12		those estimates. NIPSCO has gained and continues to gain experience with
13		respect to the costs necessary for project completion, and cost estimates for
14		this work reflected from NIPSCO's experience on the range of executed
15		projects of the previous Electric Plan 1 projects of different types.
16		S&L took a more in depth look at five large substation projects in the 2021-
17		2026 Electric Plan. Walkdowns were performed, site boundary survey's
18		produced, a preliminary work scope identified, with conceptual layouts
19		prepared for project execution, route reviews, and NIPSCO internal

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 46

stakeholder reviews performed. The estimates prepared for these five large substations were based on a bottom up, non-modular estimating approach. Cost data from recent projects and updated budgetary quotations from construction contractors were used as the basis for the estimates in most cases, with experience modifiers considered for site specific conditions. For example, areas where extensive dewatering would be required were identified. A detailed bill of materials was developed through the preliminary engineering phase and updated prices were obtained from NIPSCO suppliers.¹³ A preliminary, high level schedule was also developed to identify detailed engineering, land acquisition, and permitting lead time requirements. Smaller project estimates, typically under \$1,000,000, are generally based on parametric or unit price estimates that reflect a mix of contractor and internal labor resources similar to the allocation of work maintained during Electric Plan 1. A review of route and site conditions was completed for many projects.

For all projects, broad internal stakeholder input was collected to assure

[&]quot;Bill of materials" is an industry term used to describe a list of the materials or equipment required for the completion of a specific project.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 47

comprehensive integrated work scopes were documented and validated through a formal review process. NIPSCO followed a rigorous project development, cost estimating, and review process to provide its best estimate for each project included in the Plan. Further detail about the estimation process for each project is included in the individual project descriptions found below. The 2021 Class 3 project estimates were scoped and resource-planned by NIPSCO. The 2022 projects were also scoped and resource-planned by Estimates were prepared utilizing budgetary quotes from equipment suppliers for typical major equipment; review of NIPSCO's historical data for support costs like environmental, engineering, and construction management; and current labor rates for external resources. Estimates were then produced utilizing a modular approach to estimating. S&L substantiated the 2023-2026 project estimates by evaluating them against projects executed within the 2018-2019 year and against the 2021-2022 NIPSCO detailed cost estimates. The estimates produced by S&L were found to be well within the order of magnitude expected for a Class 5 estimate. In addition, S&L conducted site visits utilizing design basis checklists to assess criteria such as the potential land constraints for projects

1 where site expansion is expected for project execution.

- Based on the estimates produced by S&L and NIPSCO, and the comparison to actual costs of similar projects in recent years, NIPSCO is confident that these are the best estimates for the respective stages of planning for the projects included in the 2021-2026 Electric Plan. The Plan includes two types of projects: (a) Program Projects and (b) Site Specific Projects (substation or line projects). NIPSCO has provided estimates for the two types of projects:
 - Program Projects include Class 5 estimates for years 2022-2026.
 Design Basis Documents were created for the generic Scope of Work associated with the program and a cost estimate was produced based on the Scope of Work. The program projects are executed based upon execution sequencing, criticality and potential for improved customer satisfaction. Class 4 estimates are provided after detailed engineering is completed.
 - **Site Specific Projects** include Class 3 to Class 5 estimates. The Site Specific Projects are projects which were estimated using a "bottom up" modular cost estimating approach, based upon known scope at the time of the estimate. Estimate modules created for these projects were created using historical unit pricing, vendor equipment quotations based on average equipment executed for the type of application, published contractor rates, and current knowledge of assumed project execution. It is appropriate to estimate in this manner due to the volume of individual projects contained within the Plan and the year at which execution will begin.

In summary, NIPSCO worked with S&L to develop the best estimate of the cost for each investment. Therefore, the estimates included are NIPSCO's best estimates as of the time of filing. NIPSCO will continue to refine these estimates as it enters into different phases of the project cycle and provide the refined estimates in future plan updates.

6 CONTINGENCY AS A COMPONENT OF ESTIMATION

- 7 Q41. Is inclusion of contingency consistent with the Commission's findings
- 8 relating to the "best estimate" of costs under the TDSIC Statute?
- 9 A41. Yes. When determining whether a company has presented the best 10 estimate of project costs under the TDSIC Statute, my understanding is the 11 Commission has repeatedly found that inclusion of contingency is 12 necessary in order to be considered the "best estimate" of project costs. For 13 example, in Cause No. 45330 related to a NIPSCO Gas TDSIC Plan, in 14 response to challenges about the inclusion of contingency as part of project 15 cost estimates from certain parties, the Commission found that "the 16 exclusion of contingency in the cost estimate would be unreasonable and 17 would not establish the best cost estimate as required by the TDSIC

1 Statute."14 Similarly, in another 2020 order, the Commission stated: "we 2 find the exclusion of contingency from the cost estimate would be 3 unreasonable and would not establish the best cost estimate as required by 4 the TDSIC Statute."15 5 Q42. Did NIPSCO include contingency in its project cost estimates? A42. Yes. Consistent with the Commission's findings that best cost estimates must include a level of contingency, NIPSCO included contingency 7 8 consistent with the AACE Recommended Practice for cost estimate 9 classification.¹⁶ The contingency incorporated in the estimates for each of 10 the 2021-2026 Electric Plan projects is consistent with industry practice for 11 these types of projects and is consistent with the AACE Recommended 12 Practice and NIPSCO's experience for risk that can impact a project cost 13 gained through the execution of projects within Electric Plan 1. 14 The AACE Recommended Practice is based on project maturity or progress

of project engineering or project development.

15

The preliminary

¹⁴ Commission order in Cause No. 45330 at p. 23, issued July 22, 2020. In this order, the Commission also found that "the level of contingency reflected in [NIPSCO's] cost estimates is reasonable." *Id*.

Commission order in Cause No. 45264 at pp. 22-23, issued March 4, 2020.

The AACE is an organization with over 7,000 members in 100 countries and focuses on cost engineering, estimating and cost management.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 51

engineering for most projects in the 2021-2026 Electric Plan would support a Class 5 estimate based on the application of recent construction experience, added efforts to inspect and understand site conditions, identification of real estate and environmental requirements, and characterization of project risks, especially on the larger transmission projects. A contingency amount, by project, can be found in the project estimate summaries included in Confidential Attachment 2-A, Confidential Appendix C for 2021, and Confidential Attachment 2-A, Confidential Appendix D for 2022. Confidential Attachment 2-C shows the contingency amount for each of the projects included in the 2021-2026 Electric Plan. As shown in Confidential Attachment 2-C, the total contingency is approximately 10% of the direct labor component of the estimates for all projects. Attachment 2-H includes additional information supporting NIPSCO's inclusion of contingency in its project cost estimates, including (1) use of contingency for purposes of cost estimation, (2) inclusion of contingency

- improves cost estimates, and (3) why contingency is used in the estimating process.¹⁷
- Q43. Please explain the process used by NIPSCO to determine the appropriate
 contingency for each project.

5 A43. NIPSCO utilizes a process of progressive elaboration to develop project 6 details and identify risk for the project. Once this is complete, an 7 appropriate contingency for a project is assigned. As the project is 8 developed further through an iterative process, the process is repeated. 9 Many of the large projects within the 2021-2026 Electric Plan had several 10 formal review meetings with a wide variety of internal stakeholders to 11 validate the project details and relevant risks (including potential risks). 12 The AACE Recommended Practices are based on the maturity of the project design or engineering. NIPSCO's process is intended to identify the 13 14 potential issues or risks. Where there is a high probability that a risk will 15 be realized and a mitigation plan can be defined with a cost estimate, 16 NIPSCO defines the solution and includes the costs in the estimate. Where

As shown in <u>Confidential Attachment 2-C</u>, <u>Confidential Attachment 2-A</u>, Confidential Appendix C (2021), and <u>Confidential Attachment 2-A</u>, Confidential Appendix D (2022), the 3% annual escalation factor is only applied to base cost capital estimates, but not to contingency amounts.

- this is not possible, the Company adds the issue to the risk register and
- 2 applies the contingency if the risk is realized.
- 3 Q44. Has NIPSCO evaluated the risks considered in establishing the
- 4 contingency for each project?
- 5 A44. Yes. The potential risks associated with the project types are identified
- 6 within the 2021-2026 TDSIC Investment Plan Cost Analysis developed by
- 7 S&L (Confidential Attachment 2-C).
- 8 Q45. Are these the same risks that NIPSCO considered in determining which
- 9 projects to include in the 2021-2026 Electric Plan?
- 10 A45. No. The risks referenced in the contingency questions above describe risks
- 11 related to the *implementation* of specific projects. The TDSIC Risk Model
- used in determining which projects to include in 2021-2026 Electric Plan,
- evaluate the risk to the system associated with safety, reliability, and
- deliverability and selected the projects most likely to benefit the NIPSCO
- system and its customers.
- 16 AGING INFRASTRUCTURE INVESTMENTS
- 17 Q46. Please describe the significance of replacing aging infrastructure.

1	A46.	Aging infrastructure is a common issue faced by utilities. The electric
2		system is characterized by technology developed in the 1950s or earlier.
3		Much of the infrastructure was constructed in the 1960s and 1970s during a
4		rapid buildout of the electric grid using the best technology available at the
5		time. Many of these assets have now exceeded the projected life expectance
6		by many years and have a failure rate that continues to increase. As this
7		large asset base continues to age it produces a higher concentration of
8		projects similar to the original buildout that must be replaced to maintain
9		the increasing level of system reliability expected by the today's customers.
10		As these assets are replaced, new technology is also introduced improving
11		system performance by replacing the obsolete technologies currently in
12		service. The additional benefits achieved include improved system
13		performance impacting safety, reliability, and operational performance, as
14		well as system hardening and resiliency.
15	Q47.	Please summarize the Aging Infrastructure investments included in the
16	~	2021-2026 Electric Plan.
17	A47.	Aging Infrastructure investments are projects aimed at reducing reliability
18		risk by replacing or rehabilitating electric transmission and distribution
19		assets that are of high consequence and are either approaching, have met,
		6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1

or have surpassed their expected life. Aging Infrastructure investments
were identified in two ways. First, NIPSCO worked with the asset
management team at S&L to update an overall risk model for its power
transformers, circuit breakers, and circuits. This is the same risk model
used in Electric Plan 1. This was used to develop the proposed 2021-2026
Electric Plan (the results of the TDSIC Risk Model are included in the Long-
Term Investment Plan (Confidential Attachment 2-B, Confidential
Appendix A)). The result of this work includes the reports identified above
as well as the Asset Register for Risk Based Projects included in the Plan as
Confidential Attachment 2-A, Confidential Appendix A. An optimized
portfolio of electric transmission and distribution assets was then selected
to be addressed based on the result of this risk analysis. These major electric
transmission and distribution assets are critical, highly-engineered
components requiring significant lead time prior to execution. This process
included assigning a consequence of failure ("COF") and likelihood of
failure ("LOF") to each of the assets.
Second, NIPSCO independently evaluated groups of system assets to
identify and prioritize the assets within each group with the greatest
potential of failure based on their age and condition. Rather than using a

complex risk model for these more numerous assets, NIPSCO analyzed its routine testing and maintenance records to identify the individual assets within each group that were most in need of replacement and used the results of that analysis to create asset registers for the following groups:

Deliver ibility and contofficia Based Comets as a super-
Arrester Projects - Transmission
Battery & Charger Equipment Projects - Transmission
Potential Transformer Projects - Transmission
Substation Switch Projects - Transmission
LTC Control Upgrade Projects - Transmission
Annunciator Projects - Transmission
Line Switch Projects - Transmission
Substation Switch Projects - Distribution
Arrester Projects - Distribution
Battery & Charger Equipment Projects - Distribution
Substation Feeder Cable Projects - Distribution
Potential Transformer Projects - Distribution
Power Transformer Projects - Distribution
Switches to Clear Incoming Lines Projects - Distribution
Line Switch Projects - Distribution
LTC Control Upgrade - Regulator Projects
Fiber Optic Cable - Transmission
Upgrade 138kV Circuit Protection Breakers & Relays
Upgrade 69kV Circuit Protection Breakers & Relays
Upgrade 34kV Circuit Protection Relays
Underground Cable Replacement *2021 is Base year for Delivorability groups

*2021 is Base year for Deliverability groups

5 6

S&L reviewed these asset groups and completed design basis statements of

work as provided in <u>Confidential Attachment 2-C</u>. The asset registers for

1		the Deliverability and Condition Based Projects are included in the Asset
2		Register for Risk Based Projects (Confidential Attachment 2-A, Confidential
3		Appendix B).
4	Q48.	Are there any projects not included in the asset registers?
5	A48.	Yes. Based on the nature of how specific projects are selected, the Circuit
6		Performance Improvement, Steel Structure Life Extension, and Pole
7		Replacement projects are not included in an asset register.
8	Q49.	Please summarize how the Circuit Performance Improvement
9		investments were or will be selected for inclusion in the 2021-2026
10		Electric Plan.
11	A49.	Circuit Performance Improvement investments are determined on an
12		annual basis by analyzing reliability data and determining which circuits
13		are most in need of improvement. For purposes of development of the Plan,
14		expected projects are included in categories such as sectionalization,
15		distribution automation, circuit rebuild, conductor replacement or other
16		specified performance improvement based on root cause. The
17		methodology NIPSCO utilizes to identify these needs and the appropriate
18		solutions are detailed below. NIPSCO performs a structured assessment of
19		its circuits systems on an on-going basis to identify and schedule needed

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 58

investments well in advance of execution to proactively address circuits with the poorest reliability. The Circuit Performance Improvement investments included in the 2021-2026 Electric Plan therefore differ from the other projects included in the Plan because the needed investments are identified based on the evaluation of reliability and condition. At the beginning of 2021, NIPSCO reviewed 2020 performance and determined the 2021 Circuit Performance Improvement projects and developed project scope and cost estimates. The estimates for 2021 are included in the Plan, and estimates for future years will be updated in NIPSCO's plan update filings. Q50. Please summarize how the Steel Structure Life Extension investments were or will be selected for inclusion in the 2021-2026 Electric Plan. The Steel Structure Life Extension project is designed to extend the life of NIPSCO's steel structures or rehabilitate those that do not meet the accepted strength requirements. This project is necessary to address NIPSCO's aging steel structure population that is continuing to deteriorate. Over the life of the Plan, NIPSCO will inspect approximately 1,779 structures, and based on historical experience expects approximately 20%

of those assets inspected to require some type of rehabilitation. Based on

inspection, estimates will be updated in NIPSCO's plan update filings, and
each structure will have the appropriate life-extending improvements
made. This project will increase transmission system reliability through
system hardening and resiliency.

Q51. Please summarize how the Pole Replacement investments were or will be selected for inclusion in the 2021-2026 Electric Plan.

A51. The Pole Replacement project is designed to inspect, treat, and replace NIPSCO's wood pole population. Wood poles are the largest asset classification on NIPSCO's transmission and distribution system. With the average age wood poles being greater than 40 years, it is necessary to actively assess the condition and make any necessary repairs or replacements to ensure integrity of the system. This is accomplished by development of a 10-year rolling inspection of each pole to determine condition and to replace or treat the pole for life extension if necessary. The inspection is based on industry standard methodology to determine remaining life. With each inspection, the pole will either be treated to reduce the rate of future decay, or, if it does not pass the test, the pole will be replaced. The pole inspection, treatment, and replacement project improves system reliability, safety, and system hardening during major

event days by ensuring all poles meet the strength requirements set forth in the National Electric Safety Code ("NESC"). NIPSCO plans to inspect approximately 184,000 poles over the life of the Plan. Based on historical experience, it is anticipated that approximately 5-6% of the inspected poles will be replaced, with the exception of those already inspected in years with above-average rejection rates. Based on inspections, estimates will be updated in NIPSCO's plan update filings to account for variances to historical approximations.

9 AGING INFRASTRUCTURE PROJECTS

- 10 Q52. Please describe the Aging Infrastructure projects included in the 2021-
- 11 2026 Electric Plan.
- 12 A52. Table 4 shows the Aging Infrastructure projects included in the 2021-2026
- 13 Electric Plan.

1

2

3

4

5

6

7

8

14 Table 4 – Aging Infrastructure Projects

Transmission		
Project ID	Project Name	
TSA1	Arrester Projects	
TSB1	Battery & Charger Equipment Projects	
TSPT1	Potential Transformer Projects	
TSSW1	Substation Switch Projects	
TSRUX	Relay Upgrade Projects	
TSBRUX	Breaker and Relay Upgrade Projects	
TSTUX	Transformer Upgrade Projects	

TSNRSX	New/Rebuild Substation Projects
TLSW1	Line Switch Projects
TLST1	Steel Structure Life Extension Projects
TLNRLX	Circuit Rebuild Projects

Distribution Project ID **Project Name** Underground Cable Replacement Projects DUG1 DSA1 Arrester Projects DSB1 Battery & Charger Equipment Projects DSSW1 Substation Switch Projects Substation Feeder Cable Projects DSFC1 Power Transformer Projects DSTU1 **DSBRUX** Breaker and Relay Upgrade Projects

Transformer Upgrade Projects

Pole Replacement Projects

Line Switch Projects
LED Street Lighting

Circuit Rebuild Projects

New/Rebuild Substation Projects

Circuit Performance Improvement (CPI) Projects

Switches to Clear Incoming Lines Projects

2

3

4

5

6

7

DSTUX

DSNRSX

DLCP1

DLWP1

DLSW1

DLSW2

DLLED1 DLNRLX

1

Aging infrastructure is a significant portion of the Plan, and the projects have been separated into three categories: (1) risk ranked projects, (2) projects ranked using other data sources, and (3) assets included in the TDSIC Risk Model (Confidential Attachment 2-B, Confidential Appendix A), but selected and prioritized based on independent assessments.

Risk Ranked Projects. Overhead and underground circuit rebuild projects, transformers, and circuit breaker assets are identified and prioritized on the Asset Register for Risk Based Projects (Confidential Attachment 2-A, Confidential Appendix A). These are

major transmission and distribution projects requiring significant lead time and planning to execute.

1

2

3

4 5

6

7

8

9

10

11

12 13

14

15

16

17

18

19 20

21

22

23

2425

26 27

28

29

30

31

- Projects Ranked Using Other Sources. This includes Aging Infrastructure assets that were selected and prioritized based on the Asset Register for Non-Risk Based Projects (Confidential Attachment 2-A, Confidential Appendix B). These are projects that were ranked using other factors such as age, condition, and capacity. For example, Distribution Batteries are included for replacement based upon field testing performed on an annual basis to determine which batteries are most in need of replacement.
- <u>Projects Ranked Using Independent Assessments</u>. Projects in this category include oil circuit breakers, wood poles, steel tower rehabilitation, underground cable, circuit performance, and system deliverability and, except as noted above, are included in the Asset Register for Non-Risk Based Projects (<u>Confidential Attachment 2-A</u>, Confidential Appendix B).¹⁸

The Underground Cable Replacement project focuses on the replacement of aged underground cable, and focuses on the nonjacketed type. Underground cable became more mainstream as technology developed during the 1970s and into the 1980s. This early design was a non-jacketed cable with early generation NIPSCO is currently experiencing an dielectric composition. increasing rate of failure of this early generation cable, which results in increased outages, which can be of a long duration due the repair process. Much of the cable requires direct replacement due to the non-jacketed design, while some of the 1980s cable that does have a jacket can be treated for life extension based on a condition assessment. The Underground Cable Replacement project includes a detail list of all cable planned for inspection followed by replacement during the life of the Plan. Replacement of this vintage of cable will improve system reliability by replacing obsolete

The Circuit Performance Improvement, Steel Structure Life Extension, and Pole Replacement projects are all ranked using independent assessments, but they are not listed in the Asset Register for Non-Risk Based Projects (<u>Confidential Attachment 2-A</u>, Confidential Appendix B). Each of these projects has been described in detail above.

2		technology with new cable designs expected to last more than 40 years.
3 4 5 6 7 8 9		NIPSCO's Aging Infrastructure investments include replacements from all categories within the TDSIC Risk Model (<u>Confidential Attachment 2-B</u> , Confidential Appendix A) including: transformers, breakers, and overhead and underground circuit rebuilds. Another category included in the Plan is system protection modernization efforts such as breaker relay upgrades and fiber optic lines. The Plan includes not only replacing aged assets, but the extension of the useful life of assets. The Plan also addresses assets such as arresters, batteries, switches, annunciators, and potential transformers.
12	Q53.	Please describe the TDSIC Risk Model (Confidential Attachment 2-B)
13		Confidential Appendix A) used to rank and help select the risk ranked
14		Aging Infrastructure projects included in the 2021-2026 Electric Plan.
15	A53.	When considering the proactive replacement of some of the aging
16		infrastructure assets, NIPSCO used a systematic risk model to quantify the
17		criticality of three types of major transmission and distribution assets to the
18		overall electric system: (1) overhead and underground circuits, (2)
19		transformers, and (3) circuit breakers. The results of that risk analysis is the
20		Asset Register for Risk Based Projects (Confidential Attachment 2-A)
21		Confidential Appendix A).
22		The model uses this standard definition of risk: Risk = $COF \times LOF$
23		Through a quantified risk-scoring model, each major asset that is part of the
24		NIPSCO transmission and distribution system is scored based on the

different COF and the asset's LOF with 1 being lowest and 5 highest
Additional detail on the risk scoring approach and analysis results is
detailed in the Long-Term Investment Plan (Confidential Attachment 2-B)
one of the building blocks of NIPSCO's 2021-2026 Electric Plan
Applications of that risk-based scoring and the results produced are used
to inform the capital expenditure forecast for the system are also included
in the Long-Term Investment Plan (<u>Confidential Attachment 2-B</u>). In short
the approach is used to allocate capital investment towards the assets with
the highest risk scores.
While the COF for an asset does not necessarily change a great deal with
the passage of time (unless redundancy is added to the asset base or system
configurations alter the impact of the asset), the effect of infrastructure
aging is that the likelihood of failure increases with each year, which over
time results in an unacceptable level of risk for the utility. NIPSCO's 2021-
2026 Electric Plan will reduce that risk in an efficient and orderly manner
It is important to note that the Plan has model constraints that consider
NIPSCO's operational limits. The following is a hypothetical example of a
model constraint:

- 1 Based on risk alone, the model may recommend 100 breaker 2 replacements in a year.
- 3 NIPSCO's electric system requirements can only accommodate 4 replacement of 60 in that year to avoid unacceptable operational 5 consequences. This is because when NIPSCO replaces circuit 6 breakers, NIPSCO is required to tie circuits together, and there are a 7 limited number of circuit ties that can be performed concurrently and still maintain service to customers.
 - Therefore, rather than replacing the 100 breakers in a single year, NIPSCO will schedule replacement of 60 breakers by considering a variety of factors, including risk ranking, location of the individual project, and efficiencies related to performing simultaneous work at the same location or on the same asset(s).

14 Q54. How did NIPSCO determine the LOF for each asset?

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

A54. In determining the LOF, NIPSCO utilized the associated survivor curve for each category of equipment. Survivor curves are widely used by utilities as part of depreciation studies to estimate the probable average service life of different assets and to set depreciation rates in line with those lives. Service life is defined as the period in years from the initial installation to the retirement date from service as recorded in the continuing property records ("CPR") of the utility. A plot of the retirement dispersions calculated from the CPR data for each FERC account is used to determine "best fit" Iowa survivor (mortality) curves and probable life. Likelihoods of failure over the next seven years were then derived from the survivor curves by taking a "seven year forward look" on each asset's survivor

curve. This approach is detailed in the Long-Term Investment Plan
(Confidential Attachment 2-B). In addition, NIPSCO incorporated
condition data obtained from field observations. In order to target the
poorest-condition assets on its system, the TDSIC Risk Model explicitly
estimates and incorporates asset condition information into the scoring of
transmission and distribution system risk. This has been accomplished
through development of asset health indices ("AHI") for different
transmission and distribution asset types, including substation
transformers and breakers. The AHI is a condition scoring algorithm used
to calculate an effective age for each asset. Effective age is then used in the
TDSIC Risk Model to develop an enhanced measure of transmission and
distribution system risk. The benefits of incorporating asset condition
information into the TDSIC Risk Model is that NIPSCO is able to target its
poorest-condition assets, in addition to the most critical assets, within its
2021-2026 Electric Plan. This will help NIPSCO to reduce the likelihood of
asset failures and to decrease the impact of aging infrastructure on its
customers.
Finally, using the condition data, NIPSCO determined the "effective age"
of each of these assets. The effective age of an asset is the result of adjusting

an asset's chronological age due to relative differences in the asset's current condition as compared to an expected condition. The condition of an asset can be influenced by many factors such as operating conditions, service history, number of operations, loadings, and demand cycles. This information is gathered from NIPSCO's maintenance and testing programs and includes information and data from analytical testing as well as visual inspections.

8 Q55. How did NIPSCO determine the COF for each asset?

A55.

The COF was estimated through a qualitative scoring analysis involving inputs from subject matter experts, including staff involved in the design, operation, and maintenance of the asset. Multiple electric transmission and distribution planning, engineering, and operations professionals responsible for each part of the system—transmission, sub-transmission, and distribution—were engaged in this scoring process. The process consisted of a series of criticality workshops including brainstorming sessions and several follow-up meetings and discussions to finalize the consequence criteria for each part of the system. The consequence criteria were determined for each asset within each system. The criteria consider a number of factors related to an asset failure on the system and are

1		categorized into (1) Customers Served/Lost, (2) Loss of Generation, (3)
2		Reliability, (4) Safety and Environmental, and (5) Customer Type.
3		Each of these criteria were rated by NIPSCO staff on a scale of 1 to 5 (low to
4		high) based on expert experience, system knowledge, and quantifiable data
5		that was applicable. Once tabulated, the ratings were used to calculate a
6		consequence score on a weighted average of the criteria that varies based
7		on the system voltage, that is, transmission, sub-transmission, and
8		distribution. The detailed definitions for each system and asset are
9		included in the Long-Term Investment Plan (Confidential Attachment 2-B).
10		As with LOF, the methodology utilized to assess consequence of failure is
11		detailed in the Long-Term Investment Plan (<u>Confidential Attachment 2-B</u>).
12	Q56.	How did NIPSCO determine which projects would be included in the
13		Risk Ranked Aging Infrastructure investments of the 2021-2026 Electric
14		Plan?
15	A56.	As indicated above, NIPSCO's approach in the development of the Plan
16		was to reduce reliability risk in the most efficient manner possible. The
17		TDSIC Risk Model (Confidential Attachment 2-B, Confidential Appendix
18		A) provides the raw output of the risk rankings. NIPSCO used the TDSIC
19		Risk Model results as well as system constraints to develop an optimized

1		aging asset replacement plan, which is provided in the Asset Register for
2		Risk Based Projects (Confidential Attachment 2-A, Confidential Appendix
3		A). The optimization methodology used in the development of the Plan
4		sought to achieve the greatest risk reduction possible for the dollars
5		invested. This included moving projects earlier or later in the planning
6		schedule to create operational and construction efficiencies.
7	Q57.	How will NIPSCO use the TDSIC Risk Model including COF, LOF, and
8		condition assessment to update the Plan?
9	A57.	Each year, NIPSCO will review the risk ranked assets and update the COF,
10		LOF, and condition assessment. The results of that review will be used to
11		update the risk reduction optimization, and, therefore the Asset Register
12		for Risk Based Projects (Confidential Attachment 2-A, Confidential
13		Appendix A), which could support moving a project to best utilize TDSIC
14		funding to reduce risk.
15	Q58.	Are there assets that were included in the TDSIC Risk Model that were
16		prioritized using other criteria?
17	A58.	Yes. Some assets contained in the TDSIC Risk Model have been identified
18		through independent criteria such as safety, documented performance
19		issues, or the availability of spare parts. Their replacement is also

1		considered due to constructability efficiencies gained when performing
2		other grid modernizations. These projects include the Breakers associated
3		with Relay and Control Modernization, Distribution Power Transformers,
4		Circuit Performance Improvements, and Underground Cable
5		Replacements.
6	Q59.	Please explain why NIPSCO is not prioritizing Breakers associated with
7		Relay and Control Modernization, Distribution Power Transformers,
8		Circuit Performance Improvements, and Underground Cable
9		Replacements based solely on risk rankings.
10	A59.	Each of these assets has a specific reason why a risk-based assessment is not
11		the best way to design the projects.
12 13 14 15 16 17 18		• Breakers associated with Relay and Control Modernization. The breakers chosen to be replaced during a system relay and protection upgrade are included if it is required to modernize the protection scheme of a circuit. The relay and modernization plan is prioritized based on NIPSCO's system needs for protection against overvoltage, overload, and short circuit conditions. These criteria are not included within the TDSIC Risk Model.
19 20 21 22 23 24		• <u>Distribution Power Transformers</u> . The Distribution Power Transformers project is intended to replace transformers that have been determined by the TDSIC Risk Model to have the highest probability of failure, regardless of the consequence of failure. NIPSCO is proactively replacing transformers that rank the highest and are at greatest risk of failing.

- <u>Circuit Performance Improvements</u>. The Circuit Performance
 Improvement projects target the worst performing circuits and taps
 as determined though an annual assessment. These metrics are not
 included in the TDSIC Risk Model.
 - <u>Underground Cable Replacement</u>. NIPSCO's 12.5 kV underground cable system is comprised of two general types of conductor, jacketed and unjacketed. Approximately 90% of NIPSCO's underground failures have occurred within the unjacketed population because the 1970s and 1980s vintage cable is deteriorating at an accelerated rate. While the underground cable is included within the 12.5 kV circuit make-up within the TDSIC Risk Model, the model is not able to differentiate between type or vintage of material in the underground circuit, which could allow a poor performing asset to remain on NIPSCO's system. Therefore, it is more appropriate for NIPSCO engineers to design a project to replace this cable.

Q60. Please explain the Underground Cable Replacement project [Project ID

DUG1].

A60. The Plan includes approximately 253 miles of underground primary cable.

The 1970s vintage underground cable has demonstrated a high rate of failure at NIPSCO. Prior cable testing indicates that cable failures in this population segment are 13% above the national average. Due to the complexity of repairs, underground cable outages are among the longest duration outages. Replacement of these segments of un-jacketed cable will reduce this known risk in the most suspect vintage cable. In addition, this replacement process will create circuit loops where radials previously

1		existed, reducing outage duration risk for these outages. This project has a		
2		total cost estimate of approximately \$103 million.		
3	Q61.	Please explain how and when NIPSCO selects the particular segments of		
4		cable to be replaced as part of the Underground Cable Replacement		
5		project.		
6	A61.	NIPSCO's asset management team uses a progressive elaboration process		
7		in evaluating its entire underground system performance utilizing outage		
8		information and additional input provided by its local operations		
9		supervisors. This analysis provides historical data on the poorest		
10		performing sections and circuits and is used to prioritize the order of		
11		replacement of the unjacketed underground cable. Sections may also be		
12		selected and placed on an accelerated schedule if they are failing at a higher		
13		than expected rate. All circuits containing cable planned for replacement		
14		in the Plan is included in the Asset Register for Non-Risk Based Projects		
15		(Confidential Attachment 2-A, Confidential Appendix B).		
16	Q62.	Please explain the Fiber Optic Cable Installation projects (included in the		
17		Relay Upgrades).		
18	A62.	The Fiber Optic Cable Installation projects are aging infrastructure		
19		investments that improve communication between protective devices,		

	which in turn improves security and reliability of NIPSCO electric grid.
	The project is not evaluated as part of the TDSIC Risk Model. Selective
	high-speed clearance of faults on high voltage transmission lines is critical
	to the security of the power system. Modern system protection equipment
	provides more data and typically includes two-way communication across
	a large and well-coordinated network of devices. With older equipment,
	the lack of sufficient data from the device as well as the inability to
	communicate with many devices at the same time increases fault response
	times. Fiber optic cable provides the communication medium for these
	modern protective relay schemes. This project has a total cost estimate of
÷	\$2.8 million. This does not include the fiber optic projects that were not
	selected to support relay upgrades. Those projects are discussed below in
	the grid modernization section of my testimony.
Q63.	Please explain how and when NIPSCO selects the particular segments of
	fiber optic cable to be installed as part of the Fiber Optic Cable
	Installation project.
A63.	Fiber optic cable installations are performed in conjunction with relay
	upgrades. Relay upgrades are selected and prioritized by system needs in
	order to protect equipment and circuits from the consequences of

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 74

Installation project will take place where existing communication paths will not support modern protective relay installations. Fiber optic cable installations will improve relay system protection of the transmission system while optically isolating the communication system from outside influences such as magnetic disturbances, lightning strikes, or other communication interruptions. These are Aging Infrastructure investments included in the Asset Register for Non-Risk Based Projects (Confidential Attachment 2-A, Confidential Appendix B).

Q64. Please explain the projects included in the Asset Register for Deliverability and Condition Based Projects.¹⁹

- 12 A64. An explanation of each of the other projects in this category is as follows:²⁰
 - The Arrester Replacements project [Transmission Project ID TSA1 and Distribution Project ID DSA1] is designed to replace 3-6 transmission arresters and 3-12 distribution arresters per year. The number of arresters replaced in a given year varies according to the voltage levels of the units being replaced. Arresters protect equipment from lighting and switching surges. The number of assets to be replaced each year was determined by reviewing historical trends and considering arrester replacements that would

The Steel Pole Life Extension and Wood Pole Life Extension projects have been described above but are not listed here because each asset is not listed in the Asset Register.

Each project and/or applicable asset for each of these project categories has been included in the Asset Register for Non-Risk Based Projects (<u>Confidential Attachment 2-A</u>, Confidential Appendix B).

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18 19

20

21

22

23

2425

26

27

28

29

30

31 32

33 34

35 36

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 75

be included with other projects such as breaker and transformer replacements. NIPSCO will replace the assets on a proactive basis and update the replacement list as new asset health data becomes available. NIPSCO selected the particular units to be replaced in a particular year by considering age and condition data, historical model performance data, linkages to other projects, and infrared scans performed by engineers. Arresters are selected for replacement based on vintage, historical performance, condition, and criticality of protection. The arresters included in the Plan are porcelain design from the 1950s with lower protection capability and higher failure mode resulting in high velocity fragmentation when they fail, which poses potential safety concerns. Each of these arresters will be replaced with current design polymer units offering improved overvoltage protection and a non-fragmentation outer insulation. Greater transformer and breaker protection will result, as well as improving safety by eliminating the porcelain failure point.

The Battery and Charger Equipment Replacements project [Transmission Project ID TSB1 and Distribution Project ID DSB1] is designed to replace 8-16 transmission batteries and chargers and 4-13 distribution batteries and chargers each year. Batteries provide the source of control power for substation equipment including relays, breakers, transformers, and communications equipment. Station batteries are critical during emergency events allowing protective devices to operate properly during abnormal operating conditions. This includes events such as transmission or distribution outages or loss of station service. Replacement batteries are determined by a combined evaluation of age and condition. Maintenance crews perform regular tests on batteries, including inter-cell and intra-cell resistance checks, specific gravity readings, and voltage tests to evaluate battery condition. The number of assets to be replaced per year was determined by reviewing historical replacement rates and the adequacy of these historical replacement rates to stay ahead of unplanned failures. NIPSCO will replace the assets on a proactive basis and update the replacement list as updated asset health data becomes available.

2

3 4

5

6

7 8

9

10

11

12

13

14

15

16 17

18

19

2021

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

- **Potential** Transformer ("PT") Replacements [Transmission Project ID TSPT1 and Distribution Project ID DSPT1] is designed to replace 3-9 transmission potential transformers and 3-4 distribution potential transformers per year. The number of Potential Transformers replaced in a given year varies according to the voltage levels of the units being replaced. Potential transformers step down the high voltage to a level that can be utilized by relay and control equipment. The number of Potential Transformers replaced in a given year varies according to the voltage levels of the units being replaced. The number of assets to be replaced each year was determined by reviewing historical trends and considering potential transformer replacements that would be included with other projects such as breaker and transformer replacements. NIPSCO will replace the assets on a proactive basis and update the replacement list as updated asset health data becomes available. Potential transformers have been identified for replacement based upon age and condition.
- The Substation Switch Replacements project [Transmission Project ID TSSW1 and Distribution Project ID DSSW1] is designed to update 1-7 existing transmission and 1-4 existing substation switches and protection schemes per year. Ground switch protection schemes were commonly utilized when the system was originally constructed. Replacing these schemes with modern circuit switcher protection will improve system protection by greatly reducing overall fault clear times, reducing fault stress on power transformers, and minimizing the impacted area during a fault condition. This project involves replacing the ground switch with a circuit-switcher and upgrading and wiring the relays accordingly. This program also includes replacing other critical switches within the substation. The number of assets to be replaced each year was determined by subject matter experts considering factors such as which units would have the greatest impact and reliability improvement and how many could be completed considering constraints caused by other projects. NIPSCO selects the particular units to be replaced in a particular year by reviewing field data for problematic and very old model switches. After age, condition, and model problems are addressed, the level of substation source circuit fault current will drive the

relative order of subsequent transformer ground switches to be 2 replaced.

1

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17 18

19

20

21

22 23

24

25

26 27

28

29

30

31

32

33 34

35 36

- The Annunciator Replacements project [Project ID TSRU2] is designed to replace 4 transmission annunciators in 2022. Annunciators provide local and remote indication of equipment problems. The assets to be replaced in 2022 were determined by subject matter experts determining the optimum replacement rate based on existing annunciator reliability and expected life, spare parts availability, linkages to other projects, and constraints caused by other projects. NIPSCO selects the particular units to be replaced in a particular year by reviewing age, condition, and operating history and will replace the assets on a proactive basis.
- The Line Switch Replacements project [Transmission Project ID TLSW1 and Distribution Project ID DLSW2] is designed to replace 4-18 transmission switches and 4-12 distribution switches each year. Switches provide positive indication that equipment is disconnected for safety and operational purposes. The number of assets to be replaced each year was determined by subject matter experts after reviewing logs of equipment operating history, equipment, age and type of switch.
- The Distribution Power Transformers project [Project ID DSTU1] is designed to replace the worst condition transformers or those that have an accelerated rate of degradation. Power transformers represent an asset class with the greatest lead time from manufacturers. This extended lead time increases the associated risk due to the amount of time required to replace the unit when a failure occurs. Although NIPSCO has taken steps to provide spare units through inventory or other system spare programs in the industry, the preferred method is to replace a high-risk unit prior to failure. The Distribution Power Transformer project is intended to replace transformers that have been determined by the TDSIC Risk Model to have the highest probability of failure, regardless of the consequence of failure. NIPSCO is proactively replacing transformers that rank the highest and are at greatest risk of failing. NIPSCO determined the number of transformers that are expected to actually fail each year based on subject matter experts, test data

and anticipated failure rates. This project will improve system performance by removing high risk units from service through a planned event that will reduces or eliminate the need for a customer outage.

• The Switches to Clear Incoming Lines project [Project ID DLSW1] is designed to replace 9-42 incoming line switches per year. Incoming line switches provide a visible means to verify the incoming line to a switchgear or recloser from an incoming circuit has been disconnected from the distribution circuit. The number of assets to be replaced per year was determined by maximizing the number of replacements per year while maintaining system reliability. NIPSCO will replace the assets on a proactive basis from a list of predetermined units. NIPSCO selects the particular units to be replaced in a particular year by considering system constraints, construction efficiencies, and linkages to other projects.

16 System Deliverability Projects

17 Q65. Please describe the System Deliverability projects included in the 2021-

18 2026 Electric Plan.

19 A65. Table 5 shows the System Deliverability projects included in the 2021-2026

20 Electric Plan.

21

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

Table 5 – System Deliverability Projects

Transmission		
Project ID	Project Name	
TSBRU	Breaker & Relay Upgrades Projects	
TSTU	Transformer Upgrade Projects	
TSNRS	New/Rebuild Substation Projects	
TLNRL	New/Rebuild Circuit Projects	

22

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 79

Distribution		
Project ID	Project Name	
DSBRU	Breaker and Relay Upgrade Projects	
DSTU	Transformer Upgrade Projects	
DSNRS	New Rebuild Substation Projects	
DLNRL	New/Rebuild Circuit Projects	

Q66. Please describe how NIPSCO identified the System Deliverability

investments to include in the 2021-2026 Electric Plan.

A66. NIPSCO has reliability planning criteria and assessment practices that are used to plan for adequate system deliverability under expected peak load conditions as well as single element or contingency failure loading.

Through these criteria and practices, various transmission and distribution projects are identified and evaluated to accommodate customer demands.

For the transmission system, NIPSCO's planning criteria is aligned with the North American Electric Reliability Corporation ("NERC") Reliability Standards, which includes peak load analyses along with other study scenarios targeted at testing the system under stressful situations (e.g., multiple contingencies at the same time). For reference, NIPSCO's Transmission Planning System Assessment Methodology and Planning Criteria dated January 14, 2021, which is also posted on the Midcontinent Independent System Operator, Inc.'s ("MISO") website, is attached hereto

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 80

as Attachment 2-D. These criteria help ensure a transmission system that will operate reliably and remain resilient through multiple outages without causing cascading outages or widespread load loss and can accommodate near- and long-term customer load growth. These outcomes support not only NIPSCO's customers, but also the overall reliability of the Bulk Electric System. For the distribution system, changes in electric demand associated with current and future customer growth often times require investment in the form of expanded, upgraded or additional facilities. These investments are made to ensure sufficient system capacity is available for NIPSCO's customers under peak load conditions when the system is stressed. The Company follows planning criteria used to identify areas of needed improvements under these peak conditions. These criteria call for mitigation plans to be developed when equipment limits are exceeded for normal system operations as well as under the single worst contingency. Distribution operating and design criteria rely on NIPSCO electric line and substation capacity capabilities are based on NIPSCO's line and substation design standards, along with specific equipment manufacturer ratings. Voltage operating criteria are based on the American National Standards

1	Institute ("ANSI") Standard C84.1 ("Electric Power Systems and
2	Equipment - Voltage Ratings (60 Hertz)") and Indiana Administrative Code
3	170 IAC 4-1-20 (Standard Voltage and Permissible Voltage Variation).
4	The transmission and distribution planning processes both utilize industry
5	recognized power system modeling and analysis software to perform their
6	annual system assessments based on data collected by NIPSCO on a routine
7	cycle. The Transmission Planning group utilizes models developed
8	through NERC Eastern Interconnection Reliability Assessment Group
9	(ERAG). This organization works to develop joint models that the utilities
10	use in local transmission planning analyses. NIPSCO's Distribution
11	Planning group utilizes models built locally utilizing NIPSCO's GIS data
12	Both the Transmission and Distribution Planning groups use their
13	respective models to run scenarios that look at current and future projected
14	conditions including load growth assumptions. These analyses consider
15	both normal and emergency operating conditions where contingencies are
16	introduced to stress the system to find vulnerabilities that could impact the
17	reliability of customers' electric service. Mitigation plans are developed
18	based on these analyses.

In addition to these simulated tests utilizing power system models, NIPSCO's electric system planners gather input from many teams within NIPSCO to validate modeled results and to capture issues that may not be identified in the simulation tests. This input includes operating data such as bus and line voltages, system equipment, current values, customer service requests (growth), and system field performance feedback from various personnel.

- 8 Q67. Please describe the 2021 and 2022 System Deliverability projects
- 9 included in the 2021-2026 Electric Plan.

1

2

3

4

5

6

7

10 The 2021 and 2022 Transmission System Deliverability projects include the 11 rebuilding of two, 69 kV circuits and the extension of one, 69 kV circuit to a 12 new Distribution Substation. The 2021 and 2022 Distribution System 13 Deliverability projects include one new distribution substation, the 14 addition of two new power transformers at two existing substations, 15 replacement of one existing power transformer with a larger capacity unit, 16 two new switchgear, the rebuilding of four, 12 kV circuits, and the 17 reconfiguration of multiple 12 kV circuits and feeders to accommodate the 18 aforementioned substation upgraders. These projects address system 19 capacity issues experienced during peak load. These projects are shown on the 2021 and 2022 Project Detail pages of the Plan (Confidential Attachment

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 83

2		2-A, Confidential Appendix B).
3	Q68.	Since the System Deliverability processes you described are performed
4		annually, how did NIPSCO identify the projects for 2023-2026 to be
5		included in the 2021-2026 Electric Plan?
6	A68.	NIPSCO has identified and included in the Plan the System Deliverability
7		investments that are needed in future years based on the current planning
8		models. These projects are the product of on-going planning cycle
9		iterations. The project detail will be provided in a future plan update. It is
10		important to note that these improvements might change in subsequent
11		planning cycles as NIPSCO's transmission and distribution system changes

1

12

13

14

15

16

17

18

19

capacity units, as well as adding new circuits. In addition to the specific

line projects included in the Plan for 2021 and 2022, NIPSCO anticipates the

construction of one new 138 kV circuit in 2024 and five new 69 kV circuits

– two in 2024 and three in 2025. In addition to the specific substation
projects included in the Plan for 2021 and 2022, NIPSCO anticipates the
construction of a total of three new distribution substations – one in 2024
and two in 2026. NIPSCO has also identified the need to construct two new
transmission substations which are currently planned in 2025 and 2026.
NIPSCO anticipates and has included line construction work associated
with substation source and feeder line extensions and upgrades necessary
to integrate the new substations in the targeted growth areas.

GRID MODERNIZATION PROJECTS

- 11 Q69. Please describe the general Grid Modernization category and the
- 12 associated benefits.

1

2

3

4

5

6

7

8

9

10

13 A69. NIPSCO developed a series of strategic initiatives designed to develop and
14 enhance the NIPSCO electric system infrastructure. These initiatives are
15 designed to achieve significant improvements in customer service and
16 electric service reliability, as well as ensure NIPSCO is positioned to offer
17 the services customers will expect from a modern utility. Part of the
18 strategic initiatives includes a new, more robust telecommunications
19 network, and implementation of modern sensing equipment (i.e., DA, SA,

and AMI). The telecommunications network and modern sensing equipment will work together with a new DSCADA system to create a network that can identify and isolate faults then restore customers (self-heal). Through the incorporation of Grid Modernization technologies, NIPSCO will be able to provide value to its customers through reduced outage severity and duration improving the customer experience.

7 Q70. Please describe the Grid Modernization projects included in the 2021-

8 2026 Electric Plan.

The Grid Modernization initiative of DA targets the enhanced reliability of NIPSCO's distribution circuits. This program includes replacement or addition of circuit reclosers and communication equipment. The DA program, which extends beyond 2026, will strategically place approximately 600-700 electronic reclosers on existing circuits over the span of the Grid Modernization initiative. During the course of the 2021-2026 Electric Plan, approximately 515 electronic reclosers will be installed. These reclosers will be configured for either automated or manual operation aiming to split the circuits into segments that serve approximately 500 customers. NIPSCO is employing a distribution network management system that utilizes a centralized model. Each substation will have a remote

terminal unit (RTU) updated or added as a data consolidation and control
point for the new centralized model. DA is a dedicated program; however,
these technologies are also being implemented on other aging
infrastructure and deliverability projects.
The Grid Modernization initiative of SA targets the enhance reliability of
NIPSCO's T&D system, as well as improves the visibility into the health of
its substation assets. SA is comprised of three categories: transformer
monitoring, breaker monitoring/control, and battery monitoring.
Transformer monitors will allow for continuous oil analysis and
temperature monitoring. Battery monitors will collect data and analyze the
health of the batteries. Both of these monitors will allow NIPSCO to gain
better health data on the assets allowing for more proactive maintenance
and/or replacement. Distribution class relays on circuits that are receiving
DA reclosers will be upgraded to microprocessor relays to better coordinate
with the DA reclosers. Similar to the transformer and battery monitors,
upgraded breaker relays will allow for better health data on the assets
allowing for more proactive maintenance and/or replacement. SA is a
dedicated program, however these technologies are also being
implemented on other aging infrastructure and deliverability projects.

The new grid modernization design includes comprehensive upgrades to NIPSCO's legacy communication assets (e.g., towers, radios, fiber optics, and network configuration). The design employs high capacity digital microwave radio on lattice towers and monopoles, as well as fiber optics links configured in a multi-ring network topology. Using both microwave radio and fiber optics backhaul transport to interconnect and integrate the transport rings into the overall architecture, and establish contiguous, diverse communication paths to adjacent nodes and back to the NIPSCO system control centers. The design also provides for diverse, redundant paths back to the control centers, as well as provides visibility to distribution substations that do not currently have communications connectivity. The new DSCADA system is comprised of a combination of hardware and software that work together with NIPSCO personnel in a control center. These components allow for real-time data processing and supervisory controls to enact the DA and provide NIPSCO with valuable visibility into the status and condition of the transmission and distribution systems. Table 6 shows the Grid Modernization projects included in the 2021-2026 Electric Plan.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 6 – Grid Modernization Projects

Transmission			
Project ID	Project ID		
TSSA	Transmission Substation Automation		
TSC	Transmission Substation – Communication		
TLF	Transmission Line – Fiber Optic		
	Distribution		
Project ID	Project Name		
DSSA	Distribution Substation Automation		
DLDA	Distribution Line Automation		
DSC1	Distribution Substation – Communication		
DSC2	Distribution SCADA		
DLAMI	Advanced Metering Infrastructure (AMI)		

2

1

Q71. Please describe how NIPSCO identified the types of Grid Modernization

4 investments to include in the 2021-2026 Electric Plan and their benefits.

5 A71. An evaluation was performed by NIPSCO that highlighted areas of 6 investment that were foundational to the enhancement of NIPSCO's system 7 performance and ability to serve its customers.²¹ Four of the investment 8 categories identified were DA, SA, Communication, and AMI. NIPSCO 9 then used a combination of third party vendors and collaborative sessions 10 with its peer utilities to establish the performance baseline for implementation of these initiatives. DA, SA, and communication upgrades 11 12 were part of Electric Plan 1, but not as dedicated programs. The description

In 2019, NIPSCO assessed various system improvement and modernization efforts that were currently being explored or developed by industry leaders. This effort was performed in collaboration with a McKinsey & Company consulting team.

and justification for AMI investments are detailed by V	Vitness Holtz.
---	----------------

2 Q72. Please describe the process of evaluation, selection and prioritizing the 3 DA investments. 4 A72. The process of evaluating and prioritizing the implementation of DA 5 investments is detailed in the Distribution Automation Program Business 6 Case (Confidential Attachment 2-E). The report details methodology in 7 developing an economical implementation plan which maximizes benefits 8 to NIPSCO's customers. 9 As shown in the "Indiana Utility Regulatory Commission Electric Utility 10 Reliability Report 2019," NIPSCO has maintained its reliability 11 performance in the over the past five years but trails several of its Indiana 12 peer utilities. The investment into the DA program for the TDSIC 2021-2026 13 plan has the potential to positively impact NIPSCO's reliability 14 performance, as does the broader grid modernization effort. While the 15 IEEE indices referenced in this report have many drivers, weather events 16 specific to NIPSCO's territory are a large contributor. With implementation 17 of the DA program, there is the potential to reduce the impact of these 18 events to NIPSCO's customers. The circuits were evaluated based upon

customer count and circuit criticality (i.e., hospitals, schools). These circuits

19

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 90

were evaluated for segmentation through the deployment of an electronic recloser. These substations were cross-referenced with existing projects to ensure upgrades were performed in a timely and efficient manner without the risk of duplication of effort.

5 Q73. Please describe the process of evaluation, selection, and prioritization for

6 the SA investments.

7

8

9

10

11

12

13

14

15

16

17

18

19

A73. As stated before, there are three components within the SA investments. The first component is associated with the DA program. Distribution breaker relays were chosen based on the need for enhanced protective scheme coordination between substation breakers and electronic line reclosers. This also has the benefit of identifying the approximate fault location which results in faster restoration times. This need is referenced in the Distribution Automation Program Business Case (Confidential Attachment 2-E). The second and third components of Battery and Transformer monitors were chosen to gain more insight and health data into our assets. This allows for continuous monitoring to allow for more proactive replacement. Battery monitors are being deployed within transmission substations. There are two types of transformer monitors will bring included in this initiative. The first type of transformer monitor will bring

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 91

back data points such as temperature allowing for more efficient asset operation during periods of heavy load through predictive cooling. It also has the ability to calculate equivalent loss of life from its event history. These are being deployed on 10 MVA units or larger as they are maintained or replaced. The second is an online monitor that allows faults to be detected as early as possible by continuously assessing the levels of harmful gases in the transformer oil. This second type of monitor will be installed on our largest transmission transformers.

Q74. Please describe the process of evaluation, selection and prioritization for the Communication investments.

A74. The Communication network upgrade and expansion planning required external support due to the complexity of future system needs. S&L was engaged to audit NIPSCO's current communication network, review current industry best practices, and provide a report that outlines the needs of NIPSCO's network. This document is provided in the Long-Term Communications Plan (Confidential Attachment 2-F). The yearly upgrades start with the construction of the main backhaul centering around NIPSCO's communication hubs. The project plan targets substations (including microwave radio and fiber optics ring nodes) for integration into

Petitioner's Exhibit No. 2 Northern Indiana Public Service Company LLC Page 92

1		a multiple ring network topology, which will be anchored at NIPSCO's
2		operational control centers. As the 2021-2026 Electric Plan progresses the
3		communication expansion build-out extends outward from NIPSCO
4		control centers, moving toward the edge of the service territory. The
5		Communication plan will extend past the 2021-2026 Electric Plan. Similar
6		to the other Grid Modernization efforts, Communications will also be
7		included in any new substation projects, as has been NIPSCO's practice in
8		Electric Plan 1.
9	Q75.	Will NIPSCO's Grid Modernization be completed by the end of the 2021-
10		2026 Electric Plan
11	A75.	No. NIPSCO's Grid Modernization plan is a multi-year initiative that will
12		extend past the end of the 2021-2026 Electric Plan. NIPSCO is not seeking
13		Commission approval for any portion of the Grid Modernization plan that
14		is beyond 2026 in this filing.
15	ECON	OMIC DEVELOPMENT PROJECTS
16	Q76.	Please describe the Economic Development projects included in the 2021-
17		2026 Electric Plan.
18	A76.	As discussed by Witness Becker, the 2021-2026 Electric Plan provides for

targeted economic development projects in the future, although none are

19

1

proposed at this time.

2	Execu	UTION OF THE 2021-2026 ELECTRIC PLAN
3		Please describe how NIPSCO's process for execution and management of
	Q//·	•
4		the projects included in the 2021-2026 Electric Plan.
5	A77.	Attachment 2-G includes information supporting NIPSCO's execution and
6		management of the project included in the 2021-2026 Electric Plan,
7		including an overview of NIPSCO's (1) execution of the Plan, (2) process for
8		managing the projects in the Plan, (3) process for managing costs in the
9		Plan, and (4) project management principles.
10	Q78.	Please explain how NIPSCO has addressed risks associated with the
11		execution of the 2021-2026 Electric Plan.
12	A78.	While any plan has a degree of execution risk, steps have been taken and
13		plans have been put in place to mitigate risk. It is important to realize, that
14		while the investments in the Plan are substantial, NIPSCO has experience
15		completing these type of projects.
16		Safety is in the forefront as a design factor ensuring public safety and
17		constructability and is also an integral part of project execution to ensure
18		projects are completed without injury to employees or contract partners.

This is accomplished through training, onboarding, and job site
observations. For most projects, project scopes are detailed two years in
advance utilizing standard designs improving estimate accuracy. A
resource plan is developed on an annual basis, leveraging internal and
contract resources with a heavy reliance on unit pricing whenever practical
Material and inventory needs are forecasted and integrated in the sourcing
strategy focusing on price and volume commitment, as well as produc
delivery and quality. These practices are used as a tool to better contro
commodity index price variations. Recognizing the Plan covers a 6-year
period, it is not possible to completely mitigate increases in labor or
commodities as market conditions change over time, but NIPSCO has taken
appropriate steps to address these issues.
Effective project management processes and skills are important for
efficient plan execution. NIPSCO has a Project Management Team with
specific expertise in managing large projects and large scopes of work such
a project groups. This team successfully managed the previous Electric
Plan 1 and continues to gain experience and expertise utilizing industry
standard project management techniques to ensure safety, schedule, scope
and cost.

1	ELIGI	BLE IMPROVEMENTS
2	Q79.	Are all of the projects included in NIPSCO's 2021-2026 Electric Plan
3		undertaken for purposes of safety, reliability, grid modernization, or
4		economic development?
5	A79.	Yes.
6	Q80.	Are any of the projects included in the 2021-2026 Electric Plan included
7		in NIPSCO's current base rates?
8	A80.	No.
9	Q81.	Does the 2021-2026 Electric Plan provide the best estimate of the cost of
10		the eligible improvements?
11	A81.	Yes. This is described in greater detail above and in the 2021-2026 TDSIC
12		Investment Plan Cost Analysis (<u>Confidential Attachment 2-C</u>).
13	Q82.	Does the public convenience and necessity require or will require the
14		eligible improvements included in the 2021-2026 Electric Plan?
15	A82.	Yes. The eligible improvements included in the 2021-2026 Electric Plan are
16		required or will be required to maintain the safety, integrity, and reliability
17		of NIPSCO's transmission and distribution systems consistent with the
18		public convenience and necessity. This is further discussed by Witness

- 1 Becker.
- 2 Q83. Are the estimated costs of the eligible transmission and distribution
- 3 system improvements included in the 2021-2026 Electric Plan justified by
- 4 incremental benefits attributable to the Plan?
- 5 A83. Yes. This is described in greater detail above and in the Long-Term
- 6 Investment Plan (<u>Confidential Attachment 2-B</u>).
- 7 Conclusion
- 8 Q84. Does this conclude your prepared direct testimony?
- 9 A84. Yes.

VERIFICATION

I, Charles A. Vamos, Director, Electric T&D Engineering for Northern Indiana Public Service Company LLC, affirm under penalties of perjury that the foregoing representations are true and correct to the best of my knowledge, information and belief.

Charles A. Vamos

Date: June 1, 2021

NORTHERN INDIANA PUBLIC SERVICE COMPANY 6-YEAR ELECTRIC PLAN BY PROJECT CATEGORY

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
Line No.	Project Category	2021	2022	2023	2024	2025	2026	6-Year Total
	Direct Capital							
İ	Transmission Project Category							
1	Transmission Substations	\$26,096,870	\$39,608,052	\$57,910,125	\$60,200,669	\$53,860,233	\$54,852,316	\$292,528,265
2	Transmission Lines	\$14,501,950	\$41,690,816	\$22,276,258	\$46,049,322	\$47,760,270	\$68,286,845	\$240,950,370
3	Total Transmission	\$40,598,820	\$81,298,868	\$80,186,383	\$106,249,991	\$101,620,503	\$123,139,161	\$533,478,635
4								
	<u>Distribution Project Category</u>				:			
5	Underground Cable	\$13,652,531	\$20,632,620	\$18,142,533	\$17,380,921	\$16,172,420	\$17,659,875	\$103,255,991
6	Distribution Substations	\$22,361,757	\$52,065,812	\$63,216,937	\$55,231,981	\$69,847,399	\$63,804,727	\$326,528,613
7	Distribution Lines	\$28,711,340	\$68,559,440	\$67,687,589	\$96,366,259	\$89,252,100	\$82,775,448	\$433,352,176
8	Total Distribution	\$64,725,628	\$141,257,872	\$149,047,059	\$168,979,161	\$175,271,919	\$164,240,050	\$863,136,780
9								
10	Total Direct Capital	\$105,324,448	\$222,556,740	\$229,233,442	\$275,229,152	\$276,892,422	\$287,379,211	\$1,396,615,415
11	Indirect Capital	\$13,692,179	\$28,932,376	\$29,800,350	\$35,779,789	\$35,996,017	\$37,359,301	\$181,560,012
12	AFUDC	\$3,570,498	\$7,544,672	\$7,771,017	\$9,330,269	\$9,386,653	\$9,742,161	\$47,345,270
13	Total Capital	\$122,587,125	\$259,033,788	\$266,804,809	\$320,339,210	\$322,275,092	\$334,480,673	\$1,625,520,697
14	Total O&M	\$83,418	\$2,329,335	\$2,263,358	\$2,301,811	\$1,680,577	\$1,356,206	\$10,014,705

NORTHERN INDIANA PUBLIC SERVICE COMPANY 6-YEAR ELECTRIC PLAN BY FERC ACCOUNT

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)
Line No.	FERC Account	2021	2022	2023	2024	2025	2026	6-Year Total
	Direct Capital							
	Transmission	-						
1	350 - Land & Land Rights	\$0	\$0	\$0	\$55,583	\$45,131	\$0	\$100,714
2	352 - Structures and Improvements	\$4,407,572	\$6,837,303	\$7,646,927	\$10,035,132	\$7,815,251	\$5,918,546	\$42,660,731
3	353 - Station Equipment	\$22,122,261	\$36,269,815	\$37,886,783	\$48,455,636	\$44,506,311	\$40,299,918	\$229,663,896
4	354 - Towers and Fixtures	\$3,577,174	\$5,153,625	\$8,535,615	\$14,703,666	\$12,269,637	\$6,972,125	\$51,211,842
5	355 - Poles and Fixtures	\$1,051,221	\$2,074,273	\$1,631,082	\$903,448	\$900,000	\$1,048,603	\$7,608,627
6	356 - Overhead Conductors and Devices	\$13,297,563	\$24,947,913	\$11,471,800	\$27,914,925	\$26,165,173	\$41,304,630	\$145,363,741
7	Total Transmission	\$44,455,791	\$75,282,929	\$67,172,207	\$102,068,390	\$91,701,503	\$95,543,822	\$476,609,551
	Distribution							
8	303 - Software	\$330,000	\$5,332,432	\$10,700,931	\$2,054,708	\$2,112,959	\$1,020,396	\$21,551,426
9	360 - Land & Land Rights	\$256,327	\$653,228	\$1,324,222	\$1,661,045	\$2,325,333	\$1,433,200	11
10	361 - Structures and Improvements	\$339,336	\$1,104,300	\$1,025,342	\$1,702,927	\$1,869,670	\$1,556,374	1
11	362 - Station Equipment	\$32,290,248	\$57,149,947	\$60,146,484	\$54,895,391	\$65,679,702	\$61,739,114	\$331,585,259
12	364 - Poles, Towers, and Fixtures	\$12,021,902	\$33,610,299	\$30,248,192	\$24,727,810	\$27,897,015	\$34,729,538	1 '
13	365 - Overhead Conductors and Devices	\$11,083,040	\$29,929,276	\$18,190,874	\$26,514,390	\$21,150,292	\$24,571,200	
14	367 - Underground Conductors and Devices	\$2,126,579	\$3,702,846	\$3,199,725	\$3,512,624	\$3,135,359	\$3,468,820	11
15	368 - Line Transformers	\$351,750	\$1,037,193	\$1,059,413	\$1,258,924	\$1,363,569	\$1,332,532	\$6,395,683
16	370.2 - Meters	\$330,000	\$430,035	\$2,398,484	\$31,231,566	\$36,765,487	\$30,951,999	If
17	373 - Street Lighting and Signal Systems	\$854,228	\$1,986,399	\$0	\$0	\$0	\$0	\$2,840,627
18	391.2 - Hardware/Servers	\$0	\$2,150,175	\$1,660,489	\$0	\$0	\$0	\$3,810,664
19	397 - Communication Equipment	\$885,247	\$10,187,681	\$32,107,079	\$25,601,377	\$22,891,533	\$31,032,216	\$122,705,133
20	Total Distribution	\$60,868,657	\$147,273,811	\$162,061,235	\$173,160,762	\$185,190,919	\$191,835,389	\$920,005,864
21	Total Direct Capital	\$105,324,448	\$222,556,740	\$229,233,442	\$275,229,152	\$276,892,422	\$287,379,211	\$1,396,615,415
22	Indirect Capital	\$13,692,179	\$28,932,376	\$29,800,350	\$35,779,789	\$35,996,017	\$37,359,301	\$181,560,012
23	AFUDC	\$3,570,498	\$7,544,672	\$7,771,017	\$9,330,269	\$9,386,653	\$9,742,161	\$47,345,270
24	Total Capital	\$122,587,125	\$259,033,788	\$266,804,809	\$320,339,210	\$322,275,092	\$334,480,673	\$1,625,520,697

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2021 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project Cost
ine No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Transmission System Investments	7.10,000 2.110.	Troject Hele	(uncer denars)
		Transmission Substations			
1	TSA1	Arresters - Transmission	Aging Infrastructure	Arrester Projects - Transmission	
2	TSB1	Batteries - Transmission	Aging Infrastructure	Battery & Charger Equipment Projects - Transmission	
3	TSPT1	Potential Transformers- Transmission	Aging Infrastructure	Potential Transformer Projects - Transmission	
4	TSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Transmission	
5	TSSA1	Transmission Substation Automation	Grid Modernization	Transmission Substation Automation	
6	TSRU29	Relay Upgrades	Aging Infrastructure	Fiber Optic - Green Acres to St. John - 13888	
			1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Relay & Breaker Upgrades - Dune Acres to Burns Ditch - 13836 N & 13836	
7	TSRU58	Relay Upgrades	Aging Infrastructure	S	
				Relay & Breaker Upgrades - Dune Acres to Mittal Burns Harbor - 13849 N	
8	TSRU59	Relay Upgrades	Aging Infrastructure	& 13849 S	
				Relay & Breaker Upgrades - Dune Acres to Mittal Burns Harbor - 13848 N	
9	TSRU60	Relay Upgrades	Aging Infrastructure	& 13848 S	
10	TSRU61	Relay Upgrades	Aging Infrastructure	Relay Upgrades - Green Acres to St John - 13888	
11	TSRU62	Relay Upgrades	Aging Infrastructure	Relay Upgrades - Stillwell to Plymouth - 13896	
12	TSRU67	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Tower Road - #2 XFR	
13	TSRU69	Relay Upgrades	Aging Infrastructure	Relay & Breaker Upgrades - Miller to Beta Steel - 13842	
1.4	TSBRU19	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - St. John Upgrades (345kV & 138kV)	
15	TSBRU20	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Dune Acres - #3 XFR BKR	
16	TSBRU22	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Miller - 13810-42	
17	TSBRU27	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Stillwell Upgrades (69kV)	
18	TSTU9	Transformer Upgrade/Replacement	Aging Infrastructure	Transformer Upgrade - Dune Acres #3	
				New/Rebuild Substation - Green Acres - #1 & #2 138/69kV Transformers;	
19	TSNRS17	New/Rebuild Substations- Transmission	Aging Infrastructure	Breaker Upgrades (138kV & 69kV)	
20	TSNRS18	New/Rebuild Substations- Transmission	Aging Infrastructure	New/Rebuild Substation - New Michigan City Substation	
21	TSPC1	Substation Engineering- Transmission	Aging Infrastructure	Substation Pre-construction - Transmission	
22	TSE1	Substation Engineering- Transmission	Aging Infrastructure	Substation Engineering - Transmission	
23				Total Transmission Substations	
		Transmission Lines			
24	TLSW1	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Transmission	
25	TLST1	Steel Structure Program	Aging Infrastructure	Steel Structure Life Extension Projects - Transmission	
2.6	TLNRL6	New/Rebuild Line	Aging Infrastructure	Circuit 3465 Rebuild - 69kV Laporte JCT to Tee Lake	
27	TLNRL9	New/Rebuild Line	Aging Infrastructure	Circuit 3465 Rebuild - New Carlisle to Olive	
28	TLNRL19	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Monticello - 6907 - Phase 2	
29	TLNRL21	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Kosciusko - 6997 - Phase 2	
30	TLPC1	Line Engineering- Transmission	Aging Infrastructure	Line Pre-construction - Transmission	
31	TLE1	Line Engineering- Transmission	Aging Infrastructure	Line Engineering - Transmission	
32				Total Transmission Lines	
33	1	Total Transmission Investment			\$40,598,8

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2021 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Distribution System Investments			
		Underground Cable			
34	DUG1	Underground Cable Replacement	Aging Infrastructure	Underground Cable Replacement Projects	
35				Total Underground Cable	
		Distribution Substations			
36	DSA1	Arresters - Distribution	Aging Infrastructure	Arrester Projects - Distribution	
37	DSB1	Batteries- Distribution	Aging Infrastructure	Battery & Charger Equipment Projects - Distribution	
38	DSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Distribution	
39	DSFC1	Feeder Cable	Aging Infrastructure	Substation Feeder Cable Projects - Distribution	
40	DSTU1	Transformer Upgrade/Replacement	Aging Infrastructure	Power Transformer Projects - Distribution	
41	DSSA1	Distribution Substation Automation	Grid Modernization	Distribution Substation Automation	
42	DSBRU24	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Michigan City - #11 Transformer Breaker 34kV	
43	DSBRU25	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrades - Luchtman - 34-124, 34-125	
44	DSBRU28	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrades - Division - Switchgear	
45	DSBRU33	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrades - Monticello - Switchgear	
46	DSTU15	Transformer Upgrade/Replacement	Aging Infrastructure	Replace Transformer - Orchard Grove - #1 Transformer	
47	DSTU18	Transformer Upgrade/Replacement	Aging Infrastructure	Replace Transformer - Bourbon #2	
48	DSTU20	Transformer Upgrade/Replacement	Aging Infrastructure	Replace Transformer - Weirick #1	
49	DSTU26	Transformer Upgrade/Replacement	Deliverability	Howe Sub - #2 Transformer & #1 Volt Regs - Inc Capacity	
J	ļ		j	Rebuild Substation - Munster - #3 & #4 Transformer 138/34kV and #3	
50	DSNRS26	New/Rebuild Substation - Distribution	Aging Infrastructure	Transformer Breaker	
51	DSNRS41	New/Rebuild Substation - Distribution	Aging Infrastructure	New/Rebuild Substation - Tod - #5 Transformer & Switchgear	
52	DSPC1	Substation Engineering- Distribution	Aging Infrastructure	Substation Pre-construction - Distribution	
53	DSE1	Substation Engineering- Distribution	Aging Infrastructure	Substation Engineering - Distribution	
54				Total Distribution Substations	
		Distribution Lines			
55	DLCP1	Circuit Performance Improvement	Aging Infrastructure	Circuit Performance Improvement Projects - Distribution	
56	DLWP1	Wood Poles	Aging Infrastructure	Pole Replacement Projects - Distribution	
57	DLSW1	Line Switch Replacement	Aging Infrastructure	Switches to Clear Incoming Lines Projects - Distribution	
58	DLSW2	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Distribution	
59	DLDA1	Distribution Line - Distribution Automation	Aging Infrastructure	Distribution Line Automation	
60	DLLED1	LED Street Lighting	Aging Infrastructure	LED Street Lighting	
61	DLAMI1	Advanced Metering Infrastructure (AMI)	Grid Modernization	Advanced Metering Infrastructure (AMI)	
62	DLNRL24	New/Rebuild Line	Aging Infrastructure	Circuit 3433 Rebuild - Grandview to Bendix West Side	
63	DLNRL35	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Roxana - 12-316	
64	DLNRL42	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - South Hammond - 12-720	
65	DLNRL62	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Laporte 1264	
66	DLNRL63	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Woodmar 12-643	-
67	DLPC1	Line Engineering- Distribution	Aging Infrastructure	Line Pre-construction - Distribution	
68	DLE1	Line Engineering- Distribution	Aging Infrastructure	Line Engineering - Distribution	
69		<u></u>		Total Distribution Lines	
70		Total Distribution Investment	<u> </u>		
		<u> </u>			
71		Total T&D Investment			\$105,324,448
72		Total O&M Investment			\$83,418

Page 4 of 212

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2022 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Transmission System Investments			
		Transmission Substations			
1	TSA1	Arresters - Transmission	Aging Infrastructure	Arrester Projects - Transmission	ſ
2	TSB1	Batteries - Transmission	Aging Infrastructure	Battery & Charger Equipment Projects - Transmission	
3	TSPT1	Potential Transformers- Transmission	Aging Infrastructure	Potential Transformer Projects - Transmission	
4	TSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Transmission	
5	TSBRU46	Breaker Upgrades	Aging Infrastructure	Capacitor & Breaker Projects - Transmission	
6	TSC1	Transmission Substation - Communication	Grid Modernization	Comm Upgrade Projects - Transmission	
7	TSSA1	Transmission Substation Automation	Grid Modernization	Transmission Substation Automation	
88	TSRU2	Relay Upgrades	Aging Infrastructure	Annunciator Projects - Transmission	
9	TSRU63	Relay Upgrades	Aging Infrastructure	Relay Upgrades - South Prairie to Westwood (Duke) - 13883	
10	TSRU71	Relay Upgrades	Aging Infrastructure	Fiber Optic - 13806 Dune Acres to Burns Ditch	
11	TSRU75	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Monticello to Springboro -13807	
12	TSBRU19	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - St. John Upgrades (345kV & 138kV)	
13	TSBRU29	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Schahfer 34516 & 34521	
14	TSBRU31	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Liberty Park 138kV Bus Tie, #5 XFR & #6 XFR (69kV)	
15	TSBRU36	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Barton Lake 69-102, Bus Tie, #1 XFR, & Cap Bank	
				Breaker Upgrade - Starke 6905, 6919, 6961, 69kV Bus Tie, #1 XFR, & #2	
16	TSBRU41	Breaker Upgrades	Aging Infrastructure	XFR	
17	TSNRS13	New/Rebuild Substations- Transmission	Aging Infrastructure	Rebuild Substation - Maple - #2 138/69kV XFR and 69kV Cap Bank	
18	TSNRS18	New/Rebuild Substations- Transmission	Aging Infrastructure	New/Rebuild Substation - New Michigan City Substation	
19	TSPC1	Substation Engineering- Transmission	Aging Infrastructure	Substation Pre-construction - Transmission	
20	TSE1	Substation Engineering-Transmission	Aging Infrastructure	Substation Engineering - Transmission	
21				Total Transmission Substations	
		Transmission Lines			
22	TLSW1	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Transmission	
23	TLST1	Steel Structure Program	Aging Infrastructure	Steel Structure Life Extension Projects - Transmission	
24	TLF1	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Chicago Avenue to U.S.Steel - Stockton	
				Comm Upgrade Fiber - Corporate Information Service Center -	
25	TLF2	Transmission Line - Fiber Optic	Grid Modernization	Microwave to Munster	
				Comm Upgrade Fiber - Corporate Information Service Center -	
26	TLF3	Transmission Line - Fiber Optic	Grid Modernization	Microwave to NiSource HQ (MW Only)	
27	TLNRL18	New/Rebuild Line	Deliverability	Circuit 6972 Rebuild - South Chalmers - Oakdale	
28	TLNRL26	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Kosciusko - 6998	
29	TLNRL28	New/Rebuild Line	Deliverability	Circuit Rebuild - Kosciusko - 6982	
30	TLNRL29	New/Rebuild Line	Deliverability	Circuit Rebuild - Palmira - Extend 2nd 69kV Source Line	
31	TLPC1	Line Engineering- Transmission	Aging Infrastructure	Line Pre-construction - Transmission	
32	TLE1	Line Engineering- Transmission	Aging Infrastructure	Line Engineering - Transmission	
33				Total Transmission Lines	
34		Total Transmission Investment			\$81,298,868

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2022 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Distribution System Investments			
		Underground Cable			
35	DUG1	Underground Cable Replacement	Aging Infrastructure	Underground Cable Replacement Projects	
36				Total Underground Cable	
		Distribution Substations			
37	DSA1	Arresters - Distribution	Aging Infrastructure	Arrester Projects - Distribution	
38	DSB1	Batteries- Distribution	Aging Infrastructure	Battery & Charger Equipment Projects - Distribution	
39	DSPT1	Potential Transformers- Distribution	Aging Infrastructure	Potential Transformer Projects - Distribution	
40	DSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Distribution	
41	DSFC1	Feeder Cable	Aging Infrastructure	Substation Feeder Cable Projects - Distribution	
42	DSC1	Distribution Substation - Communication	Grid Modernization	Comm Upgrade Projects - Distribution	
43	DSC2	Distribution Substation - Communication	Grid Modernization	New Distribution SCADA	
44	DSSA1	Distribution Substation Automation	Grid Modernization	Distribution Substation Automation	
45	DSBRU30	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrades - Gibson - Switchgear	
46	DSBRU39	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Munster - 3428, 3429, 3430, 3431	
47	DSTU21	Transformer Upgrade/Replacement	Aging Infrastructure	Replace Transformer - Wolf Lake - #2 138/34kV XFR	
48	DSNRS34	New/Rebuild Substation - Distribution	Deliverability	Crocker Substation New Recloser & Incoming Lines	
				New/Rebuild Substation - Creston - Add 2nd Transformer, #1 & #2	
49	DSNRS35	New/Rebuild Substation - Distribution	Deliverability	Voltage Regulators, Dbl. Switchgear	
50	DSNRS36	New/Rebuild Substation - Distribution	Aging Infrastructure	Rebuild Substation - Illinois - #1 69/12kV XFR and Switchgear Breakers	
				New/Rebuild Substation - Hanover - #1 & #2 Transformer with Dbl.	
51	DSNRS39	New/Rebuild Substation - Distribution	Aging Infrastructure	Switchgear	
				New/Rebuild Substation - Palmira Sub - Add 2nd Transformer, New Dbl.	
52	DSNRS42	New/Rebuild Substation - Distribution	Deliverability	Switchgear	
53	DSNRS43	New/Rebuild Substation - Distribution	Aging Infrastructure	New/Rebuild Substation - Johnson - Switchgear	
54	DSNRS44	New/Rebuild Substation - Distribution	Deliverability	New Heron Lake - New 69/12.5kV Substation	
55	DSPC1	Substation Engineering- Distribution	Aging Infrastructure	Substation Pre-construction - Distribution	
56	DSE1	Substation Engineering- Distribution	Aging Infrastructure	Substation Engineering - Distribution	
57				Total Distribution Substations	
		Distribution Lines			
58	DLCP1	Circuit Performance Improvement	Aging Infrastructure	Circuit Performance Improvement Projects - Distribution	
59	DLWP1	Wood Poles	Aging Infrastructure	Pole Replacement Projects - Distribution	
60	DLSW1	Line Switch Replacement	Aging Infrastructure	Switches to Clear Incoming Lines Projects - Distribution	
61	DLSW2	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Distribution	
62	DLDA1	Distribution Line - Distribution Automation	Aging Infrastructure	Distribution Line Automation	
63	DLLED1	LED Street Lighting	Aging Infrastructure	LED Street Lighting	
64	DLAMI1	Advanced Metering Infrastructure (AMI)	Grid Modernization	Advanced Metering Infrastructure (AMI)	
65	DLNRL50	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Lindbergh - 12-299	
66	DLNRL52	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - S Hammond - 12-719	
67	DLNRL58	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Ainsworth 12-508	
68	DLNRL59	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Johnson 12-563	
69	DLNRL60	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - 120th St 12-572	
70	DLNRL61	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Madison 12-625	
71	DLNRL78	New/Rebuild Line	Deliverability	Circuit Rebuild - Crocker New Circuit - Existing Line Reconductor	

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2022 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
72	DLNRL79	New/Rebuild Line	Deliverability	Bristol 12-111 / Bonneyville 12-706 Reconductor	
73	DLNRL85	New/Rebuild Line	Deliverability	Circuit Rebuild - Palmira - New 12.5kV Circuit Extension	
74	DLNRL86	New/Rebuild Line	Deliverability	Broadmoor Cir. 12-502 & Fisher 12-294 - Reconductor	
75	DLNRL87	New/Rebuild Line	Deliverability	Center Sub 12-270 - Circuit Reconductor - 0.6 miles w/69kV Overbuild	
				Heron Lake Substation - Line Taps - Ext. 69kV Source and 12.5kV Feeder	
76	DLNRL88	New/Rebuild Line	Deliverability	Lines	
77	DLPC1	Line Engineering- Distribution	Aging Infrastructure	Line Pre-construction - Distribution	
78	DLE1	Line Engineering- Distribution	Aging Infrastructure	Line Engineering - Distribution	
79				Total Distribution Lines	
80		Total Distribution Investment			\$141,257,872
81		Total T&D Investment			\$222,556,740
82		Total O&M Investment			\$2,329,335

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2023 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
1					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Transmission System Investments			
		Transmission Substations			
1	TSA1	Arresters - Transmission	Aging Infrastructure	Arrester Projects - Transmission	
2	TSB1	Batteries - Transmission	Aging Infrastructure	Battery & Charger Equipment Projects - Transmission	
3	TSPT1	Potential Transformers- Transmission	Aging Infrastructure	Potential Transformer Projects - Transmission	
4_	TSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Transmission	
5_	TSBRU46	Breaker Upgrades	Aging Infrastructure	Capacitor & Breaker Projects - Transmission	
6	TSC1	Transmission Substation - Communication	Grid Modernization	Comm Upgrade Projects - Transmission	
7	TSSA1	Transmission Substation Automation	Grid Modernization	Transmission Substation Automation	
8	TSRU76	Relay Upgrades	Aging Infrastructure	Relay Upgrade - WCE to Praxair # 6 - 13801	
9	TSRU79	Relay Upgrades	Aging Infrastructure	Circuit Protection Upgrade - 13879 Dune Acres to Beta Steel	
10	TSRU80	Relay Upgrades	Aging Infrastructure	Circuit Protection Upgrade - 13806 Dune Acres to Aetna	
11	TSBRU26	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - East Winamac Upgrades (69kV)	
				Breaker Upgrade - Chicago Ave. 138104, 13811, 13829, 13831, 13833-	
12	TSBRU30	Breaker Upgrades	Aging Infrastructure	104, & 13811-29	
13	TSBRU33	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Plymouth 13819-#1 & 13819-21	
14	TSNRS19	New/Rebuild Substations- Transmission	Deliverability	New Marktown 138kV Substation	
				New/Rebuild Substation - Sheffield - 345/138kV XFR & 13804-#2, 13804-	
15	TSNRS20	New/Rebuild Substations- Transmission	Aging Infrastructure	78, 13877-78, & 13893-#2 BRKS	
16	TSPC1	Substation Engineering-Transmission	Aging Infrastructure	Substation Pre-construction - Transmission	
17	TSE1	Substation Engineering-Transmission	Aging Infrastructure	Substation Engineering - Transmission	
18				Total Transmission Substations	
		Transmission Lines			
19	TLSW1	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Transmission	
20	TLST1	Steel Structure Program	Aging Infrastructure	Steel Structure Life Extension Projects - Transmission	
				Comm Upgrade Fiber - NiSource HQ (MW Only) to Tie St. John to Green	
21	TLF5	Transmission Line - Fiber Optic	Grid Modernization	Acres	
22	TLF6	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Plymouth to Burr Oak	
23	TLNRL22	New/Rebuild Line	Deliverability	Circuit Rebuild - Lagrange - 6980	
24	TLNRL28	New/Rebuild Line	Deliverability	Circuit Rebuild - Kosciusko - 6982	
25	TLPC1	Line Engineering- Transmission	Aging Infrastructure	Line Pre-construction - Transmission	
26	TLE1	Line Engineering- Transmission	Aging Infrastructure	Line Engineering - Transmission	
27				Total Transmission Lines	
28	L	Total Transmission Investment			\$80,186,383

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2023 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
ine No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Distribution System Investments			
		Underground Cable			
29	DUG1	Underground Cable Replacement	Aging Infrastructure	Underground Cable Replacement Projects	
30				Total Underground Cable	
		Distribution Substations			
31	DSA1	Arresters - Distribution	Aging Infrastructure	Arrester Projects - Distribution	
32	DSB1	Batteries- Distribution	Aging Infrastructure	Battery & Charger Equipment Projects - Distribution	
33	DSPT1	Potential Transformers- Distribution	Aging Infrastructure	Potential Transformer Projects - Distribution	
34	DSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Distribution	
35	DSC1	Distribution Substation - Communication	Grid Modernization	Comm Upgrade Projects - Distribution	
36	DSC2	Distribution Substation - Communication	Grid Modernization	New Distribution SCADA	Ţ
37	DSSA1	Distribution Substation Automation	Grid Modernization	Distribution Substation Automation	
38	DSBRU34	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Southlake - Switchgear	
39	DSBRU36	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Aetna - 3475, 34kV N. Bus, 34kV S. Bus	
40	DSBRU47	Breaker/Recloser Upgrades	Deliverability	Maple Sub - New 12.5kV Circuit Position	
41	DSNRS29	New/Rebuild Substation - Distribution	Aging Infrastructure	Rebuild Substation - Griffith - #1 Transformer & Switchgear	
42	DSNRS31	New/Rebuild Substation - Distribution	Aging Infrastructure	Rebuild Substation - Woodmar - #1 Transformer & Switchgear	
43	DSNRS45	New/Rebuild Substation - Distribution	Aging Infrastructure	New/Rebuild Substation - Novak Road - #1 Transformer & Switchgear	
				New/Rebuild Substation - Pidco - #1 69/12kV Transformer & Add	
44	DSNRS46	New/Rebuild Substation - Distribution	Deliverability	Second Transformer and Switchgear	
				New/Rebuild Substation - Schererville - #1 & #2 Transformers and	
45	DSNRS47	New/Rebuild Substation - Distribution	Aging Infrastructure	Switchgears	
46	DSPC1	Substation Engineering- Distribution	Aging Infrastructure	Substation Pre-construction - Distribution	
47	DSE1	Substation Engineering- Distribution	Aging Infrastructure	Substation Engineering - Distribution	
48				Total Distribution Substations	
		Distribution Lines			
49	DLCP1	Circuit Performance Improvement	Aging Infrastructure	Circuit Performance Improvement Projects - Distribution	
50	DLWP1	Wood Poles	Aging Infrastructure	Pole Replacement Projects - Distribution	
51	DLSW2	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Distribution	
52	DLDA1	Distribution Line - Distribution Automation	Aging Infrastructure	Distribution Line Automation	
53	DLAMI1	Advanced Metering Infrastructure (AMI)	Grid Modernization	Advanced Metering Infrastructure (AMI)	
54	DLNRL53	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - N Webster - 12-159	
55	DLNRL57	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Tod 12-457	
56	DLNRL64	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Elliot 12-750	
57	DLNRL68	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Decatur - 1209	
58	DLNRL89	New/Rebuild Line	Deliverability	Lines to Support Pidco Substation	
59	DLNRL90	New/Rebuild Line	Deliverability	Maple Sub - New 12.5kV Circuit Line Extension	
60	DLNRL108	New/Rebuild Line	Deliverability	Circuit Rebuild - Court - Extend New 12.5kV Circuit	
61	DLPC1	Line Engineering- Distribution	Aging Infrastructure	Line Pre-construction - Distribution	
62	DLE1	Line Engineering- Distribution	Aging Infrastructure	Line Engineering - Distribution	
63				Total Distribution Lines	
64		Total Distribution Investment			\$149,047,
65		Total T&D Investment			\$229,233,
66		Total O&M investment			\$2,263,

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2024 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
ine No.	Project ID	Project Category	Project Driver	Project Title	(direct dollar
	ļ	Transmission System Investments	+		
	TCAA	Transmission Substations	A -l l- ftt	A series Declared Transport	
1	TSA1	Arresters - Transmission	Aging Infrastructure	Arrester Projects - Transmission	
3	TSB1 TSPT1	Batteries - Transmission Potential Transformers- Transmission	Aging Infrastructure	Battery & Charger Equipment Projects - Transmission	
4	TSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure Aging Infrastructure	Potential Transformer Projects - Transmission Substation Switch Projects - Transmission	
- 5	TSBRU46	Breaker Upgrades	Aging Infrastructure	Capacitor & Breaker Projects - Transmission	
6	TSC1	Transmission Substation - Communication	Grid Modernization	Comm Upgrade Projects - Transmission	
7	TSSA1	Transmission Substation Automation	Grid Modernization	Transmission Substation Automation	
	155/12	Transmission substation rice material	Grid Wiedermzdelen	Transmission substitution Automotion	
8	TSRU70	Relay Upgrades	Deliverability	Relay & Breaker Upgrades - South Chalmers - Oakdale - 6971 and 6972	
9	TSRU81	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Oakdale - 69kV Bus	
10	TSRU82	Relay Upgrades	Aging Infrastructure	Relay Upgrade - R. M. Schahfer - 138kV Bus	
11	TSRU83	Relay Upgrades	Aging Infrastructure	Circuit Protection Upgrade - 13890 Mittal #8 to Chicago Ave.	
12	TSRU84	Relay Upgrades	Aging Infrastructure	Relay Upgrade - R. M. Schahfer - 345kV Bus	
13	TSBRU24	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Northport Upgrades (138kV & 69kV)	
14	TSBRU30	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Chicago Ave. 138104, 13811, 13829, 13831, 13833- 104, & 13811-29	
15	TSBRU32	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Miller 13822	
16	TSBRU47	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Kenwood - 138kV Bus Tie	
17	TSNRS19	New/Rebuild Substations- Transmission	Deliverability	New Marktown 138kV Substation	
18	TSNRS21	New/Rebuild Substations- Transmission	Deliverability	New St. John 138kV-69kV Substation	
19	TSNRS22	New/Rebuild Substations- Transmission	Deliverability	Veterans Hwy Sub - Add Automated 69kV Primary Changeover	
20	TSPC1	Substation Engineering-Transmission	Aging Infrastructure	Substation Pre-construction - Transmission	
21	TSE1	Substation Engineering-Transmission	Aging Infrastructure	Substation Engineering - Transmission	
22				Total Transmission Substations	
		Transmission Lines			
23	TLSW1	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Transmission	
24	TLST1	Steel Structure Program	Aging Infrastructure	Steel Structure Life Extension Projects - Transmission	
25	TLF7	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres	
				Comm Upgrade Fiber - Corporate Information Service Center -	
26	TLF8	Transmission Line - Fiber Optic	Grid Modernization	Microwave to Roxana	
27	TLF9	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple	
28	TLF10	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) #7	
				Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal	
29	TLF11	Transmission Line - Fiber Optic	Grid Modernization	Steel Indiana Harbor (East) #7	
30	TLF12	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown	
31	TLF13	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to U.S.Steel Corp - Stockton	
32	TLF14	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Pullman Standard to Tie Corporate Information Service Center - Microwave to Roxana	
33	TLF15	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Sheffield to Marktown	
34	TLF16	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - St. John to R.M.Schahfer	
35	TLF17	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Taney to Lake George	

Page 10 of 212

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2024 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
Line No. Project ID		ect ID Project Category Project Driver Project Title		Project Title	Plan Project Cost (direct dollars)
36	TLNRL30	New/Rebuild Line	Deliverability	Circuit Rebuild - New 138kV Line & 6990 - Hiple to Northport	
37	TLNRL31	New/Rebuild Line	Deliverability	Liberty Park 6901 - Ext. to Veterans Hwy Sub	
38	TLNRL32	New/Rebuild Line	Deliverability	New Lines 69kV at St John Transmission Substation 69-116 & 69-117	
39	TLPC1	Line Engineering- Transmission	Aging Infrastructure	Line Pre-construction - Transmission	
40	TLE1	Line Engineering- Transmission	Aging Infrastructure	Line Engineering - Transmission	
41				Total Transmission Lines	
42		Total Transmission Investment			\$106,249,991

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2024 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Distribution System Investments			
		Underground Cable			
43	DUG1	Underground Cable Replacement	Aging Infrastructure	Underground Cable Replacement Projects	
44				Total Underground Cable	
		Distribution Substations			
45	DSA1	Arresters - Distribution	Aging Infrastructure	Arrester Projects - Distribution	
46	DSB1	Batteries- Distribution	Aging Infrastructure	Battery & Charger Equipment Projects - Distribution	
47	DSPT1	Potential Transformers- Distribution	Aging Infrastructure	Potential Transformer Projects - Distribution	
48	DSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Distribution	
49	DSC1	Distribution Substation - Communication	Grid Modernization	Comm Upgrade Projects - Distribution	
50	DSC2	Distribution Substation - Communication	Grid Modernization	New Distribution SCADA	
51	DSSA1	Distribution Substation Automation	Grid Modernization	Distribution Substation Automation	
52	DSRU9	Relay Upgrades	Aging Infrastructure	Relay Upgrade - R.M.Schahfer - #1 XFR	
53	DSBRU31	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrades - Hyde Park - Switchgear	
54	DSBRU37	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Kenwood 34kV Upgrades	
55	DSBRU42	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Liable - Switchgear	
56	DSTU22	Transformer Upgrade/Replacement	Aging Infrastructure	Replace Transformer - Flint Lake - #8 138/12kV XFR	
	l	1			
57	DSTU24	Transformer Upgrade/Replacement	Deliverability	Transformer Replacement - Midway Sub - #1 XFR - Increase Capacity	
58	DSTU25	Transformer Upgrade/Replacement	Aging Infrastructure	Replace Transformer - Medaryville - #2 69/12kV XFR	
59	DSTU28	Transformer Upgrade/Replacement	Deliverability	Pine Creek Sub - #2 XFR - Add 2nd Set of Voltage Regulators	
60	DSTU29	Transformer Upgrade/Replacement	Deliverability	Fowler Sub - #2 XFR - Add 2nd Set of Voltage Regulators	
61	DSTU30	Transformer Upgrade/Replacement	Deliverability	Horn Ditch - Add 2nd Transformer & Upgrade 12.5kV Switchgear	
	j			Rebuild Substation - Lowell - #1 Transformer and #1 Switchgear & #2	
62	DSNRS22	New/Rebuild Substation - Distribution	Aging Infrastructure	Switchgear	
63	DSNRS48	New/Rebuild Substation - Distribution	Deliverability	New Winfield 69/12kV Substation	
		ļ			
64	DSNRS49	New/Rebuild Substation - Distribution	Aging Infrastructure	New/Rebuild Substation - Woodland Park - #1 Transformer & Switchgear	
65	DSPC1	Substation Engineering- Distribution	Aging Infrastructure	Substation Pre-construction - Distribution	
66	DSE1	Substation Engineering- Distribution	Aging Infrastructure	Substation Engineering - Distribution	
67				Total Distribution Substations	
		Distribution Lines			
68	DLCP1	Circuit Performance Improvement	Aging Infrastructure	Circuit Performance Improvement Projects - Distribution	
69	DLWP1	Wood Poles	Aging Infrastructure	Pole Replacement Projects - Distribution	
70	DLSW2	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Distribution	
71	DLDA1	Distribution Line - Distribution Automation	Aging Infrastructure	Distribution Line Automation	
72	DLAMI1	Advanced Metering Infrastructure (AMI)	Grid Modernization	Advanced Metering Infrastructure (AMI)	
73	DLNRL65	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Plymouth 1221	
74	DLNRL67	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Liable 12-332	
75	DLNRL70	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Dyer - 12-249	
76	DLNRL73	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Laporte - 1265	
77	DLNRL76	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - S. Hammond - 12-524	
78	DLNRL91	New/Rebuild Line	Deliverability	Horn Ditch Sub - 2nd 69kV Source Line	
79	DLNRL92	New/Rebuild Line	Deliverability	Horn Ditch Sub - 69kV and 12.5kV Lines	
80	DLNRL93	New/Rebuild Line	Deliverability	Hanover 12-453 - Reconductor	

Page 12 of 212

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2024 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
81	DLNRL94	New/Rebuild Line	Deliverability	Cedar Lake 1207 & Hanover 12-453 - Reconductor	
82	DLNRL95	New/Rebuild Line	Deliverability	Lines to Support Winfield Substation - 69kV and 12.5kV Circuit Extensions	
83	DLNRL96	New/Rebuild Line	Deliverability	Rock Run 12-382 & Model 12-432 DA Tie - Increase Capacity	
84	DLNRL97	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Broadway - 12-433	
85	DLNRL98	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Broadway - 12-437	
86	DLPC1	Line Engineering- Distribution	Aging Infrastructure	Line Pre-construction - Distribution	
87	DLE1	Line Engineering- Distribution	Aging Infrastructure	Line Engineering - Distribution	
88				Total Distribution Lines	
89		Total Distribution Investment			\$168,979,161
90		Total T&D Investment			\$275,229,152
91		Total O&M Investment			\$2,301,811

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2025 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(B) (C) (D) (E)		(F)	
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Transmission System Investments			
		Transmission Substations			
1	TSA1	Arresters - Transmission	Aging Infrastructure	Arrester Projects - Transmission	
2	TSB1	Batteries - Transmission	Aging Infrastructure	Battery & Charger Equipment Projects - Transmission	
3	TSPT1	Potential Transformers- Transmission	Aging Infrastructure	Potential Transformer Projects - Transmission	
4	TSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Transmission	
5	TSBRU46	Breaker Upgrades	Aging Infrastructure	Capacitor & Breaker Projects - Transmission	
6	TSC1	Transmission Substation - Communication	Grid Modernization	Comm Upgrade Projects - Transmission	
7	TSSA1	Transmission Substation Automation	Grid Modernization	Transmission Substation Automation	
8	TSRU85	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Chicago Ave - 138kV Bus	
9	TSRU86	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Flint Lake - #3 & #4 XFR 69kV	
10	TSRU87	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Flint Lake - 138kV Bus	
11	TSRU88	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Kosciusko - Bus 69kV	
12	TSRU89	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Maple - Bus 69kV	
13	TSRU90	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Munster - 138kV Bus	
14	TSRU91	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Starke - #1 XFR 69kV	
15	TSBRU30	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Chicago Ave. 138104, 13811, 13829, 13831, 13833- 104, & 13811-29	
16	TSBRU48	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Lake George Upgrades	
17	TSTU10	Transformer Upgrade/Replacement	Aging Infrastructure	Replace Transformer - Kreitzburg - #2 138/69kV XFR	
18	TSNRS23	New/Rebuild Substations- Transmission	Deliverability	Hager Sub - 2nd 69kV Source & Primary Changeover	
	TSNRS24	New/Rebuild Substations- Transmission	Deliverability	New/Rebuild Substation - Menges Ditch	
	TSPC1	Substation Engineering- Transmission	Aging Infrastructure	Substation Pre-construction - Transmission	
21	TSE1	Substation Engineering- Transmission	Aging Infrastructure	Substation Engineering - Transmission	
22				Total Transmission Substations	
		Transmission Lines			
	TLSW1	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Transmission	
24	TLST1	Steel Structure Program	Aging Infrastructure	Steel Structure Life Extension Projects - Transmission	
25	TLF18	Township I have Filter Out	Cuid Mandaurination	Country the sector of the Country to Tie Bourse to China a August 1	
	TLF19	Transmission Line - Fiber Optic	Grid Modernization Grid Modernization	Comm Upgrade Fiber - Gary Avenue to Tie Roxana to Chicago Avenue	
	TLF20	Transmission Line - Fiber Optic Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Green Acres to Tower Road Comm Upgrade Fiber - Hendricks to U.S.Steel Corp - Stockton	
	16120	Transmission line - riber Optic	GIIG MODERNIZATION		
28	TLF21	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Mittal Steel Indiana Harbor (West) #2 to Tie Sheffield to Marktown	
29	TLF22	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Munster to Hartsdale	
30	TLF23	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Roxana to Chicago Avenue	
	TLF24	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Starke to Burr Oak	
32	TLNRL33	New/Rebuild Line	Deliverability	Hager Sub - 2nd 69kV Source & Primary Changeover	
33	TLNRL34	New/Rebuild Line	Deliverability	New Circuits - Menges Ditch (2) 138kV Lines and (3) 69kV Lines	
34	TLPC1	Line Engineering- Transmission	Aging Infrastructure	Line Pre-construction - Transmission	
35	TLE1	Line Engineering- Transmission	Aging Infrastructure	Line Engineering - Transmission	
36				Total Transmission Lines	
37		Total Transmission Investment			\$101,620,503

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2025 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Distribution System Investments			
		Underground Cable			
38	DUG1	Underground Cable Replacement	Aging Infrastructure	Underground Cable Replacement Projects	
39				Total Underground Cable	
		Distribution Substations			
40	DSA1	Arresters - Distribution	Aging Infrastructure	Arrester Projects - Distribution	
41	DSB1	Batteries- Distribution	Aging Infrastructure	Battery & Charger Equipment Projects - Distribution	
42	DSPT1	Potential Transformers- Distribution	Aging Infrastructure	Potential Transformer Projects - Distribution	
43	DSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Distribution	
44	DSTU1	Transformer Upgrade/Replacement	Aging Infrastructure	Power Transformer Projects - Distribution	
45	DSC1	Distribution Substation - Communication	Grid Modernization	Comm Upgrade Projects - Distribution	
46	DSSA1	Distribution Substation Automation	Grid Modernization	Distribution Substation Automation	
47	DSBRU40	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Broadway - Switchgear	
48	DSBRU45	Breaker/Recloser Upgrades	Aging Infrastructure	Breaker Upgrade - Robertsdale - Switchgear	
				Breaker Upgrade - Wayne Substation Upgrades and #2 XFR Add Cooling	
49	DSBRU48	Breaker Upgrades	Deliverability	Fans	
50	DSTU31	Transformer Upgrade/Replacement	Deliverability	Nealon Drive Substation - Add 2nd 34/12kV Transformer and Switchgear	
51	DSTU32	Transformer Upgrade/Replacement	Deliverability	Hanna Substation - #1 Transformer - Add Voltage Regulators	
				Hebron Substation - #1 & #2 Transformers and Voltage Regulators -	
52	DSTU33	Transformer Upgrade/Replacement	Deliverability	Increase Capacity	
53	DSTU34	Transformer Upgrade/Replacement	Deliverability	Maplewood Substation - #1 Transformer - Increase Capacity	
54	DSTU35	Transformer Upgrade/Replacement	Deliverability	Freyer Sub - No.1 Transformer and Voltage Regulators - Increase Capacity	
				Deer Run Substation - #2 Transformer - Add 2nd Set of Voltage	
55	DSTU36	Transformer Upgrade/Replacement	Deliverability	Regulators	
56	DSTU37	Transformer Upgrade/Replacement	Deliverability	Transformer Upgrade - Demotte - 69/12kV #1 XFR	
57	DSTU38	Transformer Upgrade/Replacement	Deliverability	Clay Substation - #1 & #2 Transformers - Increase Capacity	
58	DSTU39	Transformer Upgrade/Replacement	Deliverability	Transformer Upgrade - Maynard - #2 XFR Add Cooling Fans	
				Transformer Upgrade - Wheeler - #1 XFR Add Cooling Fans and Upgrade	
59	DSTU40	Transformer Upgrade/Replacement	Aging Infrastructure	Bus	
				New/Rebuild Substation - Culver - 69/12kV #1  Transformers,	
60	DSNRS50	New/Rebuild Substation - Distribution	Deliverability	Reclosers	
61	DSNRS51	New/Rebuild Substation - Distribution	Deliverability	New/Rebuild Substation - Knox - (2) 69/12kV Transformers, Reclosers	
62	DSNRS52	New/Rebuild Substation - Distribution	Aging Infrastructure	New/Rebuild Substation - Tilden - #1 & #2 XFRs and #1 & #2 Switchgears	
63	DSNRS53	New/Rebuild Substation - Distribution	Aging Infrastructure	New/Rebuild Substation - University - #1 Transformer and Switchgear	
64	DSPC1	Substation Engineering- Distribution	Aging Infrastructure	Substation Pre-construction - Distribution	
65	DSE1	Substation Engineering- Distribution	Aging Infrastructure	Substation Engineering - Distribution	
66				Total Distribution Substations	

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2025 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Distribution Lines			
67	DLCP1	Circuit Performance Improvement	Aging Infrastructure	Circuit Performance Improvement Projects - Distribution	
68	DLWP1.	Wood Poles	Aging Infrastructure	Pole Replacement Projects - Distribution	
69	DLSW2	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Distribution	
70	DLDA1	Distribution Line - Distribution Automation	Aging Infrastructure	Distribution Line Automation	
71	DLAMI1	Advanced Metering Infrastructure (AMI)	Grid Modernization	Advanced Metering Infrastructure (AMI)	
72	DLNRL74	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Liberty Park - 12-252	
73	DLNRL75	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Liberty Park - 12-254	
74	DLNRL99	New/Rebuild Line	Aging Infrastructure	Line to Support Burns Ditch Substation	
75	DLNRL100	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Fisher - 12-294	
76	DLNRL101	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Johnson - 12-565	
77	DLNRL102	New/Rebuild Line	Deliverability	Lines to Support Culver Substation - 69kV & 12kV	
78	DLNRL103	New/Rebuild Line	Deliverability	Lines to Support Knox Substation - 12.5kV & 69kV Line Extensions	
79	DLNRL104	New/Rebuild Line	Deliverability	Nealon Drive Sub - Ext. 2nd 34kV Source Line	
80	DLNRL105	New/Rebuild Line	Deliverability	New/Rebuild Line - McCool 12-210 Reconductor	
81	DLPC1	Line Engineering- Distribution	Aging Infrastructure	Line Pre-construction - Distribution	
82	DLE1	Line Engineering- Distribution	Aging Infrastructure	Line Engineering - Distribution	
83				Total Distribution Lines	
84		Total Distribution Investment			\$175,271,919
85	-	Total T&D Investment			\$276,892,422
86	<u> </u>	Total O&M Investment			\$1,680,577

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2026 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B) (C) (D) (E)		(F)		
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
	·····	Transmission System Investments		, , , , , , , , , , , , , , , , , , , ,	
		Transmission Substations	"		
1	TSA1	Arresters - Transmission	Aging Infrastructure	Arrester Projects - Transmission	
2	TSB1	Batteries - Transmission	Aging Infrastructure	Battery & Charger Equipment Projects - Transmission	
3	TSPT1	Potential Transformers- Transmission	Aging Infrastructure	Potential Transformer Projects - Transmission	
4	TSSW1	Disconnects/Substation Switch Replacements	Aging Infrastructure	Substation Switch Projects - Transmission	
5	TSBRU46	Breaker Upgrades	Aging Infrastructure	Capacitor & Breaker Projects - Transmission	
6	TSC1	Transmission Substation - Communication	Grid Modernization	Comm Upgrade Projects - Transmission	
7	TSSA1	Transmission Substation Automation	Grid Modernization	Transmission Substation Automation	
8	TSRU68	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Goshen Junction - #2 XFR	
9	TSRU92	Relay Upgrades	Aging Infrastructure	Relay Upgrade - Miller - 138kV Bus	
				Breaker Upgrade - Chicago Ave. 138104, 13811, 13829, 13831, 13833-	
10	TSBRU30	Breaker Upgrades	Aging Infrastructure	104, & 13811-29	
11	TSBRU37	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Flint Lake - 69kV Breakers	
12	TSBRU49	Breaker Upgrades	Aging Infrastructure	Breaker Upgrade - Tower Road - 34507-23 BKR	
13	TSTU11	Transformer Upgrade/Replacement	Deliverability	Transformer Upgrade - Dekalb - 138/69kV #1 XFR	
				Rebuild Substation - Goshen Junction - #1 138/69kV Transformer and	
14	TSNRS12	New/Rebuild Substations- Transmission	Aging Infrastructure	69kV Relay and Breaker Upgrades	
15	TSNRS25	New/Rebuild Substations- Transmission	Deliverability	Northwood Substation New Changeover	
16	TSNRS26	New/Rebuild Substations- Transmission	Deliverability	New Schrader Ditch Substation	
17	TSPC1	Substation Engineering-Transmission	Aging Infrastructure	Substation Pre-construction - Transmission	
18	TSE1	Substation Engineering-Transmission	Aging Infrastructure	Substation Engineering - Transmission	
19				Total Transmission Substations	
		Transmission Lines			
20	TLSW1	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Transmission	
21	TLST1	Steel Structure Program	Aging Infrastructure	Steel Structure Life Extension Projects - Transmission	
22	TLF25	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Babcock to Stillwell	
				Comm Upgrade Fiber - Elmwood to Tie Corporate Information Service	
23	TLF26	Transmission Line - Fiber Optic	Grid Modernization	Center - Microwave to Munster	
	-				
24	TLF27	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Goodland Junction to Tie Goodland to Remington	
25	TLF28	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Idaho to Aetna	
26	TLF29	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Kosciusko to Leesburg	
27	TLF30	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Lake George to Babcock	
28	TLF31	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Lincoln Square to Broadway	
29	TLF32	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Morrison Ditch to Monticello	
30	TLF33	Transmission Line - Fiber Optic	Grid Modernization	Comm Upgrade Fiber - Nealon Drive to Burns Ditch	
31	TLNRL24	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Thayer - 6958	
32	TLNRL35	New/Rebuild Line	Deliverability	New 69kV Line to Support New Schrader Ditch Substation	
33	TLNRL36	New/Rebuild Line	Deliverability	Angola-Wolcottville 6959 69kV Line - Reconductor	
34	TLNRL37	New/Rebuild Line	Deliverability	New Northwood 69kV Source	
35	TLPC1	Line Engineering- Transmission	Aging Infrastructure	Line Pre-construction - Transmission	
36	TLE1	Line Engineering- Transmission	Aging Infrastructure	Line Engineering - Transmission	
37				Total Transmission Lines	
38		Total Transmission Investment			\$123,139,161

Page 17 of 212

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2026 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
					Plan Project
					Cost
Line No.	Project ID	Project Category	Project Driver	Project Title	(direct dollars)
		Distribution System Investments			
		Underground Cable			
39	DUG1	Underground Cable Replacement	Aging Infrastructure	Underground Cable Replacement Projects	
40				Total Underground Cable	
		Distribution Substations			
41	DSA1	Arresters - Distribution	Aging Infrastructure	Arrester Projects - Distribution	
42	DSB1	Batteries- Distribution	Aging Infrastructure	Battery & Charger Equipment Projects - Distribution	
43	DSPT1	Potential Transformers - Distribution	Aging Infrastructure	Potential Transformer Projects - Distribution	
44	DSC1	Distribution Substation - Communication	Grid Modernization	Comm Upgrade Projects - Distribution	
45	DSSA1	Distribution Substation Automation	Grid Modernization	Distribution Substation Automation	
46	DSTU41	Transformer Upgrade/Replacement	Deliverability	Transformer Upgrade - Kingsford Heights - #1 XFR Increase Capacity	
ĺ				Donaldson Sub - #1 Transformer - Increase Transformer and Volt Reg.	
47	DSTU42	Transformer Upgrade/Replacement	Deliverability	Capacities	
48	DSTU43	Transformer Upgrade/Replacement	Deliverability	Cedar Lake Sub #2 Transformer - Increase Capacity	
49	DSNRS30	New/Rebuild Substation - Distribution	Aging Infrastructure	Rebuild Substation - Hartsdale - #5 Transformer & #5 Switchgear	
50	DSNRS54	New/Rebuild Substation - Distribution	Deliverability	New Chesterton 69/12.5kV Substation	
51	DSNRS55	New/Rebuild Substation - Distribution	Deliverability	New Southwest Lake County Substation	
				New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4	
52	DSNRS57	New/Rebuild Substation - Distribution	Aging Infrastructure	Switchgears	
}				New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd	
53	DSNRS58	New/Rebuild Substation - Distribution	Deliverability	Circuit & BT	
				New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2	
54	DSNRS56	New/Rebuild Substation - Distribution	Aging Infrastructure	Switchgears	
				New/Rebuild Substation - Marktown - #3 Transformer and Breaker	
55	DSNRS59	New/Rebuild Substation - Distribution	Aging Infrastructure	Upgrades	
}					
56	DSNRS60	New/Rebuild Substation - Distribution	Aging Infrastructure	New/Rebuild Substation - Mitchell - #1 Transformer and 34kV Bus Tie	
57	DSPC1	Substation Engineering- Distribution	Aging Infrastructure	Substation Pre-construction - Distribution	
58	DSE1	Substation Engineering- Distribution	Aging Infrastructure	Substation Engineering - Distribution	_
59				Total Distribution Substations	-
		Distribution Lines			-
60	DLCP1	Circuit Performance Improvement	Aging Infrastructure	Circuit Performance Improvement Projects - Distribution	
61	DLWP1	Wood Poles	Aging Infrastructure	Pole Replacement Projects - Distribution	
62	DLSW2	Line Switch Replacement	Aging Infrastructure	Line Switch Projects - Distribution	
63	DLDA1	Distribution Line - Distribution Automation	Aging Infrastructure	Distribution Line Automation	
64	DLAMI1	Advanced Metering Infrastructure (AMI)	Grid Modernization	Advanced Metering Infrastructure (AMI)	
65	DLNRL106	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Indiana Harbor - 12-581	-
66	DLNRL107	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Chesterton - 12-194	
67	DLNRL110	New/Rebuild Line	Aging Infrastructure	Circuit Rebuild - Roxana - 12-454	
68	DLNRL111	New/Rebuild Line	Deliverability	South Haven Cir 12-715 - Upgrade Capacity	
69	DLNRL112	New/Rebuild Line	Deliverability	Hoosier Hill 12-724 Crooked Lake Tap Reconductor	
70	DLNRL113	New/Rebuild Line	Deliverability	McCool 12-149 - Upgrade Capacity	
			L	Lines to Support New Chesterton Substation - 69kV and 12.5kV Circuits -	
71	DLNRL114	New/Rebuild Line	Deliverability	Line Extensions	

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC 2026 PROJECT DETAIL - DIRECT CAPITAL DOLLARS ONLY

(A)	(B)	(C)	(D)	(E)	(F)
Line No.	Project ID	Project Category	Project Driver	Project Title	Plan Project Cost (direct dollars)
				Lines to Support New Southwest Lake County Substation - 69kV and	
72	DLNRL115	New/Rebuild Line	Deliverability	12.5kV Circuits	
73	DLPC1	Line Engineering- Distribution	Aging Infrastructure	Line Pre-construction - Distribution	
74	DLE1	Line Engineering- Distribution	Aging Infrastructure	Line Engineering - Distribution	
75				Total Distribution Lines	
76		Total Distribution Investment			\$164,240,050
77	 	Total T&D Investment			\$287,379,211
78		Total O&M Investment			\$1,356,206

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(١)	(K)
Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
1	TSA1	Transmission Substations	Arrester Projects - Transmission			····				
2	TSB1	Transmission Substations	Battery & Charger Equipment Projects - Transmission							
3	TSPT1	Transmission Substations	Potential Transformer Projects - Transmission							
4	TSSW1	Transmission Substations	Substation Switch Projects - Transmission							
5	TSBRU46	Transmission Substations	Capacitor & Breaker Projects - Transmission							
6	TSC1	Transmission Substations	Comm Upgrade Projects - Transmission							
7	TSSA1	Transmission Substations	Transmission Substation Automation							
8	TSRU2	Transmission Substations	Annunciator Projects - Transmission							
9	TSRU29	Transmission Substations	Fiber Optic - Green Acres to St. John - 13888							
			Relay & Breaker Upgrades - Dune Acres to Burns Ditch - 13836 N &							
10	TSRU58	Transmission Substations	13836 S							
11	TSRU59	Transmission Substations	Relay & Breaker Upgrades - Dune Acres to Mittal Burns Harbor - 13849 N & 13849 S							
12	TSRU60	Transmission Substations	Relay & Breaker Upgrades - Dune Acres to Mittal Burns Harbor - 13848 N & 13848 S							
	TSRU61	Transmission Substations	Relay Upgrades - Green Acres to St John - 13888							
	TSRU62	Transmission Substations	Relay Upgrades - Stillwell to Plymouth - 13896							
15	TSRU63	Transmission Substations	Relay Upgrades - South Prairie to Westwood (Duke) - 13883							
16	TSRU67	Transmission Substations	Relay Upgrade - Tower Road - #2 XFR							
17	TSRU68	Transmission Substations	Relay Upgrade - Goshen Junction - #2 XFR							
18	TSRU69	Transmission Substations	Relay & Breaker Upgrades - Miller to Beta Steel - 13842							
	TSRU70	Transmission Substations	Relay & Breaker Upgrades - South Chalmers - Oakdale - 6971 and 6972							
	TSRU71	Transmission Substations	Fiber Optic - 13806 Dune Acres to Burns Ditch							
	TSRU75	Transmission Substations	Relay Upgrade - Monticello to Springboro -13807							
	TSRU76	Transmission Substations	Relay Upgrade - WCE to Praxair # 6 - 13801							
	TSRU79	Transmission Substations	Circuit Protection Upgrade - 13879 Dune Acres to Beta Steel							
	TSRU80	Transmission Substations	Circuit Protection Upgrade - 13806 Dune Acres to Aetna							
	TSRU81	Transmission Substations	Relay Upgrade - Oakdale - 69kV Bus							
	TSRU82	Transmission Substations	Relay Upgrade - R. M. Schahfer - 138kV Bus							
27	TSRU83 TSRU84	Transmission Substations	Circuit Protection Upgrade - 13890 Mittal #8 to Chicago Ave.							
	TSRU85	Transmission Substations	Relay Upgrade - R. M. Schahfer - 345kV Bus Relay Upgrade - Chicago Ave - 138kV Bus							
	TSRU86	Transmission Substations Transmission Substations	Relay Upgrade - Flint Lake - #3 & #4 XFR 69kV							
	TSRU87	·								
	TSRU88	Transmission Substations Transmission Substations	Relay Upgrade - Flint Lake - 138kV Bus Relay Upgrade - Kosciusko - Bus 69kV							
	TSRU89	Transmission Substations	Relay Upgrade - Maple - Bus 69kV							
	TSRU90	Transmission Substations	Relay Upgrade - Munster - 138kV Bus							
	TSRU91	Transmission Substations	Relay Upgrade - Starke - #1 XFR 69kV							
	TSRU92	Transmission Substations	Relay Upgrade - Miller - 138kV Bus							
	TSBRU19	Transmission Substations	Breaker Upgrade - St. John Upgrades (345kV & 138kV)							
	TSBRU20	Transmission Substations	Breaker Opgrade - St. John Opgrades (345kV & 156kV) Breaker Upgrade - Dune Acres - #3 XFR BKR							
	TSBRU22	Transmission Substations	Breaker Upgrade - Miller - 13810-42							
	TSBRU24	Transmission Substations	Breaker Upgrade - Northport Upgrades (138kV & 69kV)							
	TSBRU26	Transmission Substations	Breaker Upgrade - East Winamac Upgrades (69kV)							
	TSBRU27	Transmission Substations	Breaker Opgrade - Esti Willama: Opgrades (OSKV)							
	TSBRU29	Transmission Substations	Breaker Upgrade - Schahfer 34516 & 34521							
	135.1023	Transmission substations								
44	TSBRU30	Transmission Substations	Breaker Upgrade - Chicago Ave. 138104, 13811, 13829, 13831, 13833- 104, & 13811-29							
45	TSBRU31	Transmission Substations	Breaker Upgrade - Liberty Park 138kV Bus Tie, #5 XFR & #6 XFR (69kV)							

Page 20 of 212

Topics Topics Content	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
40 SSB0136 Transmission solutations Weaker (Uggrade - Paron Late 69-100, but Tie, FL XFR, K Cup Basis Weaker (Uggrade - Stront Late 69-100, but Tie, FL XFR, K Cup Basis Weaker (Uggrade - Stront Late 69-100, but Tie, FL XFR, K Cup Basis Weaker (Uggrade - Stront Late 69-100, but Tie, FL XFR, K Cup Basis Weaker (Uggrade - Stront Late 69-100, but Tie, FL XFR, K Cup Basis Weaker (Uggrade - Stront Late 69-100, but Tie, FL XFR, K Cup Basis Weaker (Uggrade - Stront Late 69-100, but Tie, FL XFR, K Cup Wou Tie	Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
Significant State of Transmission Substations (Breaker Upgrade - Barton Labe 69-202, Bin Tig. 8) XFR. & Cap Bank (Breaker Upgrade - Tall of the State Of Sta	46	TSBRU32	Transmission Substations	Breaker Upgrade - Miller 13822							
SABAUAT Transmission Substations Transmiss	47	TSBRU33	Transmission Substations	Breaker Upgrade - Plymouth 13819-#1 & 13819-21							
SABAUAT Transmission Substations Transmiss											l.
September Spanse	48	TSBRU36	Transmission Substations	Breaker Upgrade - Barton Lake 69-102, Bus Tie, #1 XFR, & Cap Bank							
1580.045 Transmission Substations Strate Upgrade - Lete George Upgrades Service Upgrade - Lete George Upgrades Service Upgrades Lete George Upgrades	49	TSBRU37	Transmission Substations	Breaker Upgrade - Flint Lake - 69kV Breakers							
1580.045 Transmission Substations Strate Upgrade - Lete George Upgrades Service Upgrade - Lete George Upgrades Service Upgrades Lete George Upgrades				Breaker Upgrade - Starke 6905, 6919, 6961, 69kV Bus Tie, #1 XFR, & #2							
\$2 TSRBURS Transmission Substations Review Urgangal - Live George Urgangles Company \$3 TSRBURS Transmission Substations Transmission United Transmi	50	TSBRU41	Transmission Substations	XFR							
\$54 TSTUD	51	TSBRU47	Transmission Substations	Breaker Upgrade - Kenwood - 138kV Bus Tie							Á
STUDE	52	TSBRU48	Transmission Substations	Breaker Upgrade - Lake George Upgrades							l e
55 STULIO Transmission Substation Replace Transformer - Knottburg - K1 335/69N XTR 56 TSTNRS1 Transmission Substation Rebuild Substation - Gothen Justice - H1 335/69N XTR and 69N C op Bank FINANCIA Transmission Substation Rebuild Substation - H1 335/69N XTR and 69N C op Bank FINANCIA Transmission Substation Rebuild Substation - H1 335/69N XTR and 69N C op Bank FINANCIA Transmission Substation Substation Transmission Lines Transmission	53	TSBRU49	Transmission Substations	Breaker Upgrade - Tower Road - 34507-23 BKR							
55 ISTUST 1 Transmission Substations (Interference Upgrade – Debalb – 18/5690 v Tr. XFR 57 ISVRS12 Transmission Substations (Interference Upgrade – Debalb – 18/5690 v Tr. XFR 58 ISVRS13 Transmission Substations (Interference Upgrade – Debalb – 18/5690 v Tr. XFR 59 ISVRS13 Transmission Substations (Interference Upgrade – Debalb – 18/5690 v Tr. XFR 50 ISVRS13 Transmission Substations (Interference Upgrade – Debalb – 18/5690 v Tr. XFR 50 ISVRS13 Transmission Substations (Interference Upgrade – Debalb – 18/5690 v Tr. XFR 50 ISVRS13 Transmission Substations (Interference Upgrade – Debalb – 18/5690 v Tr. XFR 51 ISVRS20 Transmission Substations (Interference Upgrade – 18/10 v V V V V V V V V V V V V V V V V V V	54	TSTU9	Transmission Substations	Transformer Upgrade - Dune Acres #3							
Fig. 15 NNS12 Transmission Substations Rebuild Substation - Gropher Junction - #1.138/69W Transformer and State Upgrade - Number 1 State 1 Sta	55	TSTU10	Transmission Substations	Replace Transformer - Kreitzburg - #2 138/69kV XFR							
ST STNRS12 Transmission Substations SPIN Relay and Breaker Uggrades SPIN Relay and Breaker Uggrades Standard Nagle 22 338/698V / SPIN RELAY SPI	56	TSTU11	Transmission Substations	Transformer Upgrade - Dekalb - 138/69kV #1 XFR							
See TANKS13 Transmission Substations - Membrid Substation - Mapile - #2 138/69W XFR and 69W Cap Bank Shift Transmission Substations - Mew/Rebuild Substation - Green Acres - #8 #2 138/69W Transforms - #8 #2 138/69W Transmission - \$8 *2 *2 *2 *2 *2 *2 *2 *2 *2 *2 *2 *2 *2				Rebuild Substation - Goshen Junction - #1 138/69kV Transformer and							ĺ
New Methantion Substation of Transmission Substation Substation of Transmission Substation Substati	57	TSNRS12	Transmission Substations	69kV Relay and Breaker Upgrades							
STANSIST Transmission Substation Transmission Substation New/Peblaid Substation New Substation Ne	58	TSNRS13	Transmission Substations	Rebuild Substation - Maple - #2 138/69kV XFR and 69kV Cap Bank							
SAMPS SAMPS Transmission Substation New Mirks on Samps New Mir				New/Rebuild Substation - Green Acres - #1 & #2 138/69kV							
TSMRS19	59	TSNRS17	Transmission Substations	Transformers; Breaker Upgrades (138kV & 69kV)							
New Michaelus Substation Su	60	TSNRS18	Transmission Substations	New/Rebuild Substation - New Michigan City Substation							
6.2 TSMR520 Transmission Substations Rew St. John 138W-59W Substation Rew St. John 138W-59W Substat	61	TSNRS19	Transmission Substations	New Marktown 138kV Substation							
SNR52 Transmission Substations Veterans Huys Sub - Add Automated 69kV Primary Changeover		1		New/Rebuild Substation - Sheffield - 345/138kV XFR & 13804-#2, 13804-							
SSMR522 Transmission Substations Veterans Hwy Sub - Add Automated GNV Primary Changeover	62	TSNRS20	Transmission Substations	78, 13877-78, & 13893-#2 BRKS							
Fig. 158HS23	63	TSNRS21	Transmission Substations	New St. John 138kV-69kV Substation							
TSNR524 Transmission Substations New/Rebuild Substation - Mengee Ditch	64	TSNRS22	Transmission Substations	Veterans Hwy Sub - Add Automated 69kV Primary Changeover							
Fransmission Substations New Schrader Dirth Substation ireher Direhmatission New Schrader Dirth Substation New Schrader Dirth Substation New Schrader Dirth Substation New Schrader Dirth Substation Direhmatission New Schrader Direhmatission New Schrader Dirth Substation Direhmatission New Schrader Direhmatission New	65	TSNRS23	Transmission Substations	Hager Sub - 2nd 69kV Source & Primary Changeover							
Transmission Substations Substations Substations Substations Substation Subst	66	TSNRS24	Transmission Substations	New/Rebuild Substation - Menges Ditch							
TSCI	67	TSNRS25	Transmission Substations	Northwood Substation New Changeover							
Tensmission Substations Substation Engineering - Transmission TI TISVI Transmission Lines Une Switch Projects - Transmission TISTI Transmission Lines Ceed Structure Life Extension Projects - Transmission TLF1 Transmission Lines Comm Upgrade Fiber - Chicago Avenue to U.S. Steel - Stockton Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Munster Comm Upgrade Fiber - Corporate Information Service Center - Microwave to NiSource Hol (MW Only) Transmission Lines Comm Upgrade Fiber - NiSource Hol (MW Only) to Tie St. John to Green Comm Upgrade Fiber - NiSource Hol (MW Only) to Tie St. John to Green TIF5 Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak TIF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana TIF8 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana TIF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) #7 TIF10 Transmission Lines Steel Indiana Harbor (East) #7 Comm Upgrade Fiber - Microwave to Tie Chicago to Marktown Comm Upgrade Fiber - Praxair #1 - East Chicago to Tie Chicago Ave. to	68	TSNRS26	Transmission Substations	New Schrader Ditch Substation							
TISW1 Transmission Lines Une Switch Projects - Transmission Tansmission Lines Steel Structure Life Extension Projects - Transmission TEF1 Transmission Lines Comm Upgrade Fiber - Chicago Avenue to U.S. Steel - Stockton Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Munster Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Munster TIF3 Transmission Lines Microwave to Misource HQ (MW Only) Comm Upgrade Fiber - Nisource HQ (MW Only) to Tie St. John to Green Acres TIF5 Transmission Lines Comm Upgrade Fiber - Proporate Information Service Center - Microwave to Misource HQ (MW Only) to Tie St. John to Green TIF6 Transmission Lines Comm Upgrade Fiber - Proporate Information Service Center - Microwave to Misource HQ (MW Only) to Tie St. John to Green Acres TIF6 Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana TIF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal Transmission Lines Steel Indiana Harbor (East) #5 to Mittal Steel Indiana Harbor (East) #7 Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	69	TSPC1	Transmission Substations	Substation Pre-construction - Transmission							
TLEST 1 Transmission Lines			Transmission Substations	Substation Engineering - Transmission							
TLF1 Transmission Lines Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Munster - Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Munster - Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Misource HQ (MW Only) TLF5 Transmission Lines Comm Upgrade Fiber - NiSource HQ (MW Only) to Tie St. John to Green Acres - Acres - Comm Upgrade Fiber - Plymouth to Burr Oak - Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres - Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres - Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres - Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres - Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres - Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana - Microwave to Roxana - Microwave to Roxana - Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple - Comm Upgrade Fiber - Miktown to Mittal Steel Indiana Harbor (East) #7 TLF10 Transmission Lines - Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #7 TLF11 Transmission Lines - Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #7 Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown - Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to			Transmission Lines	Line Switch Projects - Transmission							
Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Munster Comm Upgrade Fiber - Corporate Information Service Center - Microwave to NiSource HQ (MW Only) Comm Upgrade Fiber - NiSource HQ (MW Only) Comm Upgrade Fiber - NiSource HQ (MW Only) Comm Upgrade Fiber - Praxis in the Surr Oak TLF5 Transmission Lines Comm Upgrade Fiber - Praxis in the Surr Oak Comm Upgrade Fiber - Praxis if 1 - East Chicago to Marktown Comm Upgrade Fiber - Microwave to Nisource Center - Microwave to Roxana Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Microwave to Roxana TLF10 Transmission Lines Comm Upgrade Fiber - Microwave to Microwave to Roxana Comm Upgrade Fiber - Microwave to Microwave to Roxana Comm Upgrade Fiber - Microwave to Microwave to Roxana TLF10 Transmission Lines Transmission Lines Comm Upgrade Fiber - Microwave to Microwave to Microwave to Microwave to Microwave to Microwave to Roxana Comm Upgrade Fiber - Microwave to Microwave to Microwave to Microwave to Microwave to Microwave to Roxana Comm Upgrade Fiber - Microwave to Roxana Comm Upgrade Fiber - Microwave to Roxana Comm Upgrade Fiber - Microwave to Microwave to Microwave to Microwave to Microwave to Roxana Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to			Transmission Lines	Steel Structure Life Extension Projects - Transmission							
TLF2 Transmission Lines Microwave to Munster Comm Upgrade Fiber - Corporate Information Service Center - Microwave to NiSource HQ (MW Only) Comm Upgrade Fiber - NiSource HQ (MW Only) to Tie St. John to Green Acres Transmission Lines Acres Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak TEF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Comm Upgrade Fiber - Corporate Information Service Center - Microwave to NiSource HQ (MW Only) Comm Upgrade Fiber - Corporate Information Service Center - Comm Upgrade Fiber - Corporate Information Service Center - Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines Transmission Lines Steel Indiana Harbor (East) #5 to Mittal TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	73	TLF1	Transmission Lines	Comm Upgrade Fiber - Chicago Avenue to U.S.Steel - Stockton							
Comm Upgrade Fiber - Corporate Information Service Center - Microwave to NiSource HQ (MW Only) Comm Upgrade Fiber - NiSource HQ (MW Only) to Tie St. John to Green TLF5 Transmission Lines Acres TLF6 Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak TLF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines Transmission Lines Steel Indiana Harbor (East) #5 to Mittal TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal Steel Indiana Harbor (East) #7 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	1			Comm Upgrade Fiber - Corporate Information Service Center -							
TLF3 Transmission Lines Microwave to NiSource HQ (MW Only) Comm Upgrade Fiber - NiSource HQ (MW Only) to Tie St. John to Green TLF5 Transmission Lines Acres TLF6 Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak TLF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	74	TLF2	Transmission Lines								
Comm Upgrade Fiber - NiSource HQ (MW Only) to Tie St. John to Green Acres Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak TLF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana Microwave to Roxana TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal Steel Indiana Harbor (East) #5 Steel Indiana Harbor (East) #5 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to				Comm Upgrade Fiber - Corporate Information Service Center -							
76 TLFS Transmission Lines Acres 77 TLF6 Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak 78 TLF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - 79 TLF8 Transmission Lines Microwave to Roxana 80 TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) 81 TLF10 Transmission Lines #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal 82 TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal 83 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	75	TLF3	Transmission Lines								
77 TLF6 Transmission Lines Comm Upgrade Fiber - Plymouth to Burr Oak 78 TLF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - 79 TLF8 Transmission Lines Microwave to Roxana 80 TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) 81 TLF10 Transmission Lines #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal 82 TLF11 Transmission Lines Steel Indiana Harbor (East) #7 83 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to											
TLF7 Transmission Lines Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to		 									
Comm Upgrade Fiber - Corporate Information Service Center - Microwave to Roxana 80 TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal Steel Indiana Harbor (East) #7 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to											
TLF8 Transmission Lines Microwave to Roxana Nicrowave to Roxana TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines TLF11 Transmission Lines Steel Indiana Harbor (East) #7 TLF11 Transmission Lines Steel Indiana Harbor (East) #7 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	78	TLF7	Transmission Lines	Comm Upgrade Fiber - Broadway to Tie St. John to Green Acres							
80 TLF9 Transmission Lines Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF10 Transmission Lines #7 Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal TLF11 Transmission Lines Steel Indiana Harbor (East) #7 Steel Indiana Harbor (East) #7 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	1	}		Comm Upgrade Fiber - Corporate Information Service Center -							
Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) Transmission Lines Comm Upgrade Fiber - Marktown to Mittal Steel Indiana Harbor (East) TLF11 Transmission Lines TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to											
81 TLF10 Transmission Lines #7 Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to 82 TLF11 Transmission Lines Steel Indiana Harbor (East) #5 to Mittal 83 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	80	TLF9	Transmission Lines	Comm Upgrade Fiber - Leesburg to Tie Burr Oak to Hiple							
Comm Upgrade Fiber - Mittal Steel Indiana Harbor (East) #5 to Mittal Steel Indiana Harbor (East) #5 to Mittal Steel Indiana Harbor (East) #7 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	1	1	1								
82 TLF11 Transmission Lines Steel Indiana Harbor (East) #7 83 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to	81	TLF10	Transmission Lines								
83 TLF12 Transmission Lines Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to											
Comm Upgrade Fiber - Praxair #3 - Lakeside to Tie Chicago Ave. to											
	83	TLF12	Transmission Lines	Comm Upgrade Fiber - Praxair #1 - East Chicago to Marktown							
84 TLF13 Transmission Lines U.S.Steel Corp - Stockton				· -							
	84	TLF13	Transmission Lines	U.S.Steel Corp - Stockton							

Page 21 of 212

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
Line No.	Project ID	Project Category	Comm Upgrade Fiber - Pullman Standard to Tie Corporate Information	2021	2022	2023	2024	2023	2020	Total
85	TLF14	Transmission Lines	Service Center - Microwave to Roxana							
86	TLF15	Transmission Lines	Comm Upgrade Fiber - Sheffield to Marktown							
87	TLF16	Transmission Lines	Comm Upgrade Fiber - St. John to R.M.Schahfer							
88	TLF17	Transmission Lines	Comm Upgrade Fiber - Taney to Lake George							
			, , , , , , , , , , , , , , , , , , , ,							
89	TLF18	Transmission Lines	Comm Upgrade Fiber - Gary Avenue to Tie Roxana to Chicago Avenue							
90	TLF19	Transmission Lines	Comm Upgrade Fiber - Green Acres to Tower Road							
91	TLF20	Transmission Lines	Comm Upgrade Fiber - Hendricks to U.S.Steel Corp - Stockton							
			Comm Upgrade Fiber - Mittal Steel Indiana Harbor (West) #2 to Tie							
92	TLF21	Transmission Lines	Sheffield to Marktown							
93	TLF22	Transmission Lines	Comm Upgrade Fiber - Munster to Hartsdale							
94	TLF23	Transmission Lines	Comm Upgrade Fiber - Roxana to Chicago Avenue							
95	TLF24	Transmission Lines	Comm Upgrade Fiber - Starke to Burr Oak							
96	TLF25	Transmission Lines	Comm Upgrade Fiber - Babcock to Stillwell							
			Comm Upgrade Fiber - Elmwood to Tie Corporate Information Service							
97	TLF26	Transmission Lines	Center - Microwave to Munster							
			Comm Upgrade Fiber - Goodland Junction to Tie Goodland to							
98	TLF27	Transmission Lines	Remington							
99	TLF28	Transmission Lines	Comm Upgrade Fiber - Idaho to Aetna							
100	TLF29	Transmission Lines	Comm Upgrade Fiber - Kosciusko to Leesburg							
101	TLF30	Transmission Lines	Comm Upgrade Fiber - Lake George to Babcock							
102	TLF31	Transmission Lines	Comm Upgrade Fiber - Lincoln Square to Broadway							
103	TLF32	Transmission Lines	Comm Upgrade Fiber - Morrison Ditch to Monticello							
104	TLF33	Transmission Lines	Comm Upgrade Fiber - Nealon Drive to Burns Ditch							
105	TLNRL6	Transmission Lines	Circuit 3465 Rebuild - 69kV Laporte JCT to Tee Lake							
106	TLNRL9	Transmission Lines	Circuit 3465 Rebuild - New Carlisle to Olive							
107	TLNRL18	Transmission Lines	Circuit 6972 Rebuild - South Chalmers - Oakdale							
108	TLNRL33	Transmission Lines	Hager Sub - 2nd 69kV Source & Primary Changeover							
109	TLNRL34	Transmission Lines	New Circuits - Menges Ditch (2) 138kV Lines and (3) 69kV Lines							
110	TLNRL19	Transmission Lines	Circuit Rebuild - Monticello - 6907 - Phase 2							
111	TLNRL21	Transmission Lines	Circuit Rebuild - Kosciusko - 6997 - Phase 2							
112	TLNRL22 TLNRL24	Transmission Lines	Circuit Rebuild - Lagrange - 6980							
113	TLNRL24	Transmission Lines Transmission Lines	Circuit Rebuild - Thayer - 6958 Circuit Rebuild - Kosciusko - 6998							
115	TLNRL28	Transmission Lines	Circuit Rebuild - Kosciusko - 6982							
116	TLNRL29	Transmission Lines	Circuit Rebuild - Palmira - Extend 2nd 69kV Source Line							
117	TLNRL30	Transmission Lines	Circuit Rebuild - New 138kV Line & 6990 - Hiple to Northport							
118	TLNRL31	Transmission Lines	Liberty Park 6901 - Ext. to Veterans Hwy Sub							
110	TENNESS	Transmission and	EBETTY FUNCTION EXECUTED THAT SAID							
119	TLNRL32	Transmission Lines	New Lines 69kV at St John Transmission Substation 69-116 & 69-117							
120	TLNRL35	Transmission Lines	New 69kV Line to Support New Schrader Ditch Substation							
121	TLNRL36	Transmission Lines	Angola-Wolcottville 6959 69kV Line - Reconductor							
122	TLNRL37	Transmission Lines	New Northwood 69kV Source							
123	TLPC1	Transmission Lines	Line Pre-construction - Transmission							
124	TLE1	Transmission Lines	Line Engineering - Transmission							
125	DUG1	Underground Cable	Underground Cable Replacement Projects							
126	DSA1	Distribution Substations	Arrester Projects - Distribution							
127	DSB1	Distribution Substations	Battery & Charger Equipment Projects - Distribution							
128	DSPT1	Distribution Substations	Potential Transformer Projects - Distribution							
129	DSSW1	Distribution Substations	Substation Switch Projects - Distribution							

Page 22 of 212

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
130	DSFC1	Distribution Substations	Substation Feeder Cable Projects - Distribution							
131	DSTU1	Distribution Substations	Power Transformer Projects - Distribution							
132	DSC1	Distribution Substations	Comm Upgrade Projects - Distribution							
133	DSC2	Distribution Substations	New Distribution SCADA							
134	DSSA1	Distribution Substations	Distribution Substation Automation							
135	DSRU9	Distribution Substations	Relay Upgrade - R.M.Schahfer - #1 XFR							
136	DSBRU24	Distribution Substations	Breaker Upgrade - Michigan City - #11 Transformer Breaker 34kV							
137	DSBRU25	Distribution Substations	Breaker Upgrades - Luchtman - 34-124, 34-125							
138	DSBRU28	Distribution Substations	Breaker Upgrades - Division - Switchgear							
139	DSBRU30	Distribution Substations	Breaker Upgrades - Gibson - Switchgear							
140	DSBRU31	Distribution Substations	Breaker Upgrades - Hyde Park - Switchgear							
141	DSBRU33	Distribution Substations	Breaker Upgrades - Monticello - Switchgear							
142	DSBRU34	Distribution Substations	Breaker Upgrade - Southlake - Switchgear							
143	DSBRU36	Distribution Substations	Breaker Upgrade - Aetna - 3475, 34kV N. Bus, 34kV S. Bus							
144	DSBRU37	Distribution Substations	Breaker Upgrade - Kenwood 34kV Upgrades							
145	DSBRU39	Distribution Substations	Breaker Upgrade - Munster - 3428, 3429, 3430, 3431							
146	DSBRU40	Distribution Substations	Breaker Upgrade - Broadway - Switchgear							
147	DSBRU42	Distribution Substations	Breaker Upgrade - Liable - Switchgear							
148	DSBRU45	Distribution Substations	Breaker Upgrade - Robertsdale - Switchgear							
149	DSBRU47	Distribution Substations	Maple Sub - New 12.5kV Circuit Position							
143	D301(047	Distribution Substations	Breaker Upgrade - Wayne Substation Upgrades and #2 XFR Add Cooling							
150	DSBRU48	Transmission Substations	Fans							
151	DSTU15	Distribution Substations	Replace Transformer - Orchard Grove - #1 Transformer							
	DSTU18	Distribution Substations	Replace Transformer - Bourbon #2							
152	DSTU20	·								
153		Distribution Substations	Replace Transformer - Weirick #1							
154	DSTU21	Distribution Substations	Replace Transformer - Wolf Lake - #2 138/34kV XFR							
155	DSTU22	Distribution Substations	Replace Transformer - Flint Lake - #8 138/12kV XFR							
455		D. J. J. J. A. J.	To the Control of Atlanta Call MANTO Income Control							
156	DSTU24	Distribution Substations	Transformer Replacement - Midway Sub - #1 XFR - Increase Capacity							
157	DSTU25	Distribution Substations	Replace Transformer - Medaryville - #2 69/12kV XFR							
158	DSTU26	Distribution Substations	Howe Sub - #2 Transformer & #1 Volt Regs - Inc Capacity							
159	DSTU28	Distribution Substations	Pine Creek Sub - #2 XFR - Add 2nd Set of Voltage Regulators							
160	DSTU29	Distribution Substations	Fowler Sub - #2 XFR - Add 2nd Set of Voltage Regulators							
161	DSTU30	Distribution Substations	Horn Ditch - Add 2nd Transformer & Upgrade 12.5kV Switchgear							
162	DSTU31	Distribution Substations	Nealon Drive Substation - Add 2nd 34/12kV Transformer and Switchgear							
163	DSTU32	Distribution Substations	Hanna Substation - #1 Transformer - Add Voltage Regulators							
1		L	Hebron Substation - #1 & #2 Transformers and Voltage Regulators -							
164	DSTU33	Distribution Substations	Increase Capacity							
165	DSTU34	Distribution Substations	Maplewood Substation - #1 Transformer - Increase Capacity							
			Freyer Sub - No.1 Transformer and Voltage Regulators - Increase							
166	DSTU35	Distribution Substations	Capacity							
		L	Deer Run Substation - #2 Transformer - Add 2nd Set of Voltage							
167	DSTU36	Distribution Substations	Regulators							
168	DSTU37	Distribution Substations	Transformer Upgrade - Demotte - 69/12kV #1 XFR							
169	DSTU38	Distribution Substations	Clay Substation - #1 & #2 Transformers - Increase Capacity							
170	DSTU39	Distribution Substations	Transformer Upgrade - Maynard - #2 XFR Add Cooling Fans							
			Transformer Upgrade - Wheeler - #1 XFR Add Cooling Fans and Upgrade							
171	DSTU40	Distribution Substations	Bus							
172	DSTU41	Distribution Substations	Transformer Upgrade - Kingsford Heights - #1 XFR Increase Capacity							

Page 23 of 212

Donables South South Solitations Solitations (Capital Solitations Solitations) 274 057043	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
Destriction Solutions	Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
Codar Lab Sub B of Transformer - Increase Capacity				Donaldson Sub - #1 Transformer - Increase Transformer and Volt Reg.							
School School	173	DSTU42	Distribution Substations	Capacities							
DONNESS Destribution Substations Switchingers DONNESS Destribution Substations of Conference of Con	174	DSTU43	Distribution Substations	Cedar Lake Sub #2 Transformer - Increase Capacity							
170 DNRS-25 Obstribution Substations Transformer (Frenzier Prochem) 170 DNRS-25 Obstribution Substations Persisted Substations Certifies + 91 Transformer & Switchgear DNRS-25 Obstribution Substations Persisted Substations International Prochem Persisted Substations Persisted Persisted Persisted Substations Persisted Persis	175	DSNRS22	Distribution Substations	_							
177 OSNRS-29 Distribution Solvatations Control of Control of Distribution Solvatations Control of	176	Denibes 2	Distribution Substations								
279 OSNISSI Distribution Substations of Method Substations Augustation - Hartstaller # 57 ransformer & 5 stributions and Substations Substations of Method Substation - Method Substation - Method Substation - Method Substation - Carsons - Add and Transformer, # 5 & 42 Voltage Requisitors, Del Sovictinger - Page - Pag											
197 OSHRSS1 Obstribution substations 180 ISSNRSS4 Obstribution substations 181 OSNRSS5 Obstribution Substations 182 OSNRSS5 Obstribution Substations 183 OSNRSS3 Obstribution Substations 183 OSNRSS3 Obstribution Substations 184 OSNRSS3 Obstribution Substations 185 OSNRSS3 Obstribution Substations 186 OSNRSS3 Obstribution Substations 187 OSNRSS4 Obstribution Substations 188 OSNRSS3 Obstribution Substations 188 OSNRSS4 Obstribution Substations 189 OSNRSS4 Obstribution Substations 180 OSNRSS5 Obstribution Substations 180 OSNRSS											
Distribution Substations (Crocker Substation) New Reclines & Incomming Lines Distribution Substations Obstribution Substations New/Rebuild Substation - Patient Substations Obstribution Substations New/Rebuild Substation - New Red Substations Obstribution Substations New/Rebuild Substation - New Red Substations Obstribution Substations Obstribution Substations Obstribution Substations Obstribution Substations New/Rebuild Substation - New Red Substatio											
Now/Rebuild Substation - Cruston - Add 2nd Transformer, #1.8 #2 OSHR535 Obstribution Substations											
182. DSNRS36 DESTIDUTION Substations 183 DONNS39 OESTIDUTION Substations 184 DOSNRS11 OESTIDUTION Substations 185 DSNRS41 OESTIDUTION Substations 186 DSNRS42 DESTIDUTION Substations 186 DSNRS42 DESTIDUTION SUbstations 187 DSNRS42 DESTIDUTION SUbstations 188 DSNRS42 DESTIDUTION SUbstations 189 DSNRS43 OESTIDUTION SUbstations 180 DSNRS43 DESTIDUTION SUbstations 180 DSNRS44 DESTIDUTION SUbstations 180 DSNRS45 DESTIDUTION SUbstations 180 DSNRS46 DESTIDUTION SUbstations 180 DSNRS47 DESTIDUTION SUbstations 180 DSNRS49 DESTIDUTION SUbstations 180 DSNRS49 DESTIDUTION SUbstations 180 DSNRS49 DESTIDUTION SUbstations 180 DSNRS50 DESTIDUTION SUBs				New/Rebuild Substation - Creston - Add 2nd Transformer, #1 & #2							
184 OSMRS41 Detribution Substations New/Rebuild Substation - Tod - #5 Transformer & Switchgear 185 OSMRS42 Distribution Substations - New/Rebuild Substation - Tod - #5 Transformer & Switchgear 186 OSMRS43 Distribution Substations - New Rebuild Substation - Palent - Substation - Distribution Substations - New Rebuild Substation - Palent - Switchgear 188 OSMRS45 Distribution Substations - New Rebuild Substation - New Rebuild Substation - New Rebuild Substation - Palent - Palent - #6 Palent -											
186 DSNRS42 Distribution Substations New/Rebuild Substation - Tod - #5 Transformer & Switchgear New Rebuild Substation - Falling Sub - Add 2nd Transformer, New Dbl. Switchgear Distribution Substations Switchgear New Rebuild Substation - New Period Substation - Period Substation - New Period Substation - Schereville - #1 & #12 Transformer & Add Switchgear New Period Substation - Schereville - #1 & #12 Transformer & New Period Substation - New Period Substatio											
NewNicheulid Substations NewNicheulid Substations NewNicheulid Substation NewNicheulid Substations NewNicheulid Substations NewNicheulid Substations NewNicheulid Substations NewNicheulid Substations NewNicheulid Substations NewNicheulid Substation NewNiche				_ 							
188 DSNRS43 Distribution Substations 187 DSNRS44 Distribution Substations 188 DSNRS45 Distribution Substations 189 DSNRS45 Distribution Substations 189 DSNRS46 Distribution Substations 189 DSNRS46 Distribution Substations 180 DSNRS47 Distribution Substations 180 DSNRS47 Distribution Substations 180 DSNRS47 Distribution Substations 180 DSNRS48 Distribution Substations 180 DSNRS49 Distribution Substations 181 DSNRS49 Distribution Substations 182 DSNRS59 Distribution Substations 183 DSNRS51 Distribution Substations 184 DSNRS51 Distribution Substations 185 DSNRS51 Distribution Substations 186 DSNRS51 Distribution Substations 186 DSNRS52 Distribution Substations 187 DSNRS52 Distribution Substations 188 DSNRS53 Distribution Substations 189 DSNRS54 Distribution Substations 189 DSNRS55 Distribution Substations 180 DSNRS55 Distribution Substations 180 DSNRS56	184	DSNRS41	Distribution Substations								
187 DSNRS44 Distribution Substations New/Rebuild Substation - Novak Road #1 Transformer & Switchgear New/Rebuild Substation - Pidco #1 69/12xV Transformer & Add Second Transformer & Add Second Transformer & Add Second Transformer & Add Second Transformer & New/Rebuild Substation - Pidco #1 69/12xV Transformer & Add Second Transformer & Switchgear New/Rebuild Substation - Schereville - #1 & #2 Transformers and Switchgear New Minister & Switchgear New Minister & Switchgear New Minister & Switchgear & New/Rebuild Substation - Culver - 69/12kV #1 & #2 Transformers, Reclosers & New/Rebuild Substation - Culver - 69/12kV Transformers, Reclosers & Distribution Substations New/Rebuild Substation - Tilden - #1 & #2 XFRs and #1 & #2 Switchgears & Distribution Substations New/Rebuild Substation - University - #1 Transformer and Switchgear & Distribution Substations New Minister & Switchgear & New/Rebuild Substation - University - #1 Transformer and Switchgear & Distribution Substations New Switchgear & New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4 New/Rebuild Substation - Pagola - #3 & #4 Transformers and #3 & #4 New/Rebuild Substation - New/Rebuild Substation - Hallower - #3 Transformer and Breaker Upgrades & Distribution Substations New/Rebuild Substation - Marktown - #3 Transformer and Breaker Upgrades	185	DSNRS42	Distribution Substations								
New/Rebuild Substation	186	DSNRS43	Distribution Substations	New/Rebuild Substation - Johnson - Switchgear							
New/Rebuild Substation - Pidco - #1 69/12kV Transformer & Add Second Transformer and Switchgear	187	DSNRS44	Distribution Substations	New Heron Lake - New 69/12 5kV Substation							
DSNRS41	188	DSNRS45	Distribution Substations								
190 DSNRS48 Distribution Substations Switchgears 191 DSNRS48 Distribution Substations New Winfield 69/12kV Substation 192 DSNRS49 Distribution Substations New/Rebuild Substation - Woodland Park - #1 Transformer & Switchgear 193 DSNRS50 Distribution Substations New/Rebuild Substation - Culver - 69/12kV #1  Transformers, 194 DSNRS51 Distribution Substations New/Rebuild Substation - Knox - (2) 69/12kV Transformers, Reclosers 195 DSNRS52 Distribution Substations New/Rebuild Substation - #1 & #2 XFRs and #1 & #2 Switchgears 196 DSNRS53 Distribution Substations New/Rebuild Substation - University - #1 Transformer and Switchgear 197 DSNRS53 Distribution Substations New/Rebuild Substation - University - #1 Transformer and Switchgear 198 DSNRS55 Distribution Substations New Contextent Lake County Substation 199 DSNRS55 Distribution Substations New Southwest Lake County Substation 199 DSNRS57 Distribution Substations New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4 200 DSNRS58 Distribution Substations Circuit & BT New/Rebuild Substation - Court - #2 Switchgears New/Rebuild Substation - G1st Ave - #2 Transformer and #1 & #2 201 DSNRS59 Distribution Substations Distribution Substations New/Rebuild Substation - Marktown - #3 Transformer and Breaker Upgrades	189	DSNRS46	Distribution Substations	Second Transformer and Switchgear	1						
Distribution Substations New/Rebuild Substation - Woodland Park - #1 Transformer & Switchgear	190	DSNRS47	Distribution Substations								
DSNRS59 Distribution Substations Switchgear DSNRS50 Distribution Substations Reclosers Distribution Substations New/Rebuild Substation - Culver - 69/12kV #1  Transformers, Reclosers Distribution Substations New/Rebuild Substation - Knox - (2) 69/12kV Transformers, Reclosers Distribution Substations New/Rebuild Substation - Tilden - #1 & #2 XFRs and #1 &	191	DSNRS48	Distribution Substations	New Winfield 69/12kV Substation							
DSNRS50 Distribution Substations Reclosers 194 DSNRS51 Distribution Substations New/Rebuild Substation - Knox - (2) 69/12kV Transformers, Reclosers 195 DSNRS52 Distribution Substations New/Rebuild Substation - Tilden - #1 & #2 XFRs and #1 & #2 Switchgears 196 DSNRS53 Distribution Substations New/Rebuild Substation - University - #1 Transformer and Switchgear 197 DSNRS54 Distribution Substations New Chesterton 69/12.5kV Substation 198 DSNRS55 Distribution Substations New Southwest Lake County Substation New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4 199 DSNRS57 Distribution Substations Switchgears 200 DSNRS58 Distribution Substations New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd Circuit & #1 Transformer and #1 & #2 201 DSNRS56 Distribution Substations Switchgears New/Rebuild Substation - 4 Transformer and #1 & #2 Switchgears New/Rebuild Substation - 4 Transformer and #1 & #2 New/Rebuild Substation - 4 Transformer and #1 & #2 New/Rebuild Substation - 4 Transformer and #1 & #2 New/Rebuild Substation - 4 Transformer and #1 & #2 New/Rebuild Substation - 4 Transformer and Breaker New/Rebuild	192	DSNRS49	Distribution Substations								
DSNRS52 Distribution Substations New/Rebuild Substation - Tilden - #1 & #2 XFRs and #1 & #2 Switchgears DSNRS53 Distribution Substations New/Rebuild Substation - University - #1 Transformer and Switchgear DSNRS54 Distribution Substations New Chesterton 69/12.5kV Substation DSNRS55 Distribution Substations New Southwest Lake County Substation New Southwest Lake County Substation New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4 Switchgears New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd Circuit & BT New/Rebuild Substation - Court - #2 Transformer and #1 & #2 Switchgears New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 Switchgears New/Rebuild Substation - Marktown - #3 Transformer and Breaker Upgrades	193	DSNRS50	Distribution Substations								
DSNRS53 Distribution Substations New/Rebuild Substation - University - #1 Transformer and Switchgear DSNRS54 Distribution Substations New Chesterton 69/12.5kV Substation New Chesterton 69/12.5kV Substation New Southwest Lake County Substation New Septiment of Switchgear - Angola - #3 & #4 Transformers and #3 & #4 Switchgears New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd Circuit & BT New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 DSNRS56 Distribution Substations Distribution Substations New/Rebuild Substation - Marktown - #3 Transformer and Breaker Upgrades DSNRS59 Distribution Substations Upgrades	194	DSNRS51	Distribution Substations	New/Rebuild Substation - Knox - (2) 69/12kV Transformers, Reclosers							
197 DSNRS54 Distribution Substations New Chesterton 69/12.5kV Substation 198 DSNRS55 Distribution Substations New Southwest Lake County Substation 199 DSNRS57 Distribution Substations New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4 200 DSNRS58 Distribution Substations New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd 201 DSNRS56 Distribution Substations New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 202 DSNRS59 Distribution Substations New/Rebuild Substation - Marktown - #3 Transformer and Breaker Upgrades	195	DSNRS52	Distribution Substations	New/Rebuild Substation - Tilden - #1 & #2 XFRs and #1 & #2 Switchgears							
197 DSNRSS4 Distribution Substations New Chesterton 69/12.5kV Substation 198 DSNRSS5 Distribution Substations New Southwest Lake County Substation 199 DSNRSS7 Distribution Substations New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4 200 DSNRSS8 Distribution Substations Switchgears 201 DSNRSS6 Distribution Substations Obstations New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd 202 DSNRSS6 Distribution Substations Switchgears New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 203 DSNRSS9 Distribution Substations Switchgears New/Rebuild Substation - Marktown - #3 Transformer and Breaker 204 Upgrades New/Rebuild Substation - Marktown - #3 Transformer and Breaker 205 DSNRSS9 Distribution Substations Upgrades	196	DSNRS53	Distribution Substations	New/Rebuild Substation - University - #1 Transformer and Switchgear							
New/Rebuild Substation - Angola - #3 & #4 Transformers and #3 & #4 Switchgears New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd Circuit & BT New/Rebuild Substation - Court - #2 Transformer and #1 & #2 DSNRS56 Distribution Substations New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 Switchgears New/Rebuild Substation - Marktown - #3 Transformer and Breaker Upgrades	197	DSNRS54									
DSNRSS7 Distribution Substations Switchgears New/Rebuild Substation - Court - #2 Switchgear - Replace and Add 3rd Circuit & BT DSNRSS8 Distribution Substations Circuit & BT New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 Switchgears New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 Switchgears New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 Switchgears New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 DSNRSS9 Distribution Substations Upgrades New/Rebuild Substation - Marktown - #3 Transformer and Breaker Upgrades	198	DSNRS55	Distribution Substations	New Southwest Lake County Substation							
201 DSNRS58 Distribution Substations Circuit & BT New/Rebuild Substation - 61st Ave - #2 Transformer and #1 & #2 Switchgears New/Rebuild Substation - Marktown - #3 Transformer and Breaker Distribution Substations Upgrades	199	DSNRS57	Distribution Substations								
201 DSNRS56 Distribution Substations Switchgears New/Rebuild Substation - Marktown - #3 Transformer and Breaker DSNRS59 Distribution Substations Upgrades	200	DSNRS58	Distribution Substations								
202 DSNRS59 Distribution Substations Upgrades	201	DSNRS56	Distribution Substations								
	202	DSNRS59	Distribution Substations								
203 DSNRS60 Distribution Substations New/Rebuild Substation - Mitchell - #1 Transformer and 34kV Bus Tie	203	DSNRS60	Distribution Substations	New/Rebuild Substation - Mitchell - #1 Transformer and 34kV Bus Tie							

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
204	DSPC1	Distribution Substations	Substation Pre-construction - Distribution							
205	DSE1	Distribution Substations	Substation Engineering - Distribution							
206	DLCP1	Distribution Lines	Circuit Performance Improvement Projects - Distribution							
207	DLWP1	Distribution Lines	Pole Replacement Projects - Distribution							
208	DLSW1	Distribution Lines	Switches to Clear Incoming Lines Projects - Distribution							
209	DLSW2	Distribution Lines	Line Switch Projects - Distribution							
210	DLDA1	Distribution Lines	Distribution Line Automation							
211	DLLED1	Distribution Lines	LED Street Lighting							
212	DLAMI1	Distribution Lines	Advanced Metering Infrastructure (AMI)							
213	DLNRL24	Distribution Lines	Circuit 3433 Rebuild - Grandview to Bendix West Side							
214	DLNRL35	Distribution Lines	Circuit Rebuild - Roxana - 12-316							
215	DLNRL42	Distribution Lines	Circuit Rebuild - South Hammond - 12-720							
216	DLNRL50	Distribution Lines	Circuit Rebuild - Lindbergh - 12-299							
217	DLNRL52	Distribution Lines	Circuit Rebuild - S Hammond - 12-719							
218	DLNRL53	Distribution Lines	Circuit Rebuild - N Webster - 12-159							
219	DLNRL57	Distribution Lines	Circuit Rebuild - Tod 12-457							
220	DLNRL58	Distribution Lines	Circuit Rebuild - Ainsworth 12-508							
221	DLNRL59	Distribution Lines	Circuit Rebuild - Johnson 12-563							
222	DLNRL60	Distribution Lines	Circuit Rebuild - 120th St 12-572							
223	DLNRL61	Distribution Lines	Circuit Rebuild - Madison 12-625							
224	DLNRL62	Distribution Lines	Circuit Rebuild - Laporte 1264							
225	DLNRL63	Distribution Lines	Circuit Rebuild - Woodmar 12-643							
226	DLNRL64	Distribution Lines	Circuit Rebuild - Elliot 12-750							
227	DLNRL65	Distribution Lines	Circuit Rebuild - Plymouth 1221							
228	DLNRL67	Distribution Lines	Circuit Rebuild - Liable 12-332							
229	DLNRL68	Distribution Lines	Circuit Rebuild - Decatur - 1209							
230	DLNRL70	Distribution Lines	Circuit Rebuild - Dyer - 12-249							
231	DLNRL73	Distribution Lines	Circuit Rebuild - Laporte - 1265							
232	DLNRL74 DLNRL75	Distribution Lines	Circuit Rebuild - Liberty Park - 12-252							
233	DLNRL76	Distribution Lines Distribution Lines	Circuit Rebuild - Liberty Park - 12-254 Circuit Rebuild - S. Hammond - 12-524							
235	DLNRL78	Distribution Lines	Circuit Rebuild - S. Harrinorid - 12-324 Circuit Rebuild - Crocker New Circuit - Existing Line Reconductor							
236	DLNRL79	Distribution Lines	Bristol 12-111 / Bonneyville 12-706 Reconductor							
237	DLNRL85	Distribution Lines	Circuit Rebuild - Palmira - New 12.5kV Circuit Extension							
238	DLNRL86	Distribution Lines	Broadmoor Cir, 12-502 & Fisher 12-294 - Reconductor							
236	DENNEGO	Distribution times	Broadmoor Cir. 12-302 & Fisher 12-254 - Reconductor							
239	DLNRL87	Distribution Lines	Center Sub 12-270 - Circuit Reconductor - 0.6 miles w/69kV Overbuild							
2.55	DEMINEO	DISCHOOL ENCS	Heron Lake Substation - Line Taps - Ext. 69kV Source and 12.5kV Feeder							
240	DLNRL88	Distribution Lines	Lines							
241	DLNRL89	Distribution Lines	Lines to Support Pidco Substation							
242	DLNRL90	Distribution Lines	Maple Sub - New 12.5kV Circuit Line Extension							
243	DLNRL91	Distribution Lines	Horn Ditch Sub - 2nd 69kV Source Line							
244	DLNRL92	Distribution Lines	Horn Ditch Sub - 69kV and 12.5kV Lines							
245	DLNRL93	Distribution Lines	Hanover 12-453 - Reconductor							
246	DLNRL94	Distribution Lines	Cedar Lake 1207 & Hanover 12-453 - Reconductor							
1			Lines to Support Winfield Substation - 69kV and 12 5kV Circuit							
247	DLNRL95	Distribution Lines	Extensions							
248	DLNRL96	Distribution Lines	Rock Run 12-382 & Model 12-432 DA Tie - Increase Capacity							
249	DLNRL97	Distribution Lines	Circuit Rebuild - Broadway - 12-433							
250	DLNRL98	Distribution Lines	Circuit Rebuild - Broadway - 12-437							
251	DLNRL99	Distribution Lines	Line to Support Burns Ditch Substation							
	1	1	I							

Page 25 of 212

NORTHERN INDIANA PUBLIC SERVICE COMPANY ELECTRIC FILING PROJECTS YEARLY PLAN AND EXPENSES

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
252	DLNRL100	Distribution Lines	Circuit Rebuild - Fisher - 12-294							
253	DLNRL101	Distribution Lines	Circuit Rebuild - Johnson - 12-565							
254	DLNRL102	Distribution Lines	Lines to Support Culver Substation - 69kV & 12kV							
255	DLNRL103	Distribution Lines	Lines to Support Knox Substation - 12 5kV & 69kV Line Extensions							
256	DLNRL104	Distribution Lines	Nealon Drive Sub - Ext. 2nd 34kV Source Line							
257	DLNRL105	Distribution Lines	New/Rebuild Line - McCool 12-210 Reconductor							
258	DLNRL106	Distribution Lines	Circuit Rebuild - Indiana Harbor - 12-581							
259	DLNRL107	Distribution Lines	Circuit Rebuild - Chesterton - 12-194							
2.60	DLNRL108	Distribution Lines	Circuit Rebuild - Court - Extend New 12.5kV Circuit							
261	DLNRL110	Distribution Lines	Circuit Rebuild - Roxana - 12-454							
262	DLNRL111	Distribution Lines	South Haven Cir 12-715 - Upgrade Capacity							
263	DLNRL112	Distribution Lines	Hoosier Hill 12-724 Crooked Lake Tap Reconductor							
264	DLNRL113	Distribution Lines	McCool 12-149 - Upgrade Capacity							
265	DLNRL114	Distribution Lines	Lines to Support New Chesterton Substation - 69kV and 12.5kV Circuits - Line Extensions							
266	DLNRL115	Distribution Lines	Lines to Support New Southwest Lake County Substation - 69kV and 12.5kV Circuits							
267	DLPC1	Distribution Lines	Line Pre-construction - Distribution							
268	DLE1	Distribution Lines	Line Engineering - Distribution							
2.69		Total Direct Capital		\$ 105,324,448 \$	222,556,740	229,233,442	\$ 275,229,152	\$ 276,892,422	287,379,211	\$ 1,396,615,415

iummary by Project Category

					1					
Line No.	Project ID	Project Category	Project Title	2021	2022	2023	2024	2025	2026	Total
270		Transmission Substations		\$ 26,096,870	\$ 39,608,052	\$ 57,910,125	\$ 60,200,669	\$ 54,908,149	\$ 54,852,316	\$ 293,576,181
271		Transmission Lines		\$ 14,501,950	\$ 41,690,816	\$ 22,276,258	\$ 46,049,322	\$ 47,760,270	\$ 68,286,845	\$ 240,565,461
272	_	Underground Cable		\$ 13,652,531	\$ 20,632,620	\$ 18,142,533	\$ 17,380,921	\$ 16,172,420	\$ 17,659,875	\$ 103,640,900
273		Distribution Substations		\$ 22,361,757	\$ 52,065,812	\$ 63,216,937	\$ 55,231,981	\$ 68,799,483	\$ 63,804,727	\$ 325,480,697
274		Distribution Lines		\$ 28,711,340	\$ 68,559,440	\$ 67,687,589	\$ 96,366,259	\$ 89,252,100	\$ 82,775,448	\$ 433,352,176
275		Total Direct Capital		\$ 105,324,448	\$ 222,556,740	\$ 229,233,442	\$ 275,229,152	\$ 276,892,422	\$ 287,379,211	\$ 1,396,615,415
276		Transmission Total		\$ 40,598,820	\$ 81,298,868	\$ 80,186,383	\$ 106,249,991	\$ 102,668,419	\$ 123,139,161	\$ 534,141,642
277		Distribution Total		\$ 64,725,628	\$ 141,257,872	\$ 149,047,059	\$ 168,979,161	\$ 174,224,003	\$ 164,240,050	\$ 862,473,773
278		Total Direct Capital		\$ 105,324,448	\$ 222,556,740	\$ 229,233,442	\$ 275,229,152	\$ 276,892,422	\$ 287,379,211	\$ 1,396,615,415

Confidential Attachment 2-A (Redacted) Confidential Appendix A (Redacted) Page X of 7

Confidential Attachment 2-A (Redacted) Confidential Appendix B (Redacted) Page X of 41

Confidential Attachment 2-A (Redacted) Confidential Appendix C (Redacted) Page X of 60

Confidential Attachment 2-A (Redacted) Confidential Appendix D (Redacted) Page X of 78 Confidential Attachment 2-B (Redacted)

[2021-2026 TDSIC Investment Plan Business Case]

Confidential Attachment 2-C (Redacted)

[2021-2026 TDSIC Investment Plan Cost Analysis]

TRANSMISSION PLANNING ASSESSMENT METHODOLOGY AND CRITICRIA

For Compliance with NERC Reliability Standard: TPL-001-4

1/14/2021 Version: 4.8

Table of Contents 1.1 1.2 2.1 2.2 2.2.1 2.2.2 2.3 Stability9 2.3.1 2.3.2 Stability Performance Requirements and Criteria [R5]......11 2.4 2.5 2.5.1 2.5.2 2.5.3 Facility Connection, Transmission Service Request Assessments, and Generator Retirements 13 3.1 3.2

1 REVISION AND APPROVAL HISTORY

This document shall be revised and updated as needed to incorporate changes in methodology and criteria and to reflect changes to the approved NERC Standard requirements.

1.1 REVISION HISTORY

Version	Date	Author	Supervisor	Comments
1.0	10/14/2011	Dawn Quick	Robert Fox	Initial document load into the DMS.
2.0	12/31/2012	Dawn Quick	Robert Fox	Annual Review. Seasonal Ratings defined. Internal Communication additions.
3.0	07/18/2013	Dawn Quick	Robert Fox	Add Generator Interconnection Section.
3.1	10/15/2013	Dawn Quick	Robert Fox	Add language for Single Breaker Ratings.
3.2	12/26/2013	Dawn Quick	Robert Fox	Annual Review. No Changes
3.3	03/10/2014	Dawn Quick	Ganesh Velummylum	Annual Review. Section 4.5. Added footnote pertaining to Distribution Factor. Added Specification of NERC categories and Cases to study.
4.0	10/07/2015	Dawn Quick	Lynn Schmidt	Annual Review. Format and Content Changes to align with new TPL Standard
4.1	01/10/2016	Dawn Quick	Lynn Schmidt	Annual Review.
4.2	01/10/2017	Dawn Quick	Lynn Schmidt	Annual Review.
4.3	01/10/2018	Dawn Quick	Lynn Schmidt	Annual Review. Change in document review/revision requirements.
4.4	03/09/2018	Dawn Quick	Lynn Schmidt	Addition of 765kV Voltage Criteria
4.5	05/29/2019	Dawn Quick	Lynn Schmidt	Addition of Energy Storage Interconnection Criteria
4.6	02/06/2020	Dawn Quick	Lynn Schmidt	Added P5 to Facility Connection Criteria
4.7	05/27/2020	Dawn Quick	Lynn Schmidt	GI Cumulative Impact criteria revision
4.8	01/14/2021	Dawn Quick	Lynn Schmidt	Addition of solar plant study criteria. Revision of wind machine voltage criteria

1.2 Approval

Version	Supervisor	Title	Electronic Signature Date
1.0	Robert Fox	Leader Transmission Planning	9/28/2011
2.0	Robert Fox	Leader Transmission Planning	12/31/2012
3.0	Robert Fox	Leader Transmission Planning	7/18/2013
3.1	Robert Fox	Leader Transmission Planning	10/15/2013
3.2	Robert Fox	Leader Transmission Planning	12/26/2013
3.3	Ganesh Velummylum	Manager Electric System Planning	3/10/2014
4.0	Lynn Schmidt	Leader Transmission Planning	10/07/2015
4.1	Lynn Schmidt	Leader Transmission Planning	1/10/2016
4.2	Lynn Schmidt	Leader Transmission Planning	01/10/2017
4.3	Lynn Schmidt	Leader Transmission Planning	01/10/2018
4.4	Lynn Schmidt	Leader Transmission Planning	03/09/2018
4.5	Lynn Schmidt	Leader Transmission Planning	05/29/2019
4.6	Lynn Schmidt	Leader Transmission Planning	02/06/2020
4.7	Lynn Schmidt	Leader Transmission Planning	05/27/2020
4.8	Lynn Schmidt	Leader Transmission Planning	01/14/2021

2 ANNUAL PLANNING ASSESSMENT

Transmission Planning shall prepare an annual Planning Assessment of the performance of its portion of the BES. This Planning Assessment shall use current or qualified past studies (as indicated below), shall document assumptions, and shall document summarized results of the steady state analyses, short circuit analyses, and Stability analyses. This assessment shall be performed for both the Near-Term and the Long-Term Transmission Planning Horizons. [R2]

Past studies may be used to support the Planning Assessment if they meet the following requirements:

- For steady state, short circuit, or stability analysis: the study shall be five calendar years old or less, unless a technical rationale is provided to demonstrate that the results of an older study are still valid. [R2.6.1]
- For steady state, short circuit, or stability analysis: no material changes have occurred to the System represented in the study. Documentation to support the technical rationale for determining material changes shall be included in the written assessment. [R2.6.2]

For planning events shown in Table 1, when the analysis indicates an inability of the System to meet the required performance criteria, the Planning Assessment shall include Corrective Action Plan(s) addressing how the performance requirements will be met. Revisions to the Corrective Action Plan(s) are allowed in subsequent Planning Assessments but the planned System shall continue to meet the required performance criteria. Corrective Action Plan(s) do not need to be developed solely to meet the performance requirements for a single sensitivity case. For short circuit analysis, if the short circuit current interrupting duty on circuit breakers exceeds their Equipment Rating, the Planning Assessment shall include a Corrective Action Plan to address the Equipment Rating violations. [R2.7] [R2.8]

The Corrective Action Plan(s) shall:

- List System deficiencies and the associated actions needed to achieve required System performance. [R2.7.1] [R2.8.1]
- For Steady state and Stability Studies, include actions to resolve performance deficiencies identified in multiple sensitivity studies or provide a rationale for why actions were not necessary. [R2.7.2]
- Be reviewed in subsequent annual Planning Assessments for continued validity and implementation status of identified System Facilities and Operating Procedures. [R2.7.4] [R2.8.2]

When an entity's spare equipment strategy could result in the unavailability of major Transmission equipment that has a lead time of one year or more (such as a transformer), the impact of this possible unavailability on System performance shall be studied. The studies shall be performed for the PO, P1, and P2 categories identified in Table 1 with the conditions that the System is expected to experience during the possible unavailability of the long lead time equipment. NIPSCO Transmission Planning shall evaluate its current stock and procurement strategy annually. Conclusions of this evaluation shall be stated in the assessment report. [R2.1.5]

In accordance with TPL-001-4 R7, NIPSCO has executed a Coordination Agreement with MISO identifying individual and joint responsibilities for performing the required studies. NIPSCO has not delegated any of their TPL responsibilities to MISO. In addition to any data requests made by MISO required to fulfill their TPL requirements, NIPSCO will also provide results from its Short Circuit studies to MISO. [R7]

Transmission Planning shall distribute its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners within 90 calendar days of completing its Planning Assessment, and to any functional entity that has a reliability related need and submits a written request for the information within 30 days of such a request. If a recipient of the Planning Assessment results provides documented comments on the results, the respective Planning Coordinator or Transmission Planner shall provide a documented response to that recipient within 90 calendar days of receipt of those comments. Recipients of the Planning Assessment include: MISO, PJM, METC, Duke, and Ameren. [R8] [R8.1]

2.1 MODEL DATA

NIPSCO Transmission Planning shall maintain System models within the NIPSCO area for performing the studies needed to complete its Planning Assessment. The models are consistent with provisions of the most recent Multiregional Modeling Working Group Procedure Manual and the most recent MOD-32 standard, supplemented by other sources as needed, including items represented in the Corrective Action Plan, and shall represent projected System conditions. This establishes Category PO as the normal System condition in Table 1. [R1].

System Models Represent:

- Existing Facilities
- Known outage(s) of generation or Transmission Facility(ies) with a duration of at least six months. [R2.1.3]
- New planned Facilities and changes to existing Facilities
- Real and reactive Load forecasts
- Known commitments for Firm Transmission Service and Interchange
- Resources (supply or demand side) required for Load

A project is considered "planned" and is modeled in the base cases when a continuing need has been identified by recent and past study results. The planned project, in general, is needed in the near term and typically has budget approval for engineering or material costs.

A "proposed" project is typically not modeled in base cases. The "proposed" project is being studied for continuing need and timing when project lead time is sufficient. A "proposed" project may also be conceptual in nature. It has been identified as a possible solution in long term studies where violations may be marginal. It may also be identified as a possible solution to stressed or alternative dispatch cases. Alternative projects may be studied for best solution. Proposed projects are given a "planned" status after need has been proven, taking into consideration sufficient lead time.

2.2 STEADY STATE

In accordance with NERC Standard TPL-001-4, the following system conditions are required for study annually:

- System peak Load for either Year One or year two, and for year five. [R2.1.1]
- System Off-Peak Load for one of the five years [R2.1.2.]
- A current study assessing expected System Peak Load conditions for one of the years in the Long-Term Transmission Planning Horizon and the rationale for why that year was selected. [R2.2.1]

For each of the Near-Term studies described above, sensitivity case(s) shall be utilized to demonstrate the impact of changes to the basic assumptions used in the model. To accomplish this, the sensitivity analysis in the Planning Assessment will vary one or more of the following conditions by a sufficient amount to stress the System within a range of credible conditions that demonstrate a measurable change in System response: [R2.1.4]

- Real and reactive forecasted Load.
- Expected transfers.
- Expected in service dates of new or modified Transmission Facilities.
- Reactive resource capability.
- Generation additions, retirements, or other dispatch scenarios.
- Controllable Loads and Demand Side Management.
- Duration or timing of known Transmission outages.

2.2.1 Contingency Analysis

For the steady state portion of the Planning Assessment, Transmission Planning shall perform studies for the Near-Term and Long-Term Transmission Planning Horizons mentioned above. The studies shall be based on computer simulation models using data provided in accordance with TPL-001-4 Requirement R1. [R3]

A list of those Contingencies to be evaluated for System Performance for Planning Events shall be created corresponding to the Planning Events P0-P7 listed in Table 1. For steady state, all planning events are simulated unless contingency outages duplicate the same elements as those of another contingency. Results of these simulations should be assessed to determine whether the BES meets the performance requirements in section 2.2.2. [R3.1] [R3.4]

A list of Contingencies for those extreme events listed in Table 1 that are expected to produce more severe System impacts shall be identified and created. For Steady-State, all extreme events listed in Table 1, extreme events #1 and #2 shall be simulated. Wide-area events affecting the Transmission System, such as those described in Table 1, extreme events #3, may be evaluated. A description and rationale of these wide-area events, if included, will be documented in the assessment. If the analysis concludes there is Cascading caused by the occurrence of extreme events, an evaluation of possible actions designed to reduce the likelihood or mitigate the consequences and adverse impacts of the event(s) shall be conducted. [R3.2] [R3.5]

Transmission Planning shall coordinate with adjacent Planning Coordinators and Transmission Planners to ensure that Contingencies on adjacent Systems which may impact their Systems are included in the Contingency list. [R3.4.1]

Contingency analysis shall simulate the removal of all elements that the Protection System and other automatic controls that are expected to normally clear or disconnect for each Contingency without operator intervention. [R3.3.1]

The analyses shall include the impact of subsequent:

- Tripping of generators where simulations show generator bus voltages or high side of the
 generation step up (GSU) voltages are less than known or assumed minimum generator steady
 state or ride through voltage limitations. Synchronous generator terminal voltages will be
 monitored at 85% for potential tripping. Solar and Wind machine terminal voltages will be
 monitored at 90% for potential tripping. [R3.3.1.1]
- Tripping of Transmission elements where relay loadability limits are exceeded. A tripping proxy
 of 125% of Emergency Rating will be used for all lines and transformers. When exceeded,
 Transmission Planning will consult Protection Engineering to obtain actual trip values and
 determine if a corrective action plan is necessary. [R3.3.1.2]

Contingency analysis shall simulate the expected automatic operation of existing and planned devices designed to provide steady state control of electrical system quantities when such devices impact the study area. [R3.3.2]

2.2.2 Steady-State Performance Requirements and Criteria [R5]

- Voltages, post-contingency voltages, and post-contingency voltage deviations shall be within acceptable limits. See Steady-State Voltage Tables below.
- Applicable Facility Ratings shall not be exceeded. Transmission Planning establishes Normal and Emergency Facility Ratings for summer and winter seasonal periods based on its documented Facility Rating Methodology. Single Breaker Ratings are also established for use in studies where the contingency may cause a facility to have a more limited rating.
- The transmission system shall not experience uncontrolled cascading or islanding. Load loss shall not exceed 300 MWs, excluding consequential load. See section 2.5, Supplemental Performance Analysis. [R6]
- Synchronous generators are projected to trip when the terminal voltage is below 85%. Solar and Wind machines are projected to trip when the terminal voltage is below 90%. [R3.3.1.1]
- Consequential Load Loss as well as generation loss is acceptable as a result of any event excluding category PO No Contingency.
- The response of voltage sensitive Load that is disconnected from the System by end-user equipment associated with an event shall not be used to meet steady-state performance requirements.

Steady-State Voltage Tables

	Normal Condition		Post-Contingency Stead		dy-State
Location	Minimum	Maximum	Minimum	Maximum	Deviation
765 kV buses	92%	105%	90%	105%	+/- 10%
345 kV buses	92%	105%	90%	105%	+/- 10%
138 kV buses	92%	105%	90%	105%	+/- 10%
69 kV buses	94%	105%	92%	105%	+/- 10%
On-Line Synchronous Generator Terminals [3.3.1.1]	95%	105%	85%	107%	+/- 10%
On-Line Solar + Wind Machine Terminals [3.3.1.1]	95%	105%	90%	105%	+/- 10%

	Normal Condition		Post-Contingency Steady-Stat		dy-State
Location	Minimum	Maximum	Minimum	Maximum	Deviation
Customer Substation 138kV Buses	95%	105%	90%	110%	+/- 10%

2.3 STABILITY

In accordance with NERC Standard TPL-001-4, the following system conditions are required for study annually:

- System peak Load for one of the five years. System peak Load levels shall include a Load model
 which represents the expected dynamic behavior of Loads that could impact the study area,
 considering the behavior of induction motor Loads. An aggregate System Load model which
 represents the overall dynamic behavior of the Load is acceptable. [R2.4.1]
- System Off-Peak Load for one of the five years. [R2.4.2]

For each of the studies described above, sensitivity case(s) shall be utilized to demonstrate the impact of changes to the basic assumptions used in the model. To accomplish this, the sensitivity analysis in the Planning Assessment must vary one or more of the following conditions by a sufficient amount to stress the System within a range of credible conditions that demonstrate a measurable change in performance: [R2.4.3.]

- Load level, Load forecast, or dynamic Load model assumptions.
- Expected transfers.
- Expected in service dates of new or modified Transmission Facilities.
- Reactive resource capability
- Generation additions, retirements, or other dispatch scenarios.

For the Planning Assessment, the Long-Term Transmission Planning Horizon portion of the Stability analysis shall be assessed to address the impact of proposed material generation additions or changes in that timeframe and be supported by current or past studies and shall include documentation to support the technical rationale for determining material changes. [R2.5]

Loads shall be modeled by P (constant current) and Q (constant impedance) which represents the aggregate overall dynamic load behavior. For sensitivity analysis, loads may be modeled by a composite load model considering more detailed behavior of induction motor loads. [R2.4.1]

2.3.1 Contingency Events

For the Stability portion of the Planning Assessment, Transmission Planning shall perform the Contingency analyses for the Near-Term and Long-Term Planning Horizons mentioned above. The studies shall be based on computer simulation models using data provided in accordance with TPL-001-4 R1. [R4]

A list of those Contingencies to be evaluated for System Performance for Planning Events shall be created corresponding to the Planning Events PO-P7 listed in Table 1. For transient stability, Planning Events for transmission facilities directly associated to an individual power plant as well as Planning Events for other selected transmission facilities are simulated. [R4.4]

Those extreme events in Table 1 that are expected to produce more severe System impacts shall be identified and a list created of those events to be evaluated for impact to the BES. The rationale for those Contingencies selected for evaluation shall be available as supporting information. If the analysis concludes there is Cascading caused by the occurrence of extreme events, an evaluation of possible actions designed to reduce the likelihood or mitigate the consequences of the event(s) shall be conducted. [R4.2] [R4.5]

Each Planning Coordinator and Transmission Planner shall coordinate with adjacent Planning Coordinators and Transmission Planners to ensure that Contingencies on adjacent Systems which may impact their Systems are included in the Contingency list. [R4.4.1]

Contingency analyses shall simulate the removal of all elements that the Protection System and other automatic controls are expected to disconnect for each Contingency without operator intervention. [R4.3] [R4.3.1]

The contingency analyses shall include the impact of subsequent:

- Successful high speed (less than one second) reclosing and unsuccessful high speed reclosing into a Fault where high speed reclosing is utilized. [R4.3.1.1]
- Tripping of generators where simulations show generator bus voltages or high side of the GSU
 voltages are less than known or assumed generator low voltage ride through capability. Include
 in the assessment any assumptions made. [R4.3.1.2]
- Tripping of Transmission lines and transformers where transient swings will cause a Protection System operation based on generic or actual relay models. [R4.3.1.3]

Contingency analyses shall simulate the expected automatic operation of existing and planned devices designed to provide dynamic control of electrical system quantities when such devices impact the study area. These devices may include equipment such as generation exciter control and power system stabilizers, synchronous condensers, static var compensators, power flow controllers, and DC Transmission controllers. [R4.3.2]

Studies shall be performed for planning events to determine whether the BES meets the following stability performance requirements and criteria: [R4.1] [R4.2]

2.3.2 Stability Performance Requirements and Criteria [R5]

The transmission system shall not experience uncontrolled cascading or islanding.

For planning event P1: No generating unit shall pull out of synchronism. A generator being disconnected from the System by fault clearing action or by a Special Protection System is not considered pulling out of synchronism. [R4.1.1]

For planning events P2 through P7: When a generator pulls out of synchronism in the simulations, the resulting apparent impedance swings shall not result in the tripping of any Transmission system elements other than the generating unit and its directly connected Facilities. [R4.1.2]

For planning events P1 through P7: Power oscillations shall exhibit acceptable damping. Observed damping ratio (ζ) shall be greater than 0.020. [R4.1.3]

Synchronous Generator Voltage: Voltages at the terminal bus of on-line synchronous generators shall return to the allowable steady-state contingency voltage within five seconds after fault clearing. [R4.3.1.2]

Solar Generating Plant Voltage: Solar plants shall have low voltage ride-through capability monitored at the high-side GSU terminal down to 0% of the rated voltage for 0.150 seconds (9.0 cycles) for three-phase faults and down to 0% of the rated voltage for 0.433 seconds (26.0 cycles) for single-line ground faults. [R4.3.1.2]

Wind Generating Plant Voltage: Wind plants shall have low voltage ride-through capability monitored at the high-side GSU terminal down to 0% of the rated voltage for 0.150 seconds (9.0 cycles) for three-phase faults (Per FERC Order 661-A) and down to 0% of the rated voltage for 0.433 seconds (26.0 cycles) for single-line ground faults. [R4.3.1.2]

Load Bus Voltages: Voltages at load buses should return to the allowable steady-state contingency voltage within five seconds after fault clearing.

2.4 SHORT CIRCUIT

The short circuit analysis portion of the Planning Assessment shall be conducted annually addressing the Near-Term Transmission Planning Horizon and shall be supported by current or qualified past studies. The analysis shall be used to determine whether circuit breakers have the capability to interrupt the maximum short-circuit current the circuit breaker is expected to experience. [R2.3]

The System short-circuit model for the analysis shall be updated annually including planned generation and transmission facilities within NIPSCO, and including planned generation and transmission facilities in adjoining areas within two busses of NIPSCO.

The maximum expected short-circuit current that a circuit breaker is expected to interrupt shall be determined by performing both three-phase (3∅) and single line-to-ground (SLG) fault simulations in accordance with the IEEE standard C37-010-1999 and utilizing the calculation methodology of the ASPEN Oneliner™ Breaker Rating Module. The circuit breaker interrupting rating shall be based on its nameplate value and not derated based on circuit breaker reclosing operations.

Circuit breakers with interrupting duty of 100% or greater of the interrupting rating shall be considered an identified deficiency.

2.5 SUPPLEMENTAL PERFORMANCE ANALYSIS

2.5.1 Cascading

Cascading potential shall be evaluated by sequentially removing those facilities with steady-state loading in excess of 125% of their emergency rating and those generating units with steady-state terminal voltage below their specified voltage criteria. [R6]

2.5.2 Uncontrolled Islanding

Uncontrolled islanding potential shall be evaluated by review of identified cascading outages that result in load being isolated with generation from the interconnected system. [R6]

2.5.3 Voltage Stability

Voltage stability analysis shall be performed for the Near-Term and Long-Term Planning Horizons mentioned above. Voltage stability shall be evaluated through the application of the Fast Voltage Stability Index (FVSI) and Voltage Stability Index Le. Analysis shall be performed for N-0 and N-1 contingency conditions. A voltage stability index value of 1.0 or greater is an indication of voltage instability. [R6]

3 FACILITY CONNECTION, TRANSMISSION SERVICE REQUEST ASSESSMENTS, AND GENERATOR RETIREMENTS

Transmission Reliability Planning Tests are performed on Facility Connection projects, Transmission Service Requests (TSR's), and Generation Retirements to evaluate any Thermal or Voltage criteria violations caused by projects originated through PJM, MISO and NIPSCO processes on NIPSCO's transmission system.

3.1 Individual Contribution Test and Cumulative Impact Test (CIT)

The Facility Connection Projects, TSR's, and Generation Retirements impacting NIPSCO's transmission shall be subject to two tests: the Individual Contribution Test and the Cumulative Impact Test.

The Facility Connections, TSR's, and Generation Retirements screened through the following two tests are studied for their impact on NIPSCO's transmission system. The RTEP and MTEP cases used by PJM and/or MISO will be used in the study process. Peak, off-peak, and high wind cases should be evaluated to determine worst-case impact. Mitigations will be determined for all thermal and/or voltage violations evaluated under NERC Contingency Categories PO, P1, P2, P5 and P7.

Individual Contribution Test:

The test is performed to identify individual Facility Connections, TSRs, and Generation Retirements affecting NIPSCO's transmission system. For a Facility Connection, TSR, or Generation Retirement to be considered to be impacting the NIPSCO transmission system, it should adhere to one of the two rules:

- 1. The contribution of the Distribution Factor of the Facility Connection, TSR, or Generation Retirement with magnitude of 3% or greater contributing to an overload on a NIPSCO facility.
- 2. The Contribution of a Facility Connection, TSR, or Generation Retirement on a NIPSCO facility is equal to or greater than 3% of the facility rating.

Cumulative Impact Test (CIT):

NIPSCO shall also perform a test to evaluate the cumulative impact of multiple Facility Connections, TSRs, and Generation Retirements when they are grouped together in the same study during the PJM and/or MISO process. The Facility Connections, TSRs, and Generation Retirements having a cumulative impact of at least 10% of the facility rating will be considered as impacting NIPSCO's transmission system. There is no minimum threshold to assign individual impact.

3.2 Energy Storage or Hybrid Facility Interconnections

The maximum expected charging load for any storage or hybrid facility interconnection to NIPSCO's transmission system will be studied as a non-interruptible load in both peak and off-peak conditions according to the most recent NERC TPL-001-4 standard methodology using the most recent NIPSCO transmission planning criteria.

TABLE 1. PLANNING AND EXTREME EVENTS

Category	Initial Condition	Event	Fault Type	Notes
P0	Normal System	None	N/A	Initial System
				Condition
P1 Single	Normal System	Loss of one of the	3Ø	
Contingency		following:		
		1. Generator		
		2. Transmission		
		Circuit		
		3. Transformer		
		4. Shunt Device		
P2 Single	Normal System	 Opening of a line 	N/A	
Contingency		section w/o a fault		
		2. Bus Section Fault	SLG	
		Internal Breaker	SLG	
		Fault (non-bus tie)		
		4. Internal Breaker	SLG	
		Fault (Bus-tie		
		Breaker)		
P3 Multiple	Loss of generator	Loss of one of the	3Ø	
Contingency	unit followed by	following:		
	System Adjustments	1. Generator		
		2. Transmission	ł	
		Circuit		
		3. Transformer	}	
		4. Shunt Device		
P4 Multiple	Normal System	Loss of Multiple Elements	SLG	
Contingency		Caused by a stuck Breaker		
(Fault plus		(non-bus tie) attempting to		
Stuck Breaker)		clear a fault on one of the		
		following:		
		1. Generator		
		2. Transmission		
		Circuit		
		3. Transformer		
		4. Shunt Device		
		5. Bus Section	1	
		6. Loss of Multiple		
		elements caused		
		by a stuck Bus-tie		
		Breaker attempting		
		to clear a fault on		
		the associated bus.		

Category	Initial Condition	<u>Event</u>	Fault Type	<u>Notes</u>
P6 Multiple Contingency	Loss of one of the following followed by System adjustments. Loss of one of the following: 1. Transmission Circuit	Delayed Fault Clearing due to the failure of a non- redundant relay protecting the Faulted element to operate as designed, for one of the following: 1. Generator 2. Transmission Circuit 3. Transformer 4. Shunt Device 5. Bus section Loss of one of the following: 1. Transmission Circuit 2. Transformer 3. Shunt Device	SLG 3Ø	Curtailment of Firm Transmission Service is allowed as a System adjustment as identified in the column entitled 'Initial Condition'.
	2. Transformer 3. Shunt Device			
P7 Multiple Contingency	Normal System	The loss of: 1. Any two adjacent (vertically or horizontally) circuits on common structure.	SLG	Excludes circuits that share a common structure for 1 mile or less.

Category	Initial Condition	<u>Event</u>	Fault Type	<u>Notes</u>
Extreme Event	Loss of one of the	Loss of one of the	Steady	:
-Steady State 1	following:	following:	State Only	
	 Generator 	1. Generator		
	2. Transmission	2. Transmission		
	Circuit	Circuit		
	3. Transformer	3. Transformer		
	4. Shunt Device	4. Shunt Device		
Extreme Event	Normal	Local Area events affecting	Steady	
-Steady State 2		the Transmission System	State Only	
		such as:		
		a. Loss of a tower		
1		line with three or		
		more circuits.		ļ
		b. Loss of all		
)		Transmission lines		
		on a common		
		Right-of-Way.		
		c. Loss of a switching		
		Station or	j	
		Substation (loss of		
}		one voltage level	}	
		plus transformers)		
}		d. Loss of all		
		generating Units a		
Ì		generating Station		
		e. Loss of a large Load		
1		or major Load		
		Center		
Extreme Event	Normal System	Wide area events affecting	Steady	
-Steady State 3		the transmission System	State Only	
		based on System Topology	Ì	
		such as:		
		a. Loss of two	Ì	
		generating		
		Stations.	-	
		b. Other events based		
		upon operating		
		experience that		
		may result in wide		
		area disturbances.		

Category	Initial Condition	Event	Fault Type	Notes
Extreme Event	Loss of one of the	3Ø fault on one of the	Stability Only	
-Stability 1	following:	following:	-3Ø	
	1. Generator	1. Generator		
	2. Transmission	2. Transmission Circuit		'
	Circuit	3. Transformer		•
	3. Transformer	4. Shunt Device		
	4. Shunt Device			
Extreme Event -	Normal System	Local or wide area events		
Stability 2	,	affecting the Transmission		
'		System such as:		
		a. 3Ø fault on		
		generator with stuck		
		breaker or a relay		
		failure resulting in		
		Delayed Fault		
		Clearing.		
		b. 3Ø fault on		
		Transmission Circuit		
		with stuck breaker or		
		a relay failure		
		resulting in Delayed		
		Fault Clearing.		
		c. 3Ø fault on		
		Transformer with		
		stuck breaker or a		
		relay failure resulting		
		in Delayed Fault		
		Clearing.		
		d. 3Ø fault on bus		
		section with stuck		
		breaker or a relay		
		failure resulting in		
		Delayed Fault		
		Clearing.		
		e. 3Ø internal breaker		
		fault		
		f. Other events based		
		upon operating		
		experience, such as		
		consideration of		
		initiating evens that		
		experience suggests		
		may result in wide		
		area disturbances.		

Confidential Attachment 2-E (Redacted)

[Distribution Automation Program Business Case]

Confidential Attachment 2-F (Redacted)

[Long-Term Communications Plan]

Execution and Management of the Plan

Execution of the Plan

The Engineering and Asset Risk Management Departments developed the 2021-2026 Electric Plan as well as the cost estimates for the projects. The portfolio of projects included in the 2021-2026 Electric Plan are then assigned to the Scope Development & Estimating, Electric Projects, Project Management and Construction Department for execution and management. The TDSIC Project Controls Team has the primary role of verifying that TDSIC project costs are accurately forecasted and accounted for. This includes obtaining, validating, tracking and paying invoices for the portfolio of projects included in the 2021-2026 Electric Plan. The TDSIC Project Controls Team is also responsible for creating monthly forecasts and accruals with input from the Electric Projects and Construction Department.

Management of Projects

NIPSCO's internal stakeholders worked to develop the 2021-2026 Electric Plan as well as the cost estimates for the projects. The portfolio of projects included in the 2021-2026 Electric Plan are then assigned to the Scope Development & Estimating, Electric Projects, Project Management and Construction Department for execution and management. The TDSIC Project Controls Team has the primary role of verifying that TDSIC project costs are accurately forecasted and accounted for. This includes obtaining, validating, tracking and paying invoices for the portfolio of projects included in the 2021-

2026 Electric Plan. The TDSIC Project Controls Team is also responsible for creating monthly forecasts and accruals with input from the Electric Projects and Construction Department.

Management of Costs

The process for initiating a new TDSIC work order begins with the Project Engineer/Manager submitting a Capital Initiative Form ("CIF") to the TDSIC Support Budget Analyst. The Budget Analyst routes the CIF to the Plan Owner and the Project Execution Team for two levels of approval. The purpose of the first level of approval, termed "TDSIC Verification," is to verify that the project and costs are TDSIC eligible. This ensures that only eligible project costs are tracked via the TDSIC tracker. The Plan Owner approves projects for TDSIC eligibility by referring to NIPSCO's currently approved 2021-2026 Electric Plan. The Plan Owner is responsible for understanding the intent and purpose of the overall Plan, and reviews all requests to determine if the work is approved within the Plan. The Plan Owner also reviews new project requests to be included in the next Plan update and determines it the project is an eligible improvement and necessary for purposes of system reliability and Grid Modernization. This is a critical piece of the TDSIC Plan as it is allows the most flexibility for the utility as the system continues to change.

The purpose of the second level of approval, termed "Work Order Approval," is to authorize the project work. The work order is approved by the Project Execution Leaders depending on the dollar amount of the request. Both TDSIC Verification and Work Order Approval are required before work is performed and project costs are incurred. The only exception to this process is when a work order is needed for an emergency, where approvals are obtained after the work order is provided to the Project Engineer/Manager. If the work order is determined not to be an eligible TDSIC project after it was routed through for formal approval, the work order is cancelled and removed from the TDSIC work order list. The emergency work order process is not a common occurrence, but may occasionally happen.

At the time of request and during the review and approval process, TDSIC work orders are identified and classified by category and sub-category. Once approved, the TDSIC Budget Analyst flags the TDSIC work order in NIPSCO's Fixed Asset System (PowerPlant) with the specific TDSIC category and sub-category. These identifiers and classifications in PowerPlant assist in ensuring that only TDSIC work orders are included for recovery.

Once a TDSIC work order is initiated, NIPSCO records charges to the work order in accordance with the internal controls discussed below. Capital dollars at NIPSCO are separated into two segments: (1) direct capital and (2) indirect capital. Direct capital

represents costs such as the materials and equipment installed and the labor costs of the workers performing the construction. Typically, these are costs that are incurred at the job site. Indirect costs are associated with capital projects and must be capitalized in order to comply with GAAP. However, these often cannot be charged directly to a specific capital project work order as they cannot be directly linked to one particular project. These capital costs tend to be incurred away from the job site. NIPSCO groups these indirect capital costs into three categories: (1) overheads, (2) stores, freight and handling, and (3) AFUDC. Vendor related direct costs are procured through the use of a Material Requisition ("MR"). A purchase order ("PO") is required to order goods or services. To initiate a PO with a vendor, an MR is initiated and routed for approval. The MRs related to TDSIC projects are labeled with a specific route code to ensure they are first routed to the TDSIC Project Controls Team, who then routes the request for required approvals. The MRs are approved by the Project Execution Leaders depending upon the dollar amount of the request. The Procurement group then generates a PO, which is identified as a TDSIC PO. This TDSIC route code on the PO ensures that TDSIC invoices are routed to the TDSIC Project Controls Team for validation. The TDSIC Project Controls Team routes TDSIC invoices to the TDSIC Project Execution group for two levels of approval.

In addition to the controls discussed above, the TDSIC Project Controls Team provides to the TDSIC Project Managers reports weekly that show the actual project costs recorded to each work order. The TDSIC Project Controls Cost Engineers meet monthly

one-on-one with the TDSIC Project Managers to review actual costs, to estimate accruals, and to forecast the project costs. TDSIC Project Managers also review all project costs to ensure that costs are properly recorded to the TDSIC work orders. This process includes the review of non-vendor payments such as internal labor and other direct costs. The TDSIC Project Manager reviews the detailed project cost reports provided by the TDSIC Project Controls Team to ensure that all vendor payments are properly recorded, and internal labor charges are appropriate. Any unusual charges are investigated and corrected if necessary.

Project Management Principles

NIPSCO's Project Managers have been trained and most have been certified as Project Management Professionals ("PMPs") and follow the Project Management Institute ("PMI") Project Management Body of Knowledge ("PMBOK") principles. The project life cycle is a core concern of NIPSCO's senior leadership, as well as the rest of the organization, and the status of each project is reviewed on a monthly basis. As discussed above, a TDSIC Project Controls Team is in place to ensure that items such as cost, scope, schedule and safety are being properly managed.

Inclusion of Contingency in Cost Estimates

Contingency is an amount added to a project base cost estimate to cover uncertainty and project risk. Incorporation of contingency is critical to creating a realistic estimate of the final project cost and increases the transparency around the expected cost at completion for a project. Projects are developed through a process of progressive elaboration whereby details to complete the scope required to satisfy the project deliverables are developed through an iterative process over time. Projects are generally not fully engineered or bid at the time the cost estimates are developed. To expend the resources required to eliminate uncertainty during early stages of project development would not be cost effective or reasonable.

Contingency is added for several reasons, including but not limited to: (1) covering details that may be identified later in the iterative design process; (2) covering requirements that may not have been reasonably anticipated during the land acquisition or permitting process; (3) addressing responses or exceptions that may not have been reasonably anticipated during the bid process; (4) changes in system configuration or operational constraints; or (5) accounting for field conditions where it is neither possible nor reasonable to identify all construction risks that could be encountered. It is important to note that a contingency may not cover all unanticipated costs. The AACE recognizes use of contingency to mitigate unexpected, additional costs as industry best practices. Without the inclusion of contingency, project estimates would not be "best estimates" as

required by the TDSIC Statute. Once NIPSCO successfully completes various stages of a project, the contingency amount is updated.

Maintaining an appropriate contingency can actually prevent project cost increases by providing a process that avoids costly project interruptions or delays when an issue or risk is realized. The contingency is added to cover estimate uncertainty and risk. Contingency increases transparency for the project stakeholders and provides the Project Manager with an appropriate tool to manage issues or risks that may be realized during project development or execution. It also provides the Project Manager with resources to avoid detrimental trade-offs in schedule, scope, quality, or functionality. Ultimately, an appropriate contingency increases the confidence in completing the project within the estimated cost.

Contingency is a way of accounting for known or potential risks associated with a project, and is not inclusive of every risk that could impact the cost of completion. For example, with construction in northwest Indiana, dewatering can become a significant part of the project expense due to the high ground water table. The estimates provide for normal or reasonably anticipated dewatering costs. The contingency is assigned to at least partially cover unusual conditions where extensive dewatering is required. However, it is not intended to fully cover dewatering from conditions that are historically atypical, such as record levels of precipitation during a particular construction season.

For projects planned for execution further out in the Plan, another risk that is not covered by contingency is the potential for significant changes in costs on materials since material fluctuations can be affected by unforeseen circumstances, as evidenced by recent circumstances related to lumber and other raw materials increasing dramatically. The demand for labor could also increase costs more than the amount that was included in the current estimates.

Petitioner's Exhibit No. 2-R Northern Indiana Public Service Company LLC Cause No. 45557 Page 1

IURC
PETITIONER'S
EXHIBIT NO. 2 - R
DATE
REPORTS

VERIFIED REBUTTAL TESTIMONY OF CHARLES A. VAMOS

1	Q1.	Please state your name, business address, and job title.
2	A1.	My name is Charles A. Vamos. My business address is 801 E. 86th Avenue,
3		Merrillville, Indiana 46410. I am Director, Electric T&D (Transmission and
4		Distribution) Engineering for Northern Indiana Public Service Company
5		LLC ("NIPSCO" or "Company").
6	Q2.	Are you the same Charles A. Vamos who prefiled direct testimony in this
7		Cause on June 1, 2021?
8	A2.	Yes.
9	Q3.	What is the purpose of your rebuttal testimony?
10	A3.	The purpose of my rebuttal testimony is to respond to the direct testimony
11		of Sergio Hunt filed on August 30, 2021 on behalf of the Indiana Office of
12		Utility Consumer Counselor ("OUCC") and the direct testimony of Brian
13		C. Collins filed on August 30, 2021 on behalf of the NIPSCO Industrial
14		Group ("Industrial Group"). Specifically, I respond to claims that the
15		incremental benefits attributable to NIPSCO's 2021-2026 Electric Plan are

Petitioner's Exhibit No. 2-R Northern Indiana Public Service Company LLC Cause No. 45557 Page 2

not sufficient enough to outweigh the expected costs; defend the break/fix analysis comparison NIPSCO utilized as a baseline to estimate risk reduction; and respond to the economic analysis put forth by Mr. Hunt, which he uses to propose the elimination of certain eligible TDSIC projects from NIPSCO's proposed TDSIC Plan. My rebuttal testimony is limited to a discussion of the issues set out below, and the failure to address each and every issue in each piece of testimony does not imply agreement with the positions taken by any party with respect to other issues.

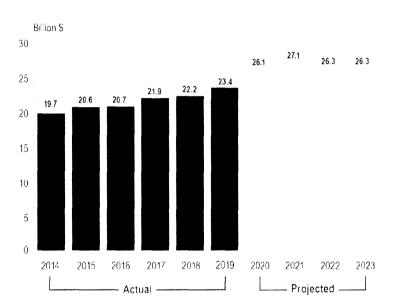
OVERALL COSTS AND BENEFITS OF NIPSCO'S 2021-2026 ELECTRIC PLAN

A4.

Q4. Mr. Collins testifies (at p. 2, lines 12-18) that "NIPSCO is proposing a major increase in annual spending levels for what are clearly diminishing benefits to ratepayers" and that the "TDSIC Plan proposed by NIPSCO involves total capital investment of \$1.625 billion over a 5-year, 7-month period, which amounts to over a 70% increase in average annual spending compared to the prior TDSIC Plan[.]" Is it accurate to say that NIPSCO has been increasing its level of transmission and distribution ("T&D") investment, and proposed to continue to do so under the 2021-2026 Electric Plan?

Generally speaking, yes. It is accurate to say that NIPSCO has been

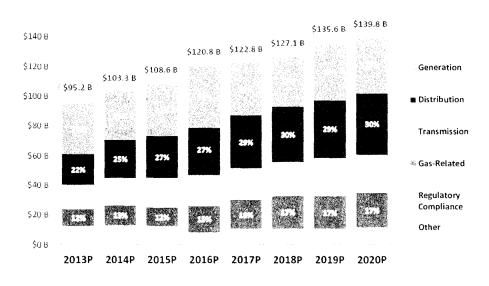
Petitioner's Exhibit No. 2-R Northern Indiana Public Service Company LLC Cause No. 45557 Page 3


investing in and proposes to increase its investment in T&D under its TDSIC Plan. However, as further discussed below, I do not agree with some of the characterizations and assumptions contained in this portion of Mr. Collins' testimony.

According to the Edison Electric Institute, in 2019, investor-owned electric companies spent \$35.6 billion on distribution investment, compared to \$31.6 billion in 2018 (in nominal dollars). Between 2015 and 2019, investor-owned electric companies invested \$149 billion (in nominal dollars) on the U.S. distribution system.¹ This should not be surprising to anyone who follows the electric utility industry, as the industry is in the midst of a significant transition. In the tables below, also from EEI, there is a similar picture for transmission and generation investment by investor-owned electric utilities.

https://www.eei.org/resourcesandmedia/Pages/IndustryData.aspx...

Petitioner's Exhibit No. 2-R Northern Indiana Public Service Company LLC Cause No. 45557 Page 4


Historical and Projected Transmission Investment (Nominal Dollars)

2 Source: https://www.eei.org/resourcesandmedia/Pages/IndustryData.aspx.

1

Projected Functional CapEx

Source: EEI Finance Department, member company reports, and SSP Global Market Intelligence (updated October 2020)

1

2

5

6

7

8

9

Source:

3 https://www.eei.org/issuesandpolicy/finance/wsb/Documents/2021 Wall Street Final Sli
4 <a href="https://www.eei.org/issuesandpolicy/finance/wsb/Documents/2021 Wall Street Final Sli
4 <a href="https://www.eei.org/issuesandpolicy/finance/wsb/Documents/2021 Wall Street Final Sli

I provide these data points to demonstrate that, while NIPSCO has increased its level of transmission and distribution investment over the last several years, which Mr. Collins points out, NIPSCO is not an outlier in the industry. The changes and challenges NIPSCO and the broader industry are facing today and preparing for tomorrow require significant investment

- of capital, such as the investments NIPSCO is proposing under its 2021-2026
- 2 Electric Plan.

6

7

8

9

10

11

12

13

14

15

16

- 3 Q5. Above, you said that you do not agree with some of the characterizations
- and assumptions contained in this portion of Mr. Collins' testimony.
- 5 Please explain this further.
 - A5. First, as further discussed by Witness Becker in her rebuttal, Mr. Collins is not engaging in an apples-to-apples comparison; thus, the foundation on which he bases his claims is faulty. For example, he ignores the fact that a significant portion of the proposed TDSIC Plan is "carryover" projects from the prior TDSIC Plan that were approved utilizing the same methodology as this proposed Plan.² Likewise, while he does include a sentence (at p. 5, lines 9-11) that indicates what percentage of the TDSIC Plan relates to Aging Infrastructure, System Deliverability, and Grid Modernization, he generally ignores the fact that the Grid Modernization category is a new category allowed under a fairly recent amendment to the TDSIC Statute, which NIPSCO has chosen to utilize—which naturally increases NIPSCO's

² As noted in Ms. Becker's rebuttal testimony, these carryover projects total approximately \$526,613,628.

1 total planned investment.

2 Q6. Do you agree with his repeated assertion that the 2021-2026 Electric Plan involves "clearly diminishing benefits" for NIPSCO's customers?3 3 A6. No. I do not. I first note that the evaluation the Commission must 4 5 undertake under Section 10 of the TDSIC Statute is "whether the estimated costs of the eligible improvements included in the plan are justified by 6 7 incremental benefits attributable to the plan." The benefits associated with NIPSCO's prior Plan are not relevant to that determination, and this Plan 8 9 should be evaluated on its own merits. 10 Second, NIPSCO has acknowledged that one type of benefit measure is 11 estimated to be less than what was originally estimated and ultimately 12 realized under NIPSCO's original Plan, but that does not mean that the 13 overall "incremental benefits attributable to the plan" are "clearly 14 diminishing."

³ See Collins at p. 3, lines 12-14 ("NIPSCO is proposing a major increase in annual spending levels for what are clearly diminishing benefits to ratepayers."); at p. 12, lines 7-9 ("NIPSCO is proposing a very cost-intensive 5-year, 7-month period at a much higher level of annual spending, even though the level of customer benefits is clearly diminishing."); and at p. 22, lines 7-8 ("The new TDSIC Plan represents a major increase in annual TDSIC spending for what are clearly diminishing returns in benefits to ratepayers.").

1 Q7. Please expand on this second point.

2

3

4

5

7

9

10

11

12

13

14

15

16

17

18

A7. In Question / Answer 20 of my direct testimony, I reported that "the TDSIC electric projects completed from 2016 through 2020 reduced the relative NIPSCO system risk by 21% from the 2016 baseline." In the following Question / Answer 21, I also testified that "based on the TDSIC Risk Model, NIPSCO estimates an overall risk reduction of approximately 16%" for the 2021-2026 Electric Plan. On pages 25-26, in Question / Answer 22, I then explained the two primary reasons for this difference: (1) the initial assets addressed in Electric Plan 1 were of higher impact, because they were the highest risk assets of the whole NIPSCO asset population and (2) NIPSCO will be replacing all aging assets at the same location (including some that are not as high of risk as the those NIPSCO is specifically targeting). This will drive efficiencies, such as not needing to mobilize a second time a few years later to replace aging assets when the less-risky but still aging "other assets" at a location fail. However, it does result in NIPSCO seeing comparatively less risk reduction. Again, this is related to only one type of benefit associated with the Plan, and this type of benefit is not associated with all project categories.

1 Important as well, there are numerous benefits other than risk reduction. 2 For example, as discussed briefly below and more extensively by NIPSCO 3 witness Matt Thibodeau in rebuttal, NIPSCO is reporting economic impacts 4 associated with the 2021-2026 Electric Plan. There are other "non-5 monetized" benefits attributable to the Plan that are further discussed 6 below. 7 Q8. On pages 10-12, Mr. Collins includes testimony about NIPSCO's current 8 reliability indices and implies that NIPSCO's prior TDSIC Plan has not 9 improved NIPSCO's electric system. Please respond to these claims. 10 A8. It is interesting that Mr. Collins notes that certain of NIPSCO's metrics (such 11 as System Average Interruption Frequency Index ("SAIFI"), System 12 Average Interruption Duration Index ("SAIDI"), and Customer Average 13 Interruption Duration Index ("CAIDI")) have not recently improved and 14 then argues the 2021-2026 Electric Plan not be approved, when a majority 15 of the proposed Plan is to replace Aging Infrastructure and better serve 16 NIPSCO's customers. First, he ignores the fact that, had NIPSCO not 17 executed its prior Plan, its metrics likely would have declined, rather than 18 held steady. Second, he ignores the reality that if NIPSCO stops spending

1		(or had not spent in the past), reliability metrics would very likely not be
2		where they are today.
3		Another factor to be considered, which is wholly ignored by Mr. Collins, is
4		the impact on NIPSCO's reliability metrics during the execution of the
5		TDSIC projects. Over the course of past five years, NIPSCO has
6		experienced higher impact outages due to the fact that much of its system
7		needed to be tied together into order to execute the work under the prior
8		Plan. Finally, another important consideration is how little of the system
9		was touched during NIPSCO's last TDSIC plan. Less than 8% of its assets
10		were impacted by these investments.
11		NIPSCO is always striving to improve reliability generally and the metrics
12		like SAIDI, SAIFI, and CAIDI, specifically. NIPSCO acknowledges that it
13		has room to improve, and this TDSIC Plan is a very important part of
14		NIPSCO's work to do that.
15	Q9.	Mr. Collins claims (at p. 3, lines 22-23) that "NIPSCO has not
16		demonstrated that the incremental benefits justify the proposed \$1.625
17		billion in investments." How do you respond?
18	A9.	The Plan addresses safety, reliability, grid modernization, and allows for

future economic development, all providing incremental benefits for
NIPSCO's customers. Pages 23-27 of my direct testimony highlight risk
reduction, which is one key benefit, especially as related to NIPSCO's
Aging Infrastructure category projects. I then spent significant time in my
direct testimony (at Question / Answer 25) explaining the overall
incremental benefit associated with the 2021-2026 Electric Plan. The
benefits are substantial and do not fall into one category.
As explained in Question / Answer 25 of my direct testimony, there are
numerous benefits of undertaking a system modernization plan
Maintaining and improving upon NIPSCO's safety practices is paramount
to the sustainability of NIPSCO's system. This TDSIC Plan provides the
means to better protect NIPSCO's customers and employees through
investments, such as increased system visibility and faster acting protective
devices.
In this same section of my testimony, I also explained the importance of
addressing NIPSCO's continually-aging system. As noted above, more
than 92% of NIPSCO's electric system assets were not impacted by the prior
TDISC Plan. Without proactive replacement of many of these assets

1		NIPSCO's system would be more susceptible to larger and more frequent
2		interruptions due to asset failures.
3		Also, the assets and projects included within NIPSCO's portfolio of
4		Deliverability projects were chosen to meet the increasing demands of
5		NIPSCO's customers. Not performing this kind of proactive work would
6		prohibit NIPSCO from fulfilling its obligation to serve its customers, which
7		is simply not an option.
8	Q10.	In his next point (at p. 3, lines 30-32), Mr. Collins claims that "NIPSCO
9		has not calculated benefits for either its Aging Infrastructure or System
10		Deliverability projects. Therefore, NIPSCO has not shown that the
11		projected benefits of the incremental reduction in risk is indeed cost-
12		justified[.]" Has NIPSCO justified all of its projects, including its Aging
13		Infrastructure or System Deliverability projects, in its case-in-chief?
14	A10.	Yes. While NIPSCO has not calculated monetized benefits associated with
15		every project category, there are undeniably benefits associated with each
16		project category both in risk reduction and the ability to meet customer
17		deliverability needs. In pages 28-36 of my direct testimony, I explained
18		NIPSCO's position on this in great detail. Additionally, NIPSCO did offer

1 a Cost Benefit Analysis associated specifically with its AMI Project, which 2 witness Kiergan discussed in his direct testimony and also discusses in his 3 rebuttal, and NIPSCO also provided similar analysis for its Distribution 4 Automation Project in Confidential Attachment 2-E to my direct testimony. 5 Further, NIPSCO also put forward a report about the economic impacts 6 expected to flow from NIPSCO's investment under the Plan, which was 7 originally sponsored by witness Becker but is more fully discussed and now sponsored by witness Thibodeau in rebuttal. Thus, NIPSCO has fully 9 justified the Plan in terms of overall benefits versus overall costs. UTILIZING A BREAK/FIX APPROACH AS A BASELINE FOR COMPARISON 10 11 Q11. Mr. Hunt claims (at p. 12, lines 1-4) that because NIPSCO does not utilize 12 a break/fix approach in general, this means the TDSIC Plan overstates the 13 amount of risk that will be reduced. Mr. Collins raises a similar claim on 14 pages 10-12 of his testimony. Please respond to these claims. 15 A11. First, I will admit that Mr. Hunt and Mr. Collins are partially correct. 16 NIPSCO does not utilize a "break/fix" approach for its maintenance 17 practices, but utilizes a proactive maintenance program. NIPSCO has never 18 represented otherwise. However, this does not mean that the Break/Fix

1		approach that was utilized for a baseline from which to compare the
2		replacements planned under the 2021-2026 Electric Plan is not appropriate.
3		As noted in NIPSCO's response to Industrials Request 3-006, attached to
4		Mr. Collins' testimony at Attachment BCC-2, p. 1, "[t]he 'break/fix
5		approach' is a holistic representation of no proactive replacements of aged
6		and/or deteriorated assets and is typical for use as a baseline comparisor
7		when evaluating risk reduction." What NIPSCO is comparing is
8		specifically the work proposed under the TDSIC Plan versus not doing any
9		of the work in the Plan. This theoretical assumption is used to portray the
10		benefit of the Plan and not represent the current operating practices at
11		NIPSCO.
12	Q12.	Has the Commission addressed a similar argument in prior TDSIC order
13		criticizing the baseline for comparison of risk modeling?
14	A12.	Yes. In the Commission's March 4, 2020 order in Cause No. 45264 (at p. 10)
15		where the Commission evaluated and ultimately approved an electric
16		TDSIC plan proposed by Indianapolis Power and Light ("IPL") (now AES
17		Indiana), the Commission recited a very similar challenge to IPL's
18		estimated risk reduction which was actually offered by Mr. Collins in that

proceeding as well. On pages 15-16 of the order, the Commission also recited IPL witness De Stitger's response to Mr. Collins. The Commission did not accept the challenges or criticisms raised by Mr. Collins and found (at p. 24) that "record evidence demonstrates that the IPL Plan is proposed to reduce risk of asset failure and maintain service reliability. In doing so, the TDSIC Plan provides incremental benefits compared to how the future would otherwise unfold." The Commission accepted IPL's methodology, and there is no reason for the Commission to reverse course in this proceeding. Furthermore, NIPSCO utilized this same risk assessment methodology in Cause No. 44733 to support its prior electric TDSIC Plan. While Cause No. 44733 resulted in a settlement agreement and the risk reduction analysis presented by NIPSCO was not explicitly challenged, this is another example that, at minimum, illustrates this is a typical and valid form of comparison.

16 NIPSCO'S RISK MODEL IS A VALID AND VALUABLE TOOL

- 17 Q13. What does Mr. Hunt have to say about NIPSCO's 2021-2026 Electric Plan
- 18 generally and its Risk Model specifically?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A13. Mr. Hunt does not claim that any proposed projects are not eligible under

2		the TDSIC Statute, nor does he take issue with NIPSCO's 2021-2026 Electric
3		Plan or its T&D Risk Model. Instead, he applies what he calls (at p. 5, line
4		14) a "new source of risk analysis" and argues for the exclusion of several
5		projects and a significant amount of overall capital investment.
6		Mr. Hunt first explains NIPSCO's T&D Risk Model, which assigns a
7		Consequence of Failure ("COF") and Likelihood of Failure ("LOF") to each
8		asset. As noted on page 6, lines 13-15, he does not challenge NIPSCO's risk
9		scoring and specifically admits that his "analysis uses NIPSCO's own risk
10		data and cost estimates[.]" He takes NIPSCO's information to "create a
11		'dollar per unit of risk reduction' value for each project." Mr. Hunt then
12		takes each project NIPSCO has proposed (with the exclusion of one project)
13		and lays them out on a chart in Figure 2 (at p. 8). He then discusses an
14		"Upper Limit," which is a certain dollar-per-unit-of-cost-reduction above
15		which he proposes to eliminate all projects.
16	Q14.	Before you specifically address what Mr. Hunt testified about, please
17		briefly explain NIPSCO's Risk Model and project selection process.
18	A14.	NIPSCO's approach to project selection and prioritization is twofold. It

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Petitioner's Exhibit No. 2-R Northern Indiana Public Service Company LLC Cause No. 45557 Page 17

involved both the Risk Model and human input. The Risk Model serves as a tool to quantify asset risks across the NIPSCO system, then prioritize replacements according to likelihood and criticality of failure. Subsequently, NIPSCO personnel in System Planning, Operations, Engineering, Construction, etc. use the Risk Model results and consider additional factors, such as system constraints, load growth areas, need for improved capacity, system planning, forecasted growth, protection, and reliability analysis in order to build a sequential plan to decide what projects should be executed to support customer experience and reliability. This allows for the optimization of projects across all drivers (Aging Infrastructure, Deliverability, Grid Modernization). For example, if the Risk Model determines a substation transformer should be replaced in year 2023 as an aging infrastructure project, and in 2025 the same substation is scheduled for a control house battery monitoring device installation as a grid modernization project, NIPSCO personnel may choose to execute both the projects simultaneously. This eliminates the costs of a second mobilization, increases efficiency in NIPSCO staffing resources, and customer outages, and reduces non-scheduled support (project

1 management, scheduling, etc.). In summary, TDSIC Plan development and 2 project selection encompasses more than just the modeled risk analysis. 3 Additionally, NIPSCO prioritizes safety for both personnel and the general 4 public in all project decisions, which is not reflected in the Risk Model. 5 Older equipment, and substations as a whole, are always built to meet the 6 industry code requirements of the time. As time progresses, these codes 7 are updated, leaving facilities outdated. In order to ensure the safety of 8 NIPSCO personnel, a substation may need to be rebuilt in order to meet 9 new code standards, as opposed to replacing an older piece of equipment 10 with a modern (and typically safer) version. 11 Q15. What is NIPSCO's overall response to Mr. Hunt's "risk analysis"? 12 A15. Mr. Hunt applies an arbitrary risk reduction threshold and does not justify 13 the dollar level at which it is set. Additionally, his analysis is performed 14 entirely in a vacuum that does not involve any real-world, human input by 15 those who are familiar with the projects. He completely ignores the reality

Mr. Hunt notes at the onset of his testimony that his training is in economics, and he does not have any engineering education or experience. Nowhere in Mr. Hunt's testimony does he state or imply that the projects he proposes to exclude were reviewed by himself or any other person at the OUCC to determine if they were appropriate to exclude.

	of how NIPSCO's electric system actually operates. This human input and
	real-world evaluation is an important component from the perspective of
	considering the importance of a project to NIPSCO's overall system, and
	ultimately determining if it should be included or excluded from the
	proposed Plan. This is discussed more fully below in NIPSCO's criticism
	of Mr. Hunt's overall approach to proposing elimination of projects based
	solely on an objective economic analysis, without any human intervention
	to evaluate concerns associated with that kind of exercise.
	Furthermore, while Mr. Hunt acknowledges (at p. 12, lines 16-18) that not
	all projects proposed by NIPSCO are risk-based and have no "risk ranking,"
	he still applies his analysis to such projects, such as the Deliverability
	category of projects. Finally, as discussed more fully below, the strict
	application or Mr. Hunt's analysis would lead to unrealistic and
	problematic outcomes, which raises substantial questions about its
	usefulness even as a single point of reference.
Q16.	What are NIPSCO's specific concerns with the output or conclusions of
	Mr. Hunt's "risk analysis"?
A16.	Strict adherence to Mr. Hunt's analysis would lead to arbitrary removal of

1

2

3

4

5

7

8

9

10

11

12

13

14

15

16

17

Petitioner's Exhibit No. 2-R Northern Indiana Public Service Company LLC Cause No. 45557 Page 20

projects, many of which would be problematic to NIPSCO's 2021-2026 Electric Plan and overall electric system reliability. Additionally, five (5) of the projects he proposes to eliminate are "carryover" projects from NIPSCO's prior Plan,⁵ meaning they have already been found to be eligible TDSIC projects by the Commission, yet he does not even acknowledge—let alone explain-why previously-approved projects should now be excluded. NIPSCO acknowledges that some projects cost more "per unit of risk reduction," but this is to be expected due to the difference in project types. Not all projects are an "in kind" replacement, and some projects cost more than others to perform due to the differences in construction needed to complete the project. The projects Mr. Hunt proposed to eliminate fall into both the Aging Infrastructure and Deliverability categories. He proposes the removal of eight (8) Deliverability projects and four (4) Aging Infrastructure projects totaling approximately \$120 Million dollars. Deliverability projects were not selected primarily for risk reduction, but

for accommodating system upgrades for areas of growth and high stress.

 $^{^{\}scriptsize 5}$ These are projects TLNRL21, TSBRU24, TSNRS13, TLNRL22, and TLNRL24, which account for more than \$43 million in total.

1 Therefore, the argument that these projects do not deliver enough "risk 2 reduction per dollar spent" is not an appropriate basis on which to judge 3 them. The projects under the deliverability category are the following: 4 DSTU43 5 TLNRL22 TLNRL28 6 7 TLNRL30 8 TLNRL33 TLNRL36 9 TSNRS19 10 11 TSTU11 12 Q17. Is there a project that Mr. Hunt recommends to remove from the 2021-13 2026 Electric Plan that demonstrates the problems you have outlined 14 above? 15 A17. The new Marktown Substation deliverability project (project TSNRS19) is 16 one such example. The Marktown substation is one of the most important 17 substations in NIPSCO's entire system. It provides electricity to several 18 large industrial facilities along the Lake Michigan shoreline, including the 19 BP Whiting Refinery, which is the largest refinery in the Midwest. This 20 refinery makes enormous contributions to the region's transportation 21 network, processing around 430,000 barrels of crude oil every day. The 22 refinery produces around 10 million gallons of gasoline, 4 million gallons

of diesel, and 2 million gallons of jet fuel each day.6

The investments planned at this substation will require constructing an entirely new 138kV substation, including 138kV transmission line relocations. The Marktown substation was constructed over 90 years ago and the average asset age is 37 years old. The planned work is intended to address significant challenges that exist with the aging, antiquated assets, such as difficulty in obtaining clearances, the inability to take certain assets out of service, the lack of redundancy, and the absence of modern breaker schemes and relaying capabilities. This project is significantly more complex than a typical "in-kind" breaker or transformer replacement and will cost significantly more to complete. The relatively high cost is likely why it was proposed for elimination by Mr. Hunt's analysis, but there is no discussion or even recognition of the importance of the Marktown Substation project in his testimony or attachments. He simply proposed to exclude it based on an arbitrary threshold.

Q18. What other concerns do you have with Mr. Hunt's analysis?

 $[\]frac{6}{https://www.bp.com/en~us/united-states/home/where-we-operate/indiana/whiting-refinery.html\#tab~fueling-midwest.}$

1	A18.	Much like for the Marktown Substation project, Mr. Hunt's analysis did not
2		take into account the criticality of other assets. As an example, the list of
3		assets by project that were proposed for removal includes "Asset
4		DS001007" from project DSTU43, which is a 69-12kV 14 MVA transformer.
5		While some assets project to have the same risk reduction, a transformer
6		will have significantly higher costs than equipment like breakers or
7		transmission poles. Despite the higher cost, a transformer is one of the most
8		critical pieces of equipment in the power system. However, because of their
9		relatively higher cost, there is almost a "bias" against these important-but-
10		expensive type of asset replacements in Mr. Hunt's model.
11		Transformers change the relationship between the incoming voltage and
12		current and the outgoing voltage and current of a substation. The
13		transmission and distribution systems require higher voltage, lower current
14		electricity across the transmission system for reduction of losses, while
15		homes and businesses require lower voltage, higher current to power
16		equipment. Additionally, transformer replacement is required for
17		increased capacity at the Cedar Lake substation, due to the load service

- being rated at "5," or the highest load criticality, but this is also proposed 1 2 to be excluded under Mr. Hunt's analysis. 3 For all these reasons, it would not be appropriate for the Commission to 4 apply Mr. Hunt's new analysis and utilize it as a basis for excluding valid, 5 TDSIC-eligible, important projects from NIPSCO's 2021-2026 Electric Plan. Q19. Does this conclude your prepared rebuttal testimony?
- 7 A19. Yes.

VERIFICATION

I, Charles A. Vamos, Director, Electric T&D Engineering for Northern Indiana Public Service Company LLC, affirm under penalties of perjury that the foregoing representations are true and correct to the best of my knowledge, information and belief.

Charles A. Vamos

Date: September 15, 2021

VERIFICATION

I verify under penalties of perjury that the documents in this Appendix are accurate copies of parts of the Record on Appeal.

/s/ Brian J. Paul
Brian J. Paul

CERTIFICATE OF SERVICE

I hereby certify that on this 5th day of July, 2022, the foregoing was filed with the Clerk of the Indiana Supreme Court, Court of Appeals, and Tax Court via the Indiana E-Filing System.

I also certify that on this 5th day of July, 2022, the foregoing was served upon the following counsel of record via the Indiana E-Filing System:

Joseph P. Rompala Todd Arthur Richardson LEWIS & KAPPES, P.C. One American Square, Suite 2500 Indianapolis, IN 46282-0003

<u>JRompala@Lewis-Kappes.com</u> <u>TRichardson@Lewis-Kappes.com</u>

William I. Fine Randall C. Helmen Jeffrey M. Reed

OFFICE OF UTILITY CONSUMER

COUNSELOR

115 West Washington Street, Suite 1500

South

Indianapolis, IN 46204

wfine@oucc.in.gov

rhelmen@oucc.in.gov

<u>ireed@oucc.in.gov</u>

infomgt@oucc.in.gov

Jennifer A. Washburn

CITIZENS ACTION COALITION

1915 West 18th Street, Suite C

Indianapolis, IN 46204

jwashburn@citact.org rkurtz@citact.org

Beth Heline Jeremy Comeau Bradford Hines

INDIANA REGULATORY

COMMISSION PNC Center

101 West Washington Street, Ste, 1500

East

Indianapolis, IN 46204 <u>bheline@urc.in.gov</u> <u>jcomeau@urc.in.gov</u> <u>bhines@urc.in.gov</u>

Angela N. Sanchez Benjamin M. L. Jones

OFFICE OF THE ATTORNEY

GENERAL AGCS, 5th Floor

302 West Washington Street Indianapolis, IN 46204-2794 Angela.Sanchez@atg.in.gov Benjamin.Jones@atg.in.gov

/s/ Brian J. Paul